-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
78 lines (70 loc) · 3.23 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from typing import Callable, Iterable, Tuple
import torch
from torch.optim import Optimizer
class AdamW(Optimizer):
def __init__(
self,
params: Iterable[torch.nn.parameter.Parameter],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0.0,
correct_bias: bool = True,
):
if lr < 0.0:
raise ValueError(
"Invalid learning rate: {} - should be >= 0.0".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[1]))
if not 0.0 <= eps:
raise ValueError(
"Invalid epsilon value: {} - should be >= 0.0".format(eps))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, correct_bias=correct_bias)
super().__init__(params, defaults)
def step(self, closure: Callable = None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
"Adam does not support sparse gradients, please consider SparseAdam instead")
(b1, b2) = group['betas']
data = p.data
# State should be stored in this dictionary
state = self.state[p]
# Access hyperparameters from the `group` dictionary
alpha = group["lr"]
# Update first and second moments of the gradients
if not state:
# since state is empty dictionary, we need to initiliaze with
# the necessary keys and values like moment_one, moment_two, and time
state['m1'] = 0
state['m2'] = 0
state['time'] = 0
state['m1'] = (state['m1'] * b1) + (grad * (1 - b1))
state['m2'] = (state['m2'] * b2) + ((grad ** 2) * (1 - b2))
state['time'] = state['time'] + 1
# Bias correction
# Please note that we are using the "efficient version" given in
# https://arxiv.org/abs/1412.6980
more_efficient_alpha = alpha * \
((1 - (b2 ** state["time"])) ** 0.5) / \
(1 - (b1 ** state["time"]))
moment_subtract = more_efficient_alpha * \
state["m1"] / ((state["m2"] ** 0.5) + group["eps"])
weight_decay = (alpha * group['weight_decay'] * data)
p.data = (data - moment_subtract) - weight_decay
# Update parameters
# Add weight decay after the main gradient-based updates.
# Please note that the learning rate should be incorporated into this update.
return loss