-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy patharray.rs
1224 lines (1082 loc) · 38.6 KB
/
array.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use super::defines::{AfError, Backend, DType};
use super::dim4::Dim4;
use super::error::HANDLE_ERROR;
use super::util::{af_array, dim_t, free_host, void_ptr, HasAfEnum};
use libc::{c_char, c_int, c_longlong, c_uint, c_void};
use std::ffi::{CStr, CString};
use std::fmt;
use std::marker::PhantomData;
// Some unused functions from array.h in C-API of ArrayFire
// af_copy_array
// af_write_array
// af_get_data_ref_count
extern "C" {
fn af_create_array(
out: *mut af_array,
data: *const c_void,
ndims: c_uint,
dims: *const dim_t,
aftype: c_uint,
) -> c_int;
fn af_create_handle(
out: *mut af_array,
ndims: c_uint,
dims: *const dim_t,
aftype: c_uint,
) -> c_int;
fn af_device_array(
out: *mut af_array,
data: *mut c_void,
ndims: c_uint,
dims: *const dim_t,
aftype: c_uint,
) -> c_int;
fn af_get_elements(out: *mut dim_t, arr: af_array) -> c_int;
fn af_get_type(out: *mut c_uint, arr: af_array) -> c_int;
fn af_get_dims(
dim0: *mut c_longlong,
dim1: *mut c_longlong,
dim2: *mut c_longlong,
dim3: *mut c_longlong,
arr: af_array,
) -> c_int;
fn af_get_numdims(result: *mut c_uint, arr: af_array) -> c_int;
fn af_is_empty(result: *mut bool, arr: af_array) -> c_int;
fn af_is_scalar(result: *mut bool, arr: af_array) -> c_int;
fn af_is_row(result: *mut bool, arr: af_array) -> c_int;
fn af_is_column(result: *mut bool, arr: af_array) -> c_int;
fn af_is_vector(result: *mut bool, arr: af_array) -> c_int;
fn af_is_complex(result: *mut bool, arr: af_array) -> c_int;
fn af_is_real(result: *mut bool, arr: af_array) -> c_int;
fn af_is_double(result: *mut bool, arr: af_array) -> c_int;
fn af_is_single(result: *mut bool, arr: af_array) -> c_int;
fn af_is_half(result: *mut bool, arr: af_array) -> c_int;
fn af_is_integer(result: *mut bool, arr: af_array) -> c_int;
fn af_is_bool(result: *mut bool, arr: af_array) -> c_int;
fn af_is_realfloating(result: *mut bool, arr: af_array) -> c_int;
fn af_is_floating(result: *mut bool, arr: af_array) -> c_int;
fn af_is_linear(result: *mut bool, arr: af_array) -> c_int;
fn af_is_owner(result: *mut bool, arr: af_array) -> c_int;
fn af_is_sparse(result: *mut bool, arr: af_array) -> c_int;
fn af_get_data_ptr(data: *mut c_void, arr: af_array) -> c_int;
fn af_eval(arr: af_array) -> c_int;
fn af_eval_multiple(num: c_int, arrays: *const af_array) -> c_int;
fn af_set_manual_eval_flag(flag: c_int) -> c_int;
fn af_get_manual_eval_flag(flag: *mut c_int) -> c_int;
fn af_retain_array(out: *mut af_array, arr: af_array) -> c_int;
fn af_copy_array(out: *mut af_array, arr: af_array) -> c_int;
fn af_release_array(arr: af_array) -> c_int;
//fn af_print_array(arr: af_array) -> c_int;
fn af_print_array_gen(exp: *const c_char, arr: af_array, precision: c_int) -> c_int;
fn af_cast(out: *mut af_array, arr: af_array, aftype: c_uint) -> c_int;
fn af_get_backend_id(backend: *mut c_uint, input: af_array) -> c_int;
fn af_get_device_id(device: *mut c_int, input: af_array) -> c_int;
fn af_create_strided_array(
arr: *mut af_array,
data: *const c_void,
offset: dim_t,
ndims: c_uint,
dims: *const dim_t,
strides: *const dim_t,
aftype: c_uint,
stype: c_uint,
) -> c_int;
fn af_get_strides(
s0: *mut dim_t,
s1: *mut dim_t,
s2: *mut dim_t,
s3: *mut dim_t,
arr: af_array,
) -> c_int;
fn af_get_offset(offset: *mut dim_t, arr: af_array) -> c_int;
fn af_lock_array(arr: af_array) -> c_int;
fn af_unlock_array(arr: af_array) -> c_int;
fn af_get_device_ptr(ptr: *mut void_ptr, arr: af_array) -> c_int;
fn af_get_allocated_bytes(result: *mut usize, arr: af_array) -> c_int;
fn af_array_to_string(
ostr: *mut *mut c_char,
exp: *const c_char,
arr: af_array,
precision: c_int,
transpose: bool,
) -> c_int;
}
/// A multidimensional data container
///
/// Currently, `Array<T>` objects support data up to four dimensions.
