-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·161 lines (130 loc) · 4.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python3.5
import torch
import torch.nn as nn
from torch.autograd import Variable
import argparse
import os
from tqdm import tqdm
from helpers import *
from model import *
from generate import *
# Parse command line arguments
argparser = argparse.ArgumentParser()
argparser.add_argument('vocabulary', type=str)
argparser.add_argument('source', type=str)
argparser.add_argument('--model', type=str, default="lstm")
argparser.add_argument('--n_epochs', type=int, default=2000)
argparser.add_argument('--print_every', type=int, default=10)
argparser.add_argument('--hidden_size', type=int, default=100)
argparser.add_argument('--n_layers', type=int, default=3)
argparser.add_argument('--learning_rate', type=float, default=0.01)
argparser.add_argument('--temperature', type=float, default=0.9)
argparser.add_argument('--chunk_len', type=int, default=1000)
argparser.add_argument('--batch_size', type=int, default=16)
argparser.add_argument('--shuffle', action='store_true')
argparser.add_argument('--cuda', action='store_true')
args = argparser.parse_args()
if args.cuda:
print("Using CUDA")
file, file_len, voc, rvoc = read_file(args.source)
fragments = file.split('\n\1\n')
def random_training_set(chunk_len, batch_size):
input = torch.LongTensor(batch_size, chunk_len)
target = torch.LongTensor(batch_size, chunk_len)
for bi in range(batch_size):
random.shuffle(fragments)
file = '\n\1\n'.join(fragments)
chunk = file[0:chunk_len+1]
i = 0
while i < chunk_len:
j = chunk.find('\1', i)
if j == -1:
j = chunk_len
i = j + 1
input[bi] = char_tensor(rvoc, chunk[:-1])
target[bi] = char_tensor(rvoc, chunk[1:])
input = Variable(input)
target = Variable(target)
if args.cuda:
input = input.cuda()
target = target.cuda()
return input, target
def train(inp, target):
hidden = decoder.init_hidden(args.batch_size)
if args.cuda:
hidden = hidden.cuda()
decoder.zero_grad()
loss = 0
for c in range(args.chunk_len):
output, hidden = decoder(inp[:,c:c+1], hidden)
loss += criterion(output.view(args.batch_size, -1), target[:,c])
loss.backward()
decoder_optimizer.step()
return loss.data / args.chunk_len
def save():
save_filename = os.path.splitext(os.path.basename(args.source))[0] + '.pt'
torch.save(decoder, save_filename)
print('Saved as %s' % save_filename)
def load_maybe():
save_filename = os.path.splitext(os.path.basename(args.source))[0] + '.pt'
if os.path.exists(save_filename):
print('Loading %s' % save_filename)
return torch.load(save_filename)
else:
return None
# Initialize models and start training
decoder = load_maybe()
if decoder is None:
decoder = CharRNN(
input_size=len(voc),
hidden_size=args.hidden_size,
output_size=len(voc),
model=args.model,
n_layers=args.n_layers,
)
print(decoder.input_size, decoder.hidden_size, decoder.output_size, decoder.n_layers)
decoder_optimizer = torch.optim.Adam(
decoder.parameters(),
lr=args.learning_rate,
betas=(0.99, 0.9999))
criterion = nn.CrossEntropyLoss()
if args.cuda:
decoder.cuda()
start = time.time()
all_losses = []
loss_avg = 0
import json
DICT = json.load(open(args.vocabulary, 'rt'))
try:
print("Training for %d epochs..." % args.n_epochs)
for epoch in tqdm(range(1, args.n_epochs + 1)):
loss = train(*random_training_set(args.chunk_len, args.batch_size))
eta = 0.9 if epoch > 1 else 0
loss_avg = eta * loss_avg + (1 - eta) * loss
print(loss_avg)
if epoch % args.print_every == 0:
print('[%s (%d %d%%) %.4f]' % (
time_since(start), epoch,
epoch / args.n_epochs * 100, loss_avg))
sent = generate(
decoder, voc, rvoc, '\1\n', 400,
temperature=args.temperature, cuda=args.cuda)
import re
res = []
i = 0
for m in re.finditer('k(\d+)', sent):
res.append(sent[i:m.span()[0]])
key = m.group(0)
if key in DICT:
res.append(DICT[key])
else:
res.append(m.group(0))
i = m.span()[1]
res.append(sent[i:])
sent = ''.join(res)
print(sent, '\n')
print("Saving...")
save()
except KeyboardInterrupt:
print("Saving before quit...")
save()