forked from dharmanshu1921/Java
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprimsMSTalgorithm.cpp
105 lines (53 loc) · 1.87 KB
/
primsMSTalgorithm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
//Library to access INT_MAX variable
#include <limits.h>
//Library to create set
#include <stdbool.h>
#include <stdio.h>
#define Vertices 5
//A utility function for finding the vertex with the lowest key value from a set of vertices that isn't included in MST.
int Least_Key(int key[], bool Min_Span_Tree[])
{
int least = INT_MAX, min_index;
for (int v = 0; v < Vertices; v++)
if (Min_Span_Tree[v] == false && key[v] < least)
least = key[v], min_index = v;
return min_index;
}
//Function to print created MST
int print_Prims_MST(int parent[], int graph[Vertices][Vertices])
{
printf("Edge \tWeight\n");
for (int i = 1; i < Vertices; i++)
printf("%d - %d \t%d \n", parent[i], i, graph[i][parent[i]]);
}
//Function to generate MST
void prims_MST(int graph[Vertices][Vertices])
{
int parent[Vertices];
int key[Vertices];
bool Min_Span_Tree[Vertices];
for (int i = 0; i < Vertices; i++)
key[i] = INT_MAX, Min_Span_Tree[i] = false;
key[0] = 0;
parent[0] = -1;
for (int count = 0; count < Vertices - 1; count++) {
int u = Least_Key(key, Min_Span_Tree);
Min_Span_Tree[u] = true;
for (int v = 0; v < Vertices; v++)
if (graph[u][v] && Min_Span_Tree[v] == false && graph[u][v] < key[v])
parent[v] = u, key[v] = graph[u][v];
}
printf("Created Spanning Tree for Given Graph is: \n");
printf("\n");
print_Prims_MST(parent, graph);
}
int main()
{
int graph[Vertices][Vertices] = { { 0, 3, 0, 6, 0 },
{ 3, 0, 4, 8, 5 },
{ 0, 4, 0, 0, 7 },
{ 6, 8, 0, 0, 11 },
{ 0, 5, 7, 11, 0 } };
prims_MST(graph);
return 0;
}