forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.yml
377 lines (377 loc) · 13.8 KB
/
unet.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Collections:
- Name: UNet
Metadata:
Training Data:
- Cityscapes
- DRIVE
- STARE
- CHASE_DB1
- HRF
Paper:
URL: https://arxiv.org/abs/1505.04597
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
README: configs/unet/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Version: v0.17.0
Converted From:
Code: http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net
Models:
- Name: fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (512,1024)
lr schd: 160000
inference time (ms/im):
- value: 327.87
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 17.91
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 69.1
mIoU(ms+flip): 71.05
Config: configs/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth
- Name: fcn_unet_s5-d16_64x64_40k_drive
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (64,64)
lr schd: 40000
Training Memory (GB): 0.68
Results:
- Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
Dice: 78.67
Config: configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth
- Name: fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (64,64)
lr schd: 40000
Training Memory (GB): 0.582
Results:
- Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
Dice: 79.32
Config: configs/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820-785de5c2.pth
- Name: pspnet_unet_s5-d16_64x64_40k_drive
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (64,64)
lr schd: 40000
Training Memory (GB): 0.599
Results:
- Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
Dice: 78.62
Config: configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth
- Name: pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (64,64)
lr schd: 40000
Training Memory (GB): 0.585
Results:
- Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
Dice: 79.42
Config: configs/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821-22b3e3ba.pth
- Name: deeplabv3_unet_s5-d16_64x64_40k_drive
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (64,64)
lr schd: 40000
Training Memory (GB): 0.596
Results:
- Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
Dice: 78.69
Config: configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth
- Name: deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (64,64)
lr schd: 40000
Training Memory (GB): 0.582
Results:
- Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
Dice: 79.56
Config: configs/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825-6bf0efd7.pth
- Name: fcn_unet_s5-d16_128x128_40k_stare
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 0.968
Results:
- Task: Semantic Segmentation
Dataset: STARE
Metrics:
Dice: 81.02
Config: configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth
- Name: fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 0.986
Results:
- Task: Semantic Segmentation
Dataset: STARE
Metrics:
Dice: 82.7
Config: configs/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821-f75705a9.pth
- Name: pspnet_unet_s5-d16_128x128_40k_stare
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 0.982
Results:
- Task: Semantic Segmentation
Dataset: STARE
Metrics:
Dice: 81.22
Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth
- Name: pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 1.028
Results:
- Task: Semantic Segmentation
Dataset: STARE
Metrics:
Dice: 82.84
Config: configs/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823-f1063ef7.pth
- Name: deeplabv3_unet_s5-d16_128x128_40k_stare
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 0.999
Results:
- Task: Semantic Segmentation
Dataset: STARE
Metrics:
Dice: 80.93
Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth
- Name: deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 1.01
Results:
- Task: Semantic Segmentation
Dataset: STARE
Metrics:
Dice: 82.71
Config: configs/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825-21db614c.pth
- Name: fcn_unet_s5-d16_128x128_40k_chase_db1
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 0.968
Results:
- Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
Dice: 80.24
Config: configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth
- Name: fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 0.986
Results:
- Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
Dice: 80.4
Config: configs/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821-1c4eb7cf.pth
- Name: pspnet_unet_s5-d16_128x128_40k_chase_db1
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 0.982
Results:
- Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
Dice: 80.36
Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth
- Name: pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 1.028
Results:
- Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
Dice: 80.28
Config: configs/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823-c0802c4d.pth
- Name: deeplabv3_unet_s5-d16_128x128_40k_chase_db1
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 0.999
Results:
- Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
Dice: 80.47
Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth
- Name: deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (128,128)
lr schd: 40000
Training Memory (GB): 1.01
Results:
- Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
Dice: 80.37
Config: configs/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825-4ef29df5.pth
- Name: fcn_unet_s5-d16_256x256_40k_hrf
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (256,256)
lr schd: 40000
Training Memory (GB): 2.525
Results:
- Task: Semantic Segmentation
Dataset: HRF
Metrics:
Dice: 79.45
Config: configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth
- Name: fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (256,256)
lr schd: 40000
Training Memory (GB): 2.623
Results:
- Task: Semantic Segmentation
Dataset: HRF
Metrics:
Dice: 80.87
Config: configs/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821-c314da8a.pth
- Name: pspnet_unet_s5-d16_256x256_40k_hrf
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (256,256)
lr schd: 40000
Training Memory (GB): 2.588
Results:
- Task: Semantic Segmentation
Dataset: HRF
Metrics:
Dice: 80.07
Config: configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth
- Name: pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (256,256)
lr schd: 40000
Training Memory (GB): 2.798
Results:
- Task: Semantic Segmentation
Dataset: HRF
Metrics:
Dice: 80.96
Config: configs/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823-53d492fa.pth
- Name: deeplabv3_unet_s5-d16_256x256_40k_hrf
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (256,256)
lr schd: 40000
Training Memory (GB): 2.604
Results:
- Task: Semantic Segmentation
Dataset: HRF
Metrics:
Dice: 80.21
Config: configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth
- Name: deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf
In Collection: UNet
Metadata:
backbone: UNet-S5-D16
crop size: (256,256)
lr schd: 40000
Training Memory (GB): 2.607
Results:
- Task: Semantic Segmentation
Dataset: HRF
Metrics:
Dice: 80.71
Config: configs/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032-59daf7a4.pth