///
/// All operations on arrays (including creation) require that `T: HasAfEnum`,
/// meaning that `T` must be one of the numerical datatypes supported by Arrayfire.
///
/// ## Sharing Across Threads
///
/// While sharing an Array with other threads, there is no need to wrap
/// this in an Arc object unless only one such object is required to exist.
/// The reason being that ArrayFire's internal Array is appropriately reference
/// counted in thread safe manner. However, if you need to modify Array object,
/// then please do wrap the object using a Mutex or Read-Write lock.
///
/// Examples on how to share Array across threads is illustrated in our
/// [book](http://arrayfire.org/arrayfire-rust/book/multi-threading.html)
///
/// ### NOTE
///
/// All operators(traits) from std::ops module implemented for Array object
/// carry out element wise operations. For example, `*` does multiplication of
/// elements at corresponding locations in two different Arrays.
pub struct Array<T> {
handle: af_array,
/// The phantom marker denotes the
/// allocation of data on compute device
_marker: PhantomData<T>,
}
/// Enable safely moving Array objects across threads
unsafe impl<T: HasAfEnum> Send for Array<T> {}
unsafe impl<T: HasAfEnum> Sync for Array<T> {}
macro_rules! is_func {
($doc_str: expr, $fn_name: ident, $ffi_fn: ident) => {
#[doc=$doc_str]
pub fn $fn_name(&self) -> bool {
unsafe {
let mut ret_val: bool = false;
let err_val = $ffi_fn(&mut ret_val as *mut bool, self.handle);
HANDLE_ERROR(AfError::from(err_val));
ret_val
}
}
};
}
impl<T> Array<T>
where
T: HasAfEnum,
{
/// Constructs a new Array object
///
/// # Examples
///
/// An example of creating an Array from f32 array
///
/// ```rust
/// use arrayfire::{Array, Dim4, print};
/// let values: [f32; 3] = [1.0, 2.0, 3.0];
/// let indices = Array::new(&values, Dim4::new(&[3, 1, 1, 1]));
/// print(&indices);
/// ```
/// An example of creating an Array from half::f16 array
///
/// ```rust
/// use arrayfire::{Array, Dim4, is_half_available, print};
/// use half::f16;
///
/// let values: [f32; 3] = [1.0, 2.0, 3.0];
///
/// if is_half_available(0) { // Default device is 0, hence the argument
/// let half_values = values.iter().map(|&x| f16::from_f32(x)).collect::<Vec<_>>();
///
/// let hvals = Array::new(&half_values, Dim4::new(&[3, 1, 1, 1]));
///
/// print(&hvals);
/// } else {
/// println!("Half support isn't available on this device");
/// }
/// ```
///
pub fn new(slice: &[T], dims: Dim4) -> Self {
let aftype = T::get_af_dtype();
let mut temp: af_array = std::ptr::null_mut();
let err_val = unsafe {
af_create_array(
&mut temp as *mut af_array,
slice.as_ptr() as *const c_void,
dims.ndims() as c_uint,
dims.get().as_ptr() as *const c_longlong,
aftype as c_uint,
)
};
HANDLE_ERROR(AfError::from(err_val));
temp.into()
}
/// Constructs a new Array object from strided data
///
/// The data pointed by the slice passed to this function can possibily be offseted using an additional `offset` parameter.
