

DEPARTMENT OF COMPUTER SCIENCE & ENGG.

CERTIFICATE

This is to certify that Ms./Mr. …………………...……………………………………

Reg. No. …..…………………… Section: ……………… Roll No: ………………... has

satisfactorily completed the lab exercises prescribed for Algorithms Lab [CSE 2242] of

Second Year B. Tech. Degree at MIT, Manipal, in the academic year 2023-24.

Date: ……...................................

 Signature

 Faculty in Charge

CONTENTS

LAB

NO.
TITLE

PAGE

NO.
REMARKS

 COURSE OBJECTIVES AND OUTCOMES i

 EVALUATION PLAN i

 INSTRUCTIONS TO THE STUDENTS ii

1 REVIEW OF FUNDAMENTAL DATA STRUCTURES 1

2 FUNDAMENTALS OF ALGORITHMIC PROBLEM SOLVING 11

3 BRUTE FORCE TECHNIQUE - I 14

4 BRUTE FORCE TECHNIQUE - II 18

5 DECREASE AND CONQUER 22

6 DIVIDE AND CONQUER 27

7 TRANSFORM AND CONQUER – I 31

8 TRANSFORM AND CONQUER – II 36

9 SPACE AND TIME TRADEOFFS 40

10 DYNAMIC PROGRAMMING 43

11 GREEDY TECHNIQUE 46

12 BACKTRACKING & BRANCH AND BOUND 52

 REFERENCES 56

i

Course Objectives

Course Outcomes

At the end of this course, students will have the

Evaluation plan

• Internal Assessment Marks : 60 marks

✓ Two evaluations of 20 mark each and One midterm assessment of 20 mark

✓ The assessment will depend on punctuality, designing right algorithm, converting

algorithm into an efficient program, maintaining the observation note and

answering the questions in viva voce

• End semester assessment of 2 hour duration: 40 marks

• Review the fundamental data structures.

• Design and Implementation of various classes of algorithms

• Analysing the efficiency of various algorithms.

1. Demonstrate the fundamental data structures.

2. Application of different algorithm design techniques

3. Categorizing algorithms efficiency classes

ii

INSTRUCTIONS TO THE STUDENTS

Pre- Lab Session Instructions

1. Students should carry the Lab Manual Book and the required stationery to every

lab session

2. Be in time and follow the institution dress code

3. Must Sign in the log register provided

4. Make sure to occupy the allotted seat and answer the attendance

5. Adhere to the rules and maintain the decorum

In- Lab Session Instructions

• Follow the instructions on the allotted exercises

• Show the program and results to the instructors on completion of experiments

• On receiving approval from the instructor, copy the program and results in the

Lab record

• Prescribed textbooks and class notes can be kept ready for reference if required

General Instructions for the exercises in Lab

• Implement the given exercise individually and not in a group.

• The programs should meet the following criteria:

o Programs should be interactive with appropriate prompt messages, error

messages if any, and descriptive messages for outputs.

o Programs should perform input validation (Data type, range error, etc.)

and give appropriate error messages and suggest corrective actions.

o Comments should be used to give the statement of the problem and every

function should indicate the purpose of the function, inputs and outputs.

o Statements within the program should be properly indented.

o Use meaningful names for variables and functions.

o Make use of constants and type definitions wherever needed.

o Programs should include necessary time analysis part (Operation count

/Step count method)

• Plagiarism (copying from others) is strictly prohibited and would invite severe

penalty in evaluation.

• The exercises for each week are divided under three sets:

o Solved exercise

iii

o Lab exercises - to be completed during lab hours

o Additional Exercises - to be completed outside the lab or in the lab to

enhance the skill

• In case a student misses a lab class, he/ she must ensure that the experiment is

completed during the repetition lab with the permission of the faculty concerned.

• Questions for lab tests and examination are not necessarily limited to the questions

in the manual, but may involve some variations and / or combinations of the

questions.

• A sample note preparation is given as a model for observation.

• You may write scripts/programs to automate the experimental analysis of

algorithms and compare with the theoretical result.

• You may use spreadsheets to plot the graph.

THE STUDENTS SHOULD NOT

• Bring mobile phones or any other electronic gadgets to the lab.

• Go out of the lab without permission.

