Skip to content

Latest commit

 

History

History
37 lines (32 loc) · 1.63 KB

README.md

File metadata and controls

37 lines (32 loc) · 1.63 KB

dgtl.vsn

movingwin An object detection model for digital user interfaces

Installation

Fresh Docker Container setup

  1. docker run --gpus all -it -p 8888:8888 --name dgtlvsn tensorflow/tensorflow:latest/gpu
  2. apt-get update && apt-get install git
  3. apt-get install protobuf-compiler
  4. apt-get install wget
  5. python -m venv my-env
  6. source my-env/bin/activate
  7. python -m pip install --upgrade pip
  8. pip install ipykernel
  9. python -m ipykernel install --user --name=my-kernel
  10. python -m pip install --upgrade jupyter

Existing python environment

  1. Clone this repository.
  2. Open 1_Setup.ipynb to install packages, creates folders, and ensure the check is satisfied.
  3. Download sample dataset or place images in /Tensorflow/workspace/images/train and /Tensorflow/workspace/images/test.

Result Summary

Training and evaluation were performed within a Docker container on a Windows machine (16gb RAM, RTX 3080)

Model: SSD Mobile Net 640x640

Sites Images Steps AP AR CL TL
5 10 2000 0.839 0.421 0.0995 0.4056
5 10 5000 0.872 0.429 0.1002 0.2400
5 50 2000 0.871 0.489 0.0260 0.1722
5 50 5000 0.896 0.498 0.0292 0.1540
5 50 10000 0.966 0.539 0.0213 0.1149
5 100 2000 0.909 0.452 0.0639 0.2225
5 100 5000 0.927 0.464 0.0184 0.1463
5 100 10000 0.879 0.439 0.0267 0.1220