pub fn new_strided(slice: &[T], offset: i64, dims: Dim4, strides: Dim4) -> Self {
let aftype = T::get_af_dtype();
let mut temp: af_array = std::ptr::null_mut();
let err_val = unsafe {
af_create_strided_array(
&mut temp as *mut af_array,
slice.as_ptr() as *const c_void,
offset as dim_t,
dims.ndims() as c_uint,
dims.get().as_ptr() as *const c_longlong,
strides.get().as_ptr() as *const c_longlong,
aftype as c_uint,
1_u32,
)
};
HANDLE_ERROR(AfError::from(err_val));
temp.into()
}
/// Constructs a new Array object of specified dimensions and type
///
/// # Examples
///
/// ```rust
/// use arrayfire::{Array, Dim4};
/// let garbage_vals = Array::<f32>::new_empty(Dim4::new(&[3, 1, 1, 1]));
/// ```
pub fn new_empty(dims: Dim4) -> Self {
let aftype = T::get_af_dtype();
let mut temp: af_array = std::ptr::null_mut();
let err_val = unsafe {
af_create_handle(
&mut temp as *mut af_array,
dims.ndims() as c_uint,
dims.get().as_ptr() as *const c_longlong,
aftype as c_uint,
)
};
HANDLE_ERROR(AfError::from(err_val));
temp.into()
}
/// Constructs a new Array object from device pointer
///
/// The example show cases the usage using CUDA API, but usage of this function will
/// be similar in CPU and OpenCL backends also. In the case of OpenCL backend, the pointer
/// would be cl_mem. A short example of how to create an Array from device pointer is
/// shown below but for detailed set of examples, please check out the tutorial book
/// pages:
/// - [Interoperability with CUDA][1]
/// - [Interoperability with OpenCL][2]
///
/// [1]: http://arrayfire.org/arrayfire-rust/book/cuda-interop.html
/// [2]: http://arrayfire.org/arrayfire-rust/book/opencl-interop.html
///
/// # Examples
///
/// An example of creating an Array device pointer using
/// [rustacuda](https://github.com/bheisler/RustaCUDA) crate. The
/// example has to be copied to a `bin` crate with following contents in Cargo.toml
/// to run successfully. Note that, all required setup for rustacuda and arrayfire crate
/// have to completed first.
/// ```text
/// [package]
/// ....
/// [dependencies]
/// rustacuda = "0.1"
/// rustacuda_derive = "0.1"
/// rustacuda_core = "0.1"
/// arrayfire = "3.7.*"
/// ```
///
/// ```rust,ignore
///use arrayfire::*;
///use rustacuda::*;
///use rustacuda::prelude::*;
///
///fn main() {
/// let v: Vec<_> = (0u8 .. 100).map(f32::from).collect();
///
/// rustacuda::init(CudaFlags::empty());
/// let device = Device::get_device(0).unwrap();
/// let context = Context::create_and_push(ContextFlags::MAP_HOST | ContextFlags::SCHED_AUTO,
/// device).unwrap();
/// // Approach 1
/// {
/// let mut buffer = memory::DeviceBuffer::from_slice(&v).unwrap();
///
/// let array_dptr = Array::new_from_device_ptr(
/// buffer.as_device_ptr().as_raw_mut(), dim4!(10, 10));
///
/// af_print!("array_dptr", &array_dptr);
///
/// array_dptr.lock(); // Needed to avoid free as arrayfire takes ownership
/// }
///
/// // Approach 2
/// {
/// let mut dptr: *mut f32 = std::ptr::null_mut();
/// unsafe {
/// dptr = memory::cuda_malloc::<f32>(10*10).unwrap().as_raw_mut();
/// }
/// let array_dptr = Array::new_from_device_ptr(dptr, dim4!(10, 10));
/// // note that values might be garbage in the memory pointed out by dptr
/// // in this example as it is allocated but not initialized prior to passing
/// // along to arrayfire::Array::new*
///
/// // After ArrayFire takes over ownership of the pointer, you can use other
/// // arrayfire functions as usual.