 Lab No:1

Page 1 of 56

LAB NO: 1

REVIEW OF FUNDAMENTAL DATA STRUCTURES

Objectives:

In this lab, student will be able to:

• recall the concepts learnt in Data Structures Lab

• implement basic data structures

Description: Data Structures specify the structure of data storage in a program. Various

data structures namely arrays, stacks, queues, linked lists, trees are used for storing

data. Each data structure is different from the other in its fundamental way of storing. In

arrays, a contiguous piece of memory is allocated for storing data. Static and Dynamic

arrays are two types of array which differ by the instance at which memory is allocated.

In static arrays, memory is allocated at compile time of the program whereas in

Dynamic arrays memory is allocated at run time. Dynamic arrays overcome the

problem of unnecessary wastage of memory space. Stack is a data structure in which the

insertion to the Stack (called as push) and removal from the stack (called as pop)

operations are performed in Last In First Out (LIFO) order. LIFO specifies that the last

item to be pushed is the first one to be popped. Queue is a data structure in which the

insertion to the queue (enque) and removal of element from the queue (Dequeue) happen

in the same order. This means it follows First In First Out (FIFO) order. Linked lists store

data in non-linea manner. A node of a linked list is created at run time and is used to

store data element. Nodes of a linked list will be allocated memory at run time and the

nodes can be anywhere in memory. Singly linked list and doubly linked lists are two

broad types of linked lists. Single linked list has a single pointer to the next node

whereas doubly linked list has two pointers one to the left node and other to the right

node. A special value NULL will be used to denote the non-existence of node. Trees are

very useful in specific storage requirements of graphs, dictionaries etc. Binary tree is a

special form of trees in which every node can have maximum two children.

I. SOLVED EXERCISE:

1) Write an algorithm and program to implement a doubly linked list which supports

 the following operations

i. Create the list by adding each node at the front.

ii. Insert a new node to the left of the node whose key value is read as an input.

iii. Delete all occurrences of a given key, if it is found. Otherwise, display

appropriate message.

iv. Search a node based on its key value.

v. Display the contents of the list.

 Lab No:1

Page 2 of 56

Description : Doubly linked list is a data structure in which the data elements are stored

in nodes and the nodes are connected by two links. Out of two links one link points to

the neighboring node in the left direction and the other link to the node in the right

direction. Addresses of nodes will be used to represent the node. A special value NULL

is used to represent the absence of a node. Creating the doubly linked list, insertion of

an element to the left/right of any node, deletion of all nodes with specific node content

and displaying all nodes are the operations commonly performed on a doubly linked

list. Each of the operations consumes certain amount of time and memory. Hence they

differ in time and space efficiency.

Algorithm: Doubly Linked list

Define a structure to hold list node

Define two links within the node one for left link and the other for rlink

CreateList(int val)

begin

 if head == NULL then

 node = allocate memory for a Node

 node ->llink = node->rlink = NULL

 node->val = val

 head=node

else

 print “List is already created …”

end if

end

insertIntoList(int before, int val)

begin

 node=head

 while node->val != before

 node = node->rlink

 end while

 if node != NULL then

 newNode = allocate memory for a node

 newNode->val = val

 if node->llink != NULL then

 node->llink->rlink = newNode

 newNode->llink = node->llink

 newNode->rlink = node

 node->llink = newNode

 else

 newNode->rlink = node

 Lab No:1

Page 3 of 56

 node->llink = newNode

 head = newNode

 end if

 else

 print “Unable to insert, node with value “ val “not found”

 return

 end if

end

deleteAll(int delVal)

begin

 node = head

 while node != NULL

if node->val == delVal

 if node->llink != NULL then

 node -> llink ->rlink = node -> rlink

 if node->rlink != NULL then

 node->rlink->llink = node->llink

 node = node->rlink

 else

 node->llink->rlink = NULL

 node=NULL

 end if

 else

 if node->rlink != NULL then

 node ->rlink->llink = NULL

head = node->rlink

node = head

 release memory for node

 else

 head = node = NULL

 release memory for node

 end if

 end if

else

 node = node->rlink

 end if

end while

end

 Lab No:1

Page 4 of 56

searchNode(int searchVal)

begin

 node=head

 while node != NULL

 do

 if node->val == searchVal then

 print “Node is found with key “, searchVal

 end if

 node = node->rlink

 end do

end

displayAll()

begin

 node = head

 while node != NULL

 do

 print “Node with val “, node->val

 node = node->rlink

 end do

end

Time Complexity:

For creating list θ(1) is the time complexity.

For Insertion, Search, Delete, Display All operations the complexity is O(n) where n

is the number of nodes.

