-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqdrant_class.py
58 lines (51 loc) · 2.02 KB
/
qdrant_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from qdrant_client import QdrantClient
from langchain_qdrant import QdrantVectorStore , Qdrant
from langchain_openai import OpenAIEmbeddings
from qdrant_client import QdrantClient, models
from dotenv import load_dotenv
load_dotenv()
import os
class QdrantInsertRetrievalAll:
def __init__(self,api_key,url):
self.url = url
self.api_key = api_key
# Method to insert documents into Qdrant vector store
def insertion(self,text,embeddings,collection_name):
qdrant = QdrantVectorStore.from_documents(
text,
embeddings,
url=self.url,
prefer_grpc=True,
api_key=self.api_key,
collection_name=collection_name,
)
print("insertion successfull")
return qdrant
# Method to retrieve documents from Qdrant vector store
def retrieval(self,collection_name,embeddings):
qdrant_client = QdrantClient(
url=self.url,
api_key=self.api_key,
)
qdrant_store = Qdrant(qdrant_client,collection_name=collection_name ,embeddings=embeddings)
return qdrant_store
# Method to delete a collection from Qdrant
def delete_collection(self,collection_name):
qdrant_client = QdrantClient(
url=self.url,
api_key=self.api_key,
)
qdrant_client.delete_collection(collection_name)
return collection_name
# Method to create a new collection in Qdrant with cosine similarity
def create_collection(self,collection_name):
qdrant_client = QdrantClient(
url=self.url,
api_key=self.api_key,
)
qdrant_client.create_collection(collection_name,vectors_config=models.VectorParams(size=100, distance=models.Distance.COSINE))
print(f"Your collection {collection_name} created successfully")
return collection_name
qdrant_api_key = os.getenv("QDRANT_API_KEY")
qdrant_url = os.getenv("URL")
my_qdrant = QdrantInsertRetrievalAll(api_key=qdrant_api_key,url=qdrant_url)