-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerateData.py
33 lines (29 loc) · 1.43 KB
/
generateData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# import csv
# import numpy as np
# with open('regressionData.csv','w') as file:
# # writer = csv.writer(file, delimiter=',')
# for a in np.arange(0, 5, 0.001):
# for b in np.arange(0, 5, 0.001):
# for c in np.arange(0, 5, 0.001):
# for d in np.arange(0, 5, 0.001):
# for e in np.arange(0, 5, 0.001):
# for f in np.arange(0, 5, 0.001):
# for g in np.arange(0, 5, 0.001):
# x = (f'{a:.1f}, {b:.1f}, {c:.1f}, {d:.1f}, {e:.1f}, {f:.1f}, {g:.1f}\n')
# print(f'PRESENT ITERATION :: {x}')
# file.write(x)
import csv
import numpy as np
with open('regressionData.csv','w') as file:
# writer = csv.writer(file, delimiter=',')
for a in np.arange(0, 1000001, 1):
for b in np.arange(0, 1000001, 1):
for c in np.arange(0, 1000001, 1):
for d in np.arange(0, 1000001, 1):
for e in np.arange(0, 1000001, 1):
for f in np.arange(0, 1000001, 1):
for g in np.arange(0, 1000001, 1):
x = (f'{a:.3f}, {b:.3f}, {c:.3f}, {d:.3f}, {e:.3f}, {f:.3f}, {g:.3f}, {0.000}\n')
# x = "a"
print(f'PRESENT ITERATION :: {x}')
file.write(x)