Program

#include<stdio.h>

#include<stdlib.h>

struct node {

int val;

struct node *llink,*rlink;

};

typedef struct node *NODE;

NODE head=NULL;

 Lab No:1

Page 5 of 56

void CreateList(int val)

{

 NODE nd;

 if (head == NULL) {

 nd = (NODE) malloc(sizeof(struct node));

 nd->llink = nd->rlink = NULL;

 nd->val = val;

 head=nd;

 }

 else {

 printf("List is already created ….\n");

 }

}

void insertIntoList(int before, int val)

{

 NODE nd, newnd;

 nd=head;

 while (nd != NULL && nd->val != before)

 nd = nd->rlink;

 if (nd != NULL) {

 newnd = (NODE)malloc(sizeof(struct node));

 newnd->llink = newnd->rlink = NULL;

 newnd->val = val;

 if (nd->llink != NULL) {

 nd->llink->rlink = newnd;

 newnd->llink = nd->llink;

 newnd->rlink = nd;

 nd->llink = newnd;

 }

 else {

 newnd->rlink = nd;

 nd->llink = newnd;

 head=newnd;

 }

 }

 else

 printf("Unable to insert, node with value %d not found", val);

}

void deleteAll(int delVal)

{

 Lab No:1

Page 6 of 56

 NODE nd,nxtNode;

 nd = head;

 while (nd != NULL) {

 if (nd->val == delVal) {

 if (nd->llink != NULL) {

 nd-> llink ->rlink = nd -> rlink;

 if (nd->rlink != NULL) {

 nd->rlink->llink = nd->llink;

 nxtNode = nd->rlink;

 free(nd);

 nd = nxtNode;

 }

 else {

 nd->llink->rlink = NULL;

 free(nd);

 nd=NULL;

 }

 }

 else {

 if (nd->rlink != NULL) {

 nd ->rlink->llink = NULL;

 head = nd->rlink;

 free(nd);

 nd = head;

 }

 else {

 free(nd);

 head = nd = NULL;

 }

 }

 }

 else

 nd = nd->rlink;

 }

}

void searchNode(int searchVal) {

 NODE nd;

 Lab No:1

Page 7 of 56

 nd=head;

 while (nd != NULL) {

 if (nd->val == searchVal)

 printf("Node is found with key %d\n", searchVal);

 nd = nd->rlink;

 }

}

void displayAll()

{

 NODE nd;

 nd = head;

 while (nd != NULL) {

 printf("Node with val %d\n", nd->val);

 nd = nd->rlink;

 }

}

int main() {

 int choice, val,before;

 do {

 printf("1. Create List\n");

 printf("2. Insert into List\n");

 printf("3. Delete all by value\n");

 printf("4. Search by value\n");

 printf("5. Display all\n");

 printf("6. Exit\n");

 printf("Enter your choice :");

 scanf("%d", &choice);

 switch(choice) {

 case 1: printf("Please enter the node value");

 scanf("%d", &val);

 CreateList(val);

 break;

 case 2: printf("Please enter the node value to insert ");

 scanf("%d", &val);

 printf("Please enter the node value before which new

node has to be inserted ");

 scanf("%d", &before);

 insertIntoList(before, val);

 break;

 case 3:printf("Enter the node value to be deleted ");

 scanf("%d", &val);

 Lab No:1

Page 8 of 56

 deleteAll(val);

 break;

 case 4:printf("Enter the node value to be searched ");

 scanf("%d", &val);

 searchNode(val);

 break;

 case 5:displayAll();

 break;

 case 6:

 break;

 default:printf("Invalid choice ");

 break;

 }

 }while(choice != 6);

 return 0;

}

Sample Input and Output:

1. Create List

2. Insert into List

3. Delete all by value

4. Search by value

5. Display all

6. Exit

Enter your choice :1

Please enter the node value5

1. Create List

2. Insert into List

3. Delete all by value

4. Search by value

5. Display all

6. Exit

Enter your choice :2

Please enter the node value to insert 3

Please enter the node value before which new node has to be inserted 5

1. Create List

2. Insert into List

3. Delete all by value

4. Search by value

5. Display all

6. Exit

Enter your choice :3

 Lab No:1

Page 9 of 56

Enter the node value to be deleted 3

1. Create List

2. Insert into List

3. Delete all by value

4. Search by value

5. Display all

6. Exit

Enter your choice :4

Enter the node value to be searched 5

Node is found with key 5

1. Create List

2. Insert into List

3. Delete all by value

4. Search by value

5. Display all

6. Exit

Enter your choice :5

Node with val 5

1. Create List

2. Insert into List

3. Delete all by value

4. Search by value

5. Display all

6. Exit

Enter your choice :6

II. LAB EXERCISES

 1). Write a program to construct a binary tree to support the following operations.