/// af_print!("array_dptr", &array_dptr);
/// }
///}
/// ```
pub fn new_from_device_ptr(dev_ptr: *mut T, dims: Dim4) -> Self {
let aftype = T::get_af_dtype();
let mut temp: af_array = std::ptr::null_mut();
let err_val = unsafe {
af_device_array(
&mut temp as *mut af_array,
dev_ptr as *mut c_void,
dims.ndims() as c_uint,
dims.get().as_ptr() as *const dim_t,
aftype as c_uint,
)
};
HANDLE_ERROR(AfError::from(err_val));
temp.into()
}
/// Returns the backend of the Array
///
/// # Return Values
///
/// Returns an value of type `Backend` which indicates which backend
/// was active when Array was created.
pub fn get_backend(&self) -> Backend {
let mut ret_val: u32 = 0;
let err_val = unsafe { af_get_backend_id(&mut ret_val as *mut c_uint, self.handle) };
HANDLE_ERROR(AfError::from(err_val));
match (err_val, ret_val) {
(0, 1) => Backend::CPU,
(0, 2) => Backend::CUDA,
(0, 4) => Backend::OPENCL,
(0, 8) => Backend::ONEAPI,
_ => Backend::DEFAULT,
}
}
/// Returns the device identifier(integer) on which the Array was created
///
/// # Return Values
///
/// Return the device id on which Array was created.
pub fn get_device_id(&self) -> i32 {
let mut ret_val: i32 = 0;
let err_val = unsafe { af_get_device_id(&mut ret_val as *mut c_int, self.handle) };
HANDLE_ERROR(AfError::from(err_val));
ret_val
}
/// Returns the number of elements in the Array
pub fn elements(&self) -> usize {
let mut ret_val: dim_t = 0;
let err_val = unsafe { af_get_elements(&mut ret_val as *mut dim_t, self.handle) };
HANDLE_ERROR(AfError::from(err_val));
ret_val as usize
}
/// Returns the Array data type
pub fn get_type(&self) -> DType {
let mut ret_val: u32 = 0;
let err_val = unsafe { af_get_type(&mut ret_val as *mut c_uint, self.handle) };
HANDLE_ERROR(AfError::from(err_val));
DType::from(ret_val)
}
/// Returns the dimensions of the Array
pub fn dims(&self) -> Dim4 {
let mut ret0: i64 = 0;
let mut ret1: i64 = 0;
let mut ret2: i64 = 0;
let mut ret3: i64 = 0;
let err_val = unsafe {
af_get_dims(
&mut ret0 as *mut dim_t,
&mut ret1 as *mut dim_t,
&mut ret2 as *mut dim_t,
&mut ret3 as *mut dim_t,
self.handle,
)
};
HANDLE_ERROR(AfError::from(err_val));
Dim4::new(&[ret0 as u64, ret1 as u64, ret2 as u64, ret3 as u64])
}
/// Returns the strides of the Array
pub fn strides(&self) -> Dim4 {
let mut ret0: i64 = 0;
let mut ret1: i64 = 0;
let mut ret2: i64 = 0;
let mut ret3: i64 = 0;
let err_val = unsafe {
af_get_strides(
&mut ret0 as *mut dim_t,
&mut ret1 as *mut dim_t,
&mut ret2 as *mut dim_t,
&mut ret3 as *mut dim_t,
self.handle,
)
};
HANDLE_ERROR(AfError::from(err_val));
Dim4::new(&[ret0 as u64, ret1 as u64, ret2 as u64, ret3 as u64])
}
/// Returns the number of dimensions of the Array
pub fn numdims(&self) -> u32 {
let mut ret_val: u32 = 0;
let err_val = unsafe { af_get_numdims(&mut ret_val as *mut c_uint, self.handle) };
HANDLE_ERROR(AfError::from(err_val));
ret_val
}
/// Returns the offset to the pointer from where data begins
pub fn offset(&self) -> i64 {
let mut ret_val: i64 = 0;
let err_val = unsafe { af_get_offset(&mut ret_val as *mut dim_t, self.handle) };
HANDLE_ERROR(AfError::from(err_val));
ret_val
}
/// Returns the native FFI handle for Rust object `Array`
pub(crate) unsafe fn get(&self) -> af_array {
self.handle
}
/// Set the native FFI handle for Rust object `Array`
pub fn set(&mut self, handle: af_array) {
self.handle = handle;
}
