-
-
Notifications
You must be signed in to change notification settings - Fork 10
/
references.bib
217 lines (201 loc) · 8.33 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
@article{William1984,
author = { William S. Cleveland and Robert McGill },
title = {Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods},
journal = {Journal of the American Statistical Association},
volume = {79},
number = {387},
pages = {531-554},
year = {1984},
publisher = {Taylor & Francis},
doi = {10.1080/01621459.1984.10478080},
URL = { https://www.tandfonline.com/doi/abs/10.1080/01621459.1984.10478080},
eprint = { https://www.tandfonline.com/doi/pdf/10.1080/01621459.1984.10478080},
}
@inproceedings{Heer2010,
address = {New York, NY, USA},
series = {{CHI} '10},
title = {Crowdsourcing graphical perception: using mechanical turk to assess visualization design},
isbn = {978-1-60558-929-9},
shorttitle = {Crowdsourcing graphical perception},
url = {https://doi.org/10.1145/1753326.1753357},
doi = {10.1145/1753326.1753357},
urldate = {2023-09-28},
booktitle = {Proceedings of the {SIGCHI} {Conference} on {Human} {Factors} in {Computing} {Systems}},
publisher = {Association for Computing Machinery},
author = {Heer, Jeffrey and Bostock, Michael},
month = apr,
year = {2010},
keywords = {crowdsourcing, evaluation, experimentation, graphical perception, information visualization, mechanical turk, user study},
pages = {203--212},
}
@incollection{diaconis2011,
title = {Theories of {Data} {Analysis}: {From} {Magical} {Thinking} {Through} {Classical} {Statistics}},
copyright = {Copyright © 1985, 2006 John Wiley \& Sons, Inc. All rights reserved.},
isbn = {978-1-118-15070-2},
shorttitle = {Theories of {Data} {Analysis}},
abstract = {This chapter contains sections titled: Intuitive Statistics— Some Inferential Problems Multiplicity— A Pervasive Problem Some Remedies Theories for Data Analysis Uses for Mathematics In Defense of Controlled Magical Thinking},
booktitle = {Exploring {Data} {Tables}, {Trends}, and {Shapes}},
publisher = {John Wiley \& Sons, Ltd},
author = {Diaconis, Persi},
year = {2011},
doi = {10.1002/9781118150702.ch1},
keywords = {controlled magical thinking, data analysis, data structure, intuitive statistics, multiplicity},
pages = {1--36},
}
@article{ghahramani2015,
title = {Probabilistic {Machine} {Learning} and {Artificial} {Intelligence}},
volume = {521},
copyright = {© 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.},
issn = {0028-0836},
doi = {10.1038/nature14541},
abstract = {How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.},
number = {7553},
journal = {Nature},
author = {Ghahramani, Zoubin},
month = may,
year = {2015},
keywords = {Computer science, Mathematics and computing, neuroscience},
pages = {452--459},
}
@book{bessiere2013,
address = {Boca Raton},
edition = {1 edition},
title = {Bayesian {Programming}},
isbn = {978-1-4398-8032-6},
publisher = {Chapman and Hall/CRC},
url = {https://www.crcpress.com/Bayesian-Programming/Bessiere-Mazer-Ahuactzin-Mekhnacha/p/book/9781439880326},
author = {Bessiere, Pierre and Mazer, Emmanuel and Ahuactzin, Juan Manuel and Mekhnacha, Kamel},
month = dec,
year = {2013},
}
@book{daniel2015,
title = {Probabilistic {Programming}},
author = {{Daniel Roy}},
url = {http://probabilistic-programming.org},
year = {2015},
}
@article{xarray_2017,
title = {Xarray: {N}-{D} {Labeled} {Arrays} and {Datasets} in {Python}},
volume = {5},
issn = {2049-9647},
shorttitle = {Xarray},
doi = {10.5334/jors.148},
number = {1},
journal = {Journal of Open Research Software},
author = {Hoyer, Stephan and Hamman, Joe},
month = apr,
year = {2017},
keywords = {data analysis, data, data handling, multidimensional, netCDF, pandas, Python},
}
@article{Kleiber_2016,
title={Visualizing Count Data Regressions Using Rootograms},
volume={70},