 Assume no duplicate elements while constructing the tree.

 i. Given a key, perform a search in the binary search tree. If the key is found

then display “key found” else insert the key in the binary search tree.

 ii. Display the tree using inorder, preorder and post order traversal methods

 2). Write a program to implement the following graph representations and display

them.

 i. Adjacency list

 ii. Adjacency matrix

 Lab No:1

Page 10 of 56

III. ADDITIONAL EXERCISES:

 1). Solve the problem given in solved exercise using singly linked list.

 2). Write a program to implement Stack and Queue using circular doubly linked list.

 3) Write a program to convert a Binary tree to a Doubly linked list

--

Lab No 2

Page 11 of 56

LAB NO: 2

FUNDAMENTALS OF ALGORITHMIC PROBLEM SOLVING

Objectives:

In this lab, student will be able to:

• Familiarize with fundamentals of problem solving with the help of algorithms.

• Realize that for a problem there can be multiple solutions with different

complexities.

• Determine the time complexity associated with algorithms.

Description: A solution to the problem is obtained after understanding clearly the

problem, nature of input and output. The detailed step by step solution to the problem is

called an algorithm. For a single problem, there can be multiple ways in which solution

is found. Hence, a problem may be solvable using multiple algorithms. To measure the

efficiency of an algorithm, measurement along time required by the algorithm and space

required is used. To measure time, an operation called basic operation is identified.

I. SOLVED EXERCISE:

1) Write an algorithm for finding the Greatest Common Divisor (GCD) of two numbers

using Euclid’s algorithm and implement the same. Determine the time complexity of the

algorithm.

Description: Greatest Common Divisor(GCD) of two numbers is the largest divisor

which divides the two numbers. E.g. GCD(36,8) = 4. Euclid's algorithm is one of the

oldest algorithm for calculating GCD. The algorithm is significant because the solution

is obtained by reducing the problem space with irregular count. We take the modulus

of first number when divided by the second number and we shrink the first number

with the second number and the second number with the modulus. This we continue

until the second number is not zero. When the second number is zero, the GCD is the

first number. Time complexity of this algorithm is in log(n) where n is the second

number.

Lab No 2

Page 12 of 56

ALGORITHM EuclidGCD(m, n)

//Computes gcd(m, n) by Euclid’s algorithm

//Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n ≠ 0 do

r ←m mod n

m←n

n←r

 return m

Time Complexity: O(log n). The worst case for this algorithm is when the inputs are two

consecutive Fibonacci numbers. We can plot the graph of (m+n) vs the step count

(opcount is shown in the sample code), where m and n are the two inputs to function

EuclidGCD.

Program

#include<stdio.h>

unsigned int EuclidGCD(unsigned int m, unsigned int n) {

 unsigned int r;

 int opcount = 0; // variable to count how many times the basic operation executes.

 while(n!=0) {

 opcount++;

 r = m %n;

 m = n;

 n=r;

 }

 printf(“Operation count= %d\n”, opcount);

 return m;

}

int main() {

 unsigned int m,n;

 printf(“Enter the two numbers whose GCD has to be calculated“);

 scanf(“%d”, &m);

 scanf(“%d”, &n);

 printf(“GCD of two numbers using Euclid’s method is %d”,

 EuclidGCD(m,n)); return 0;

}

Lab No 2

Page 13 of 56

Sample Input and Output:

Enter the two numbers whose GCD has to be calculated 8 13

Operation count= 6

GCD of two numbers using Euclids method is 1

Tabulate the values of (m+n), opcount as shown below and plot the graph.

(m+n) 1 8 13 21 ….. 6765 10946 17711

opcount 1 4 5 6 …. 18 19 20

II. LAB EXERCISES

1). Write a program to find GCD using consecutive integer checking method and

 analyze its time efficiency.

 2). Write a program to find GCD using middle school method and analyze its time

 efficiency.

III. ADDITIONAL EXERCISES

 1) Write a program for computing ⌊√n ⌋ for any positive integer and analyze its time

 efficiency. Besides assignment and comparison, your program may only use the

 four basic arithmetic operations.

 2) Write a program to implement recursive solution to the Tower of Hanoi puzzle

 and analyze its time efficiency.