/// Copies the data from the Array to the mutable slice `data`
///
/// # Examples
///
/// Basic case
/// ```
/// # use arrayfire::{Array,Dim4,HasAfEnum};
/// let a:Vec<u8> = vec![0,1,2,3,4,5,6,7,8];
/// let b = Array::<u8>::new(&a,Dim4::new(&[3,3,1,1]));
/// let mut c = vec!(u8::default();b.elements());
/// b.host(&mut c);
/// assert_eq!(c,a);
/// ```
/// Generic case
/// ```
/// # use arrayfire::{Array,Dim4,HasAfEnum};
/// fn to_vec<T:HasAfEnum+Default+Clone>(array:&Array<T>) -> Vec<T> {
/// let mut vec = vec!(T::default();array.elements());
/// array.host(&mut vec);
/// return vec;
/// }
///
/// let a = Array::<u8>::new(&[0,1,2,3,4,5,6,7,8],Dim4::new(&[3,3,1,1]));
/// let b:Vec<u8> = vec![0,1,2,3,4,5,6,7,8];
/// assert_eq!(to_vec(&a),b);
/// ```
pub fn host<O: HasAfEnum>(&self, data: &mut [O]) {
if data.len() != self.elements() {
HANDLE_ERROR(AfError::ERR_SIZE);
}
let err_val = unsafe { af_get_data_ptr(data.as_mut_ptr() as *mut c_void, self.handle) };
HANDLE_ERROR(AfError::from(err_val));
}
/// Evaluates any pending lazy expressions that represent the data in the Array object
pub fn eval(&self) {
let err_val = unsafe { af_eval(self.handle) };
HANDLE_ERROR(AfError::from(err_val));
}
/// Makes an copy of the Array
///
/// This does a deep copy of the data into a new Array
pub fn copy(&self) -> Self {
let mut temp: af_array = std::ptr::null_mut();
let err_val = unsafe { af_copy_array(&mut temp as *mut af_array, self.handle) };
HANDLE_ERROR(AfError::from(err_val));
temp.into()
}
is_func!("Check if Array is empty", is_empty, af_is_empty);
is_func!("Check if Array is scalar", is_scalar, af_is_scalar);
is_func!("Check if Array is a row", is_row, af_is_row);
is_func!("Check if Array is a column", is_column, af_is_column);
is_func!("Check if Array is a vector", is_vector, af_is_vector);
is_func!(
"Check if Array is of real (not complex) type",
is_real,
af_is_real
);
is_func!(
"Check if Array is of complex type",
is_complex,
af_is_complex
);
is_func!(
"Check if Array's numerical type is of double precision",
is_double,
af_is_double
);
is_func!(
"Check if Array's numerical type is of single precision",
is_single,
af_is_single
);
is_func!(
"Check if Array's numerical type is of half precision",
is_half,
af_is_half
);
is_func!(
"Check if Array is of integral type",
is_integer,
af_is_integer
);
is_func!("Check if Array is of boolean type", is_bool, af_is_bool);
is_func!(
"Check if Array is floating point real(not complex) data type",
is_realfloating,
af_is_realfloating
);
is_func!(
"Check if Array is floating point type, either real or complex data",
is_floating,
af_is_floating
);
is_func!(
"Check if Array's memory layout is continuous and one dimensional",
is_linear,
af_is_linear
);
is_func!("Check if Array is a sparse matrix", is_sparse, af_is_sparse);
is_func!(
"Check if Array's memory is owned by it and not a view of another Array",
is_owner,
af_is_owner
);
/// Cast the Array data type to `target_type`
pub fn cast<O: HasAfEnum>(&self) -> Array<O> {
let trgt_type = O::get_af_dtype();
let mut temp: af_array = std::ptr::null_mut();
let err_val =
unsafe { af_cast(&mut temp as *mut af_array, self.handle, trgt_type as c_uint) };
HANDLE_ERROR(AfError::from(err_val));
temp.into()
}
/// Lock the device buffer in the memory manager
///
/// Locked buffers are not freed by memory manager until unlock is called.
