-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparsers.py
executable file
·178 lines (163 loc) · 6.09 KB
/
parsers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import yaml
import logging
import torch
from copy import copy
from math import ceil
from itertools import product
from models import VMA
from autoencoders import VMAEncoder, VMADecoder
from dataloaders import few_shot_mnist, few_shot_omniglot
logger = logging.getLogger(__name__)
def get_constructor(dataset):
if dataset == 'mnist':
return few_shot_mnist
elif dataset == 'omniglot':
return few_shot_omniglot
elif dataset == 'imgnet':
return few_shot_imgnet
else:
raise ValueError(f'unsupported dataset name: {dataset}')
def get_dataloader(data_config, n_jobs=0, train=True, **kwargs):
if not isinstance(data_config, tuple):
data_config = (data_config,)
if len(data_config) > 1:
if not isinstance(train, (list, tuple)):
train = [train] * len(data_config)
else:
if not isinstance(train, (list, tuple)):
train = [train]
if len(train) > len(data_config):
raise ValueError('Too many train flags')
dataloaders = []
for cfg, train_flag in zip(data_config, train):
train_dl = get_constructor(cfg['kind'])
del cfg['kind']
for k, v in kwargs.items():
if k in cfg:
cfg[k] = v
train_dl = train_dl(n_jobs=n_jobs, train=train_flag, **cfg)
dataloaders.append(train_dl)
if len(dataloaders) == 1:
return dataloaders[0]
return dataloaders
# todo: remove "data dim"
def get_model(model_config, data_dim=784):
mc = model_config
kind = mc['kind']
autoencoder = mc['autoencoder']
kinds = {
'VMA': VMA,
# 'GMN': GMN,
# 'NS': NeuralStatistician
}
autoencoders = {
'VMA': (VMAEncoder, VMADecoder),
}
if kind not in kinds:
raise ValueError(f'Unsupported model name: {kind}')
if autoencoder not in autoencoders:
raise ValueError(f'Unsupported autoencoder: {autoencoder}')
model = kinds[kind]
encoder, decoder = autoencoders[autoencoder]
del mc['autoencoder']
del mc['kind']
return model(encoder=encoder, decoder=decoder, data_dim=data_dim, **mc)
class Experiment:
def __init__(self, config, train=True):
if isinstance(config, str):
self.path = os.path.join(os.path.split(config)[0])
with open(config, 'r') as f:
config = yaml.safe_load(f)
cfg = config
if train:
self.mode = 'train'
else:
self.mode = 'test'
self.checkpoint_path = None
self.importance_num = None
self.train_loader = None
self.output_file = None
self.val_loader = None
self.optimizer = None
self.multi_gpu = None
self.full_loss = None
self.scheduler = None
self.log_file = None
self.loaders = None
self.epochs = None
self.params = None
self.metric = None
self.model = None
self.gpu = None
if self.mode == 'train':
self.get_train_spec(cfg)
elif self.mode == 'test':
self.get_test_spec(cfg)
def __getattr__(self, name):
return None
def get_train_spec(self, cfg):
self.resize = cfg['train_data']['resize']
self.model = get_model(cfg['model'], data_dim=self.resize ** 2)
loaders = get_dataloader((cfg['train_data'], cfg['val_data']),
train=[True, False],
n_jobs=cfg['train_spec']['n_jobs'])
self.train_loader, self.val_loader = loaders
cfg = cfg['train_spec']
self.gpu = [int(g) for g in cfg['gpus']]
self.model.to(self.gpu[0])
self.multi_gpu = len(self.gpu) > 1
if self.multi_gpu:
self.model = torch.nn.DataParallel(self.model, device_ids=self.gpu)
self.epochs = int(ceil(int(float(cfg['steps'])) / len(self.train_loader)))
optimizer = getattr(torch.optim, cfg['optimizer'])
self.scheduler = None
wd = 0.
if 'weight_decay' in cfg:
wd = float(cfg['weight_decay'])
self.optimizer = optimizer(self.model.parameters(), lr=float(cfg['lr']),
weight_decay=wd)
if 'scheduler' in cfg:
assert 'kind' in cfg['scheduler']
sched = getattr(torch.optim.lr_scheduler, cfg['scheduler']['kind'])
ep_steps = len(self.train_loader)
step_size = cfg['scheduler']['step_size'] // ep_steps
gamma = cfg['scheduler']['gamma']
self.scheduler = sched(self.optimizer, step_size, gamma)
self.log_file = cfg['log_file']
self.full_loss = cfg.get('full_loss', False)
self.checkpoint_path = cfg['checkpoint_path']
def _parse_list(self, values):
result = []
for v in values:
if isinstance(v, str) and '..' in v:
start, end = v.split('..')
result += list(range(int(start), int(end) + 1))
else:
result.append(int(v))
return result
def get_test_spec(self, cfg):
self.resize = cfg['test_data']['resize']
self.model = get_model(cfg['model'], data_dim=self.resize ** 2)
state = torch.load(cfg['test_spec']['checkpoint_path'])
self.model.load_state_dict(state)
test_data_cfg = cfg['test_data']
cfg = cfg['test_spec']
self.gpu = [int(g) for g in cfg['gpus']]
self.model.to(self.gpu[0])
self.multi_gpu = len(self.gpu) > 1
if self.multi_gpu:
self.model = torch.nn.DataParallel(self.model, device_ids=self.gpu)
params = cfg['test_params']
self.loaders = []
for p, vs in params.items():
params[p] = self._parse_list(vs)
self.params = [dict(zip(params.keys(), vs)) for vs in product(*params.values())]
for vs in self.params:
self.loaders.append(
get_dataloader(copy(test_data_cfg), n_jobs=cfg['n_jobs'],
train=False, **vs)
)
self.metric = cfg['metric']
self.output_file = cfg['output_file']
self.importance_num = cfg['importance_num']