ISSN={1537-2731},
url={http://dx.doi.org/10.1080/00031305.2016.1173590},
DOI={10.1080/00031305.2016.1173590},
number={3},
journal={The American Statistician},
publisher={Informa UK Limited},
author={Kleiber, Christian and Zeileis, Achim},
year={2016},
month=jul, pages={296–303} }
@article{Brockmann_1996,
author = {Brockmann, H. Jane},
title = {Satellite Male Groups in Horseshoe Crabs, Limulus polyphemus},
journal = {Ethology},
volume = {102},
number = {1},
pages = {1-21},
doi = {https://doi.org/10.1111/j.1439-0310.1996.tb01099.x},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0310.1996.tb01099.x},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1439-0310.1996.tb01099.x},
year = {1996}
}
@book{tukey_1977,
edition = {1 edition},
title = {Exploratory {Data} {Analysis}},
isbn = {978-0-201-07616-5},
publisher = {Pearson},
author = {Tukey, John W.},
year = {1977},
}
@article{Greenhill_2011,
author = {Greenhill, Brian and Ward, Michael D. and Sacks, Audrey},
title = {The Separation Plot: A New Visual Method for Evaluating the Fit of Binary Models},
journal = {American Journal of Political Science},
volume = {55},
number = {4},
pages = {991-1002},
doi = {https://doi.org/10.1111/j.1540-5907.2011.00525.x},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-5907.2011.00525.x},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-5907.2011.00525.x},
year = {2011}
}
@article{kallioinen_2023,
title = {Detecting and diagnosing prior and likelihood sensitivity with power-scaling},
volume = {34},
issn = {1573-1375},
url = {https://doi.org/10.1007/s11222-023-10366-5},
doi = {10.1007/s11222-023-10366-5},
language = {en},
number = {1},
urldate = {2024-09-25},
journal = {Statistics and Computing},
author = {Kallioinen, Noa and Paananen, Topi and Bürkner, Paul-Christian and Vehtari, Aki},
month = dec,
year = {2023},
keywords = {Artificial Intelligence, Bayesian, diagnostic, likelihood, prior, sensitivity},
pages = {57},
}
@article{sailynoja_2022,
title = {Graphical test for discrete uniformity and its applications in goodness-of-fit evaluation and multiple sample comparison},
volume = {32},
issn = {1573-1375},
url = {https://doi.org/10.1007/s11222-022-10090-6},
doi = {10.1007/s11222-022-10090-6},
language = {en},
number = {2},
urldate = {2024-10-07},
journal = {Statistics and Computing},
author = {Säilynoja, Teemu and Bürkner, Paul-Christian and Vehtari, Aki},
month = mar,
year = {2022},
keywords = {Artificial Intelligence, ECDF, MCMC convergence diagnostic, PIT, Simulation-based calibration, Uniformity test},
pages = {32},
}
@misc{talts_2020,
title={Validating Bayesian Inference Algorithms with Simulation-Based Calibration},
author={Sean Talts and Michael Betancourt and Daniel Simpson and Aki Vehtari and Andrew Gelman},
year={2020},
eprint={1804.06788},
archivePrefix={arXiv},
primaryClass={stat.ME},
url={https://arxiv.org/abs/1804.06788},
}
@article{link_2011,
author = {Link, William A. and Eaton, Mitchell J.},
title = {On thinning of chains in MCMC},
journal = {Methods in Ecology and Evolution},
volume = {3},
number = {1},
pages = {112-115},
keywords = {Markov chain Monte Carlo, thinning, WinBUGS},
doi = {https://doi.org/10.1111/j.2041-210X.2011.00131.x},
url = {https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.2041-210X.2011.00131.x},
eprint = {https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2041-210X.2011.00131.x},
year = {2012},
}
@article{maceachern_1994,
title = {Subsampling the {Gibbs} {Sampler}},
volume = {48},
issn = {0003-1305},
url = {https://www.jstor.org/stable/2684714},
doi = {10.2307/2684714},
number = {3},
urldate = {2024-10-07},
journal = {The American Statistician},
author = {MacEachern, Steven N. and Berliner, L. Mark},
year = {1994},
note = {Publisher: [American Statistical Association, Taylor \& Francis, Ltd.]},
pages = {188--190},
}