pub fn lock(&self) {
let err_val = unsafe { af_lock_array(self.handle) };
HANDLE_ERROR(AfError::from(err_val));
}
/// Unlock the device buffer in the memory manager
///
/// This function will give back the control over the device pointer to the
/// memory manager.
pub fn unlock(&self) {
let err_val = unsafe { af_unlock_array(self.handle) };
HANDLE_ERROR(AfError::from(err_val));
}
/// Get the device pointer and lock the buffer in memory manager
///
/// The device pointer is not freed by memory manager until unlock is called.
///
/// # Safety
///
/// Using the function returns a pointer(CPU)/GPU-memory-pointer(CUDA)/cl_mem(OpenCL).
/// Use this function only when you know what to do further with returned object.
pub unsafe fn device_ptr(&self) -> void_ptr {
let mut temp: void_ptr = std::ptr::null_mut();
let err_val = af_get_device_ptr(&mut temp as *mut void_ptr, self.handle);
HANDLE_ERROR(AfError::from(err_val));
temp
}
/// Get the size of physical allocated bytes.
///
/// This function will return the size of the parent/owner if the current Array object is an
/// indexed Array.
pub fn get_allocated_bytes(&self) -> usize {
let mut temp: usize = 0;
let err_val = unsafe { af_get_allocated_bytes(&mut temp as *mut usize, self.handle) };
HANDLE_ERROR(AfError::from(err_val));
temp
}
/// Fetch Array as String
#[allow(clippy::inherent_to_string)]
pub fn to_string(&self) -> String {
let cname = CString::new("test").unwrap();
let mut tmp: *mut c_char = ::std::ptr::null_mut();
let err_val = unsafe {
af_array_to_string(
&mut tmp,
cname.to_bytes_with_nul().as_ptr() as *const c_char,
self.get(),
4,
true,
)
};
HANDLE_ERROR(AfError::from(err_val));
let result: String = unsafe { CStr::from_ptr(tmp).to_string_lossy().into_owned() };
free_host(tmp);
result
}
}
/// Used for creating Array object from native
/// resource id, an 64 bit integer
#[allow(clippy::from_over_into)]
impl<T: HasAfEnum> Into<Array<T>> for af_array {
fn into(self) -> Array<T> {
Array {
handle: self,
_marker: PhantomData,
}
}
}
/// Returns a new Array object after incrementing the reference count of native resource
///
/// Cloning an Array does not do a deep copy of the underlying array data. It increments the
/// reference count of native resource and returns you the new reference in the form a new Array
/// object.
///
/// To create a deep copy use
/// [copy()](./struct.Array.html#method.copy)
impl<T> Clone for Array<T>
where
T: HasAfEnum,
{
fn clone(&self) -> Self {
let mut temp: af_array = std::ptr::null_mut();
let ret_val = unsafe { af_retain_array(&mut temp as *mut af_array, self.handle) };
match ret_val {
0 => temp.into(),
_ => panic!("Weak copy of Array failed with error code: {}", ret_val),
}
}
}
/// To free resources when Array goes out of scope
impl<T> Drop for Array<T> {
fn drop(&mut self) {
let ret_val = unsafe { af_release_array(self.handle) };
match ret_val {
0 => (),
_ => panic!("Array<T> drop failed with error code: {}", ret_val),
}
}
}
/// Print data in the Array
///
/// # Parameters
///
/// - `input` is the Array to be printed
///
/// # Examples
///
/// ```rust
/// use arrayfire::{Dim4, print, randu};
/// println!("Create a 5-by-3 matrix of random floats on the GPU");
/// let dims = Dim4::new(&[5, 3, 1, 1]);
/// let a = randu::<f32>(dims);
/// print(&a);
/// ```
///
/// The sample output will look like below:
///
/// ```text
/// [5 3 1 1]
/// 0.7402 0.4464 0.7762
/// 0.9210 0.6673 0.2948
/// 0.0390 0.1099 0.7140
/// 0.9690 0.4702 0.3585
/// 0.9251 0.5132 0.6814
/// ```
pub fn print<T: HasAfEnum>(input: &Array<T>) {
let emptystring = CString::new("").unwrap();
let err_val = unsafe {
af_print_array_gen(
emptystring.to_bytes_with_nul().as_ptr() as *const c_char,
input.get(),
4,
)
};
HANDLE_ERROR(AfError::from(err_val));
}
/// Generalized Array print function
///
/// Use this function to print Array data with arbitrary preicsion
///
/// # Parameters
///
/// - `msg` is message to be printed before printing the Array data
/// - `input` is the Array to be printed
/// - `precision` is data precision with which Array has to be printed
///
/// # Examples
///
/// ```rust
/// use arrayfire::{Dim4, print_gen, randu};
/// println!("Create a 5-by-3 matrix of random floats on the GPU");
/// let dims = Dim4::new(&[5, 3, 1, 1]);
/// let a = randu::<f32>(dims);
/// print_gen(String::from("Random Array"), &a, Some(6));
/// ```
///
/// The sample output will look like below:
///
/// ```text
/// Random Array
///
/// [5 3 1 1]
/// 0.740276 0.446440 0.776202
/// 0.921094 0.667321 0.294810
/// 0.039014 0.109939 0.714090
/// 0.969058 0.470269 0.358590
/// 0.925181 0.513225 0.681451
/// ```
pub fn print_gen<T: HasAfEnum>(msg: String, input: &Array<T>, precision: Option<i32>) {
let emptystring = CString::new(msg.as_bytes()).unwrap();
let err_val = unsafe {
af_print_array_gen(
emptystring.to_bytes_with_nul().as_ptr() as *const c_char,
input.get(),
precision.unwrap_or(4),
)
};
HANDLE_ERROR(AfError::from(err_val));
}
/// evaluate multiple arrays
///
/// Use this function to evaluate multiple arrays in single call
///
/// # Parameters
///
/// - `inputs` are the list of arrays to be evaluated
pub fn eval_multiple<T: HasAfEnum>(inputs: Vec<&Array<T>>) {
let mut v = Vec::new();
for i in inputs {
unsafe { v.push(i.get()) };
}
let err_val = unsafe { af_eval_multiple(v.len() as c_int, v.as_ptr() as *const af_array) };
HANDLE_ERROR(AfError::from(err_val));
}
/// Set eval flag value
///
/// This function can be used to toggle on/off the manual evaluation of arrays.
///
/// # Parameters
///
/// - `flag` is a boolean value indicating manual evaluation setting
pub fn set_manual_eval(flag: bool) {
let err_val = unsafe { af_set_manual_eval_flag(flag as c_int) };
HANDLE_ERROR(AfError::from(err_val));
}
/// Get eval flag value
///
/// This function can be used to find out if manual evaluation of arrays is
/// turned on or off.
///
/// # Return Values
///
/// A boolean indicating manual evaluation setting.
pub fn is_eval_manual() -> bool {
let mut ret_val: i32 = 0;
let err_val = unsafe { af_get_manual_eval_flag(&mut ret_val as *mut c_int) };
HANDLE_ERROR(AfError::from(err_val));
ret_val > 0
}
/// Prints data type, shape and data of a given Array in programming friendly context
///
/// Used via println macro or formatter
impl<T> fmt::Debug for Array<T>
where
T: HasAfEnum,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if f.alternate() {
let mut vec = vec![T::default(); self.elements()];
self.host(&mut vec);
f.debug_struct("Array")
.field("dtype", &self.get_type())
.field("shape", &self.dims())
.field("strides", &self.strides())
.field("offset", &self.offset())
.field("device_id", &self.get_device_id())
.field("data", &vec)
.finish()
} else {
f.debug_struct("Array")
.field("dtype", &self.get_type())
.field("shape", &self.dims())
.field("af_array", unsafe { &self.get() })
.finish()
}
}
}
#[cfg(feature = "afserde")]
mod afserde {
// Reimport required from super scope
use super::{Array, DType, Dim4, HasAfEnum};
use serde::de::{Deserializer, Error, Unexpected};
use serde::ser::Serializer;
use serde::{Deserialize, Serialize};
#[derive(Debug, Serialize, Deserialize)]
struct ArrayOnHost<T: HasAfEnum + std::fmt::Debug> {
dtype: DType,
shape: Dim4,
data: Vec<T>,
}
/// Serialize Implementation of Array
impl<T> Serialize for Array<T>
where
T: Serialize + HasAfEnum,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut vec = vec![T::default(); self.elements()];
self.host(&mut vec);
let arr_on_host = ArrayOnHost {
dtype: self.get_type(),
shape: self.dims().clone(),
data: vec,
};
arr_on_host.serialize(serializer)
}
}
/// Deserialize Implementation of Array
impl<'de, T> Deserialize<'de> for Array<T>
where
T: Deserialize<'de> + HasAfEnum,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
match ArrayOnHost::<T>::deserialize(deserializer) {
Ok(arr_on_host) => {
let read_dtype = arr_on_host.dtype;
let expected_dtype = T::get_af_dtype();
if expected_dtype != read_dtype {
let error_msg = format!(
"data type is {:?}, deserialized type is {:?}",
expected_dtype, read_dtype
);
return Err(Error::invalid_value(Unexpected::Enum, &error_msg.as_str()));
}
Ok(Array::<T>::new(
&arr_on_host.data,
arr_on_host.shape.clone(),
))
}
Err(err) => Err(err),
}
}
}
}
#[cfg(test)]
mod tests {
use super::super::array::print;
use super::super::data::constant;
use super::super::device::{info, set_device, sync};
use crate::dim4;
use std::sync::{mpsc, Arc, RwLock};
use std::thread;
#[test]
fn thread_move_array() {
// ANCHOR: move_array_to_thread
set_device(0);
info();
let mut a = constant(1, dim4!(3, 3));
let handle = thread::spawn(move || {
//set_device to appropriate device id is required in each thread
set_device(0);
println!("\nFrom thread {:?}", thread::current().id());
a += constant(2, dim4!(3, 3));
print(&a);
});
//Need to join other threads as main thread holds arrayfire context
handle.join().unwrap();
// ANCHOR_END: move_array_to_thread
}
#[test]
fn thread_borrow_array() {
set_device(0);
info();
let a = constant(1i32, dim4!(3, 3));
let handle = thread::spawn(move || {
set_device(0); //set_device to appropriate device id is required in each thread
println!("\nFrom thread {:?}", thread::current().id());
print(&a);
});
//Need to join other threads as main thread holds arrayfire context
handle.join().unwrap();
}