 3) Write a program to compute the nth Fibonacci number recursively and analyze its

 time efficiency.

 4) Write a program to delete strong numbers from an array using recursion [A strong

number is such that the sum of it's factorial is the number itself]

0

5

10

15

20

25

0 5000 10000 15000 20000

o
p

co
u

n
t

(m+n)

(m+n) vs opcount

Lab No 3

Page 14 of 56

LAB NO: 3

BRUTE FORCE TECHNIQUE - I

Objectives:

In this lab, student will be able to:

• Understand brute-force design technique

• Apply this technique for sorting, searching etc.

• Determine the time complexity associated with brute-force algorithms

Description: Brute force is a straightforward approach to solving a problem, usually

directly based on the problem statement and definitions of the concepts involved. Brute

force is applicable to a very wide variety of problems. For some important problems e.g.

sorting, searching, matrix multiplication, string matching the brute-force approach yields

reasonable algorithms of value with no limitation on instance size. The expense of

designing a more efficient algorithm may be unjustifiable if only a few instances of a

problem need to be solved and a brute-force algorithm can solve those instances with

acceptable speed.

I. SOLVED EXERCISE:

1) Write a program to sort a set of integers using selection sort algorithm and analyze its

time efficiency. Obtain the experimental result of order of growth. Plot the result for the

best and worst case.

Description: In selection sort, we scan the entire given list to find its smallest element

and exchange it with the first element, putting the smallest element in its final position

in the sorted list. Then we scan the list, starting with the second element, to find the

smallest among the last n-1 elements and exchange it with the second element, putting

the second smallest element in its final position. This is repeated for all positions.

ALGORITHM SelectionSort(A[0..n − 1])

//Sorts //Sorts a given array by selection sort

//Input: An array A[0..n − 1] of orderable elements

//Output: Array A[0..n − 1] sorted in nondecreasing order

for i ←0 to n − 2 do

 min←i

 for j ←i + 1 to n − 1 do

 if A[j]<A[min]

 min←j

 end if

Lab No 3

Page 15 of 56

 end for

 swap A[i] and A[min]

end for

Time Complexity:

Cworst(n)= ∑ ∑ 1𝑛−1
𝑗=𝑖+1

𝑛−2
𝑖=0

The worst case occurs when elements are given in decreasing order.

Cworst(n) = ∑ 𝑛 − 1 − 𝑖 − 1 + 1𝑛−2
𝑖=0

 = ∑ 𝑛 − 𝑖 − 1𝑛−2
𝑖=0

 = n-1 + n-2 … +1

 =
(𝑛−1)(𝑛−1+1)

2

 =
(𝑛−1)(𝑛)

2

 = θ(n2)

This can be observed by repeating the experiment with the worst case inputs for

different array sizes say 10, 15, 20, 35, 100. A plot of number of elements in the array

vs opcount (opcount is shown in the sample code) gives a quadratic curve.

Program

#include<stdio.h>

#include<stdlib.h>

void selectionSort(int *a, unsigned int n)

{

 unsigned int i,j,min;

 int temp;

 int opcount=0; // introduce opcount

 for(i= 0;i<n-1;i++)

 {

 min=i;

 for(j=i + 1;j<n;j++)

 {

 ++opcount; // increment opcount for every comparison

 if(a[j]<a[min])

 min=j;

 }

 //swap A[i] and A[min]

 temp = a[i];

 a[i] = a[min];

 a[min]=temp;

 }

 printf("\nOperation Count %d\n",opcount);

Lab No 3

Page 16 of 56

}

int main() {

 int *a;

 int i,n = 5;

 // generate worst case input of different input size

 for (int j=0; j < 4; j++) // repeat experiment for 4 trials

 {

 a = (int *)malloc(sizeof(int)*n);

 for (int k=0; k< n; k++)

 a[k] = n-k; // descending order list

 printf("Elements are ");

 for(i=0;i<n;i++)

 printf("%d ",a[i]);

 selectionSort(a,n);

 printf("Elements after selection sort ");

 for(i=0;i<n;i++)

 printf("%d ",a[i]);

 printf("\n");

 free(a);

 n = n + 5; // try with a new input size

 }

 return 0;

}

Sample Input and Output :

Elements are 5 4 3 2 1

Operation Count 10

Elements after selection sort 1 2 3 4 5

Elements are 10 9 8 7 6 5 4 3 2 1

Operation Count 45

Elements after selection sort 1 2 3 4 5 6 7 8 9 10

Elements are 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Operation Count 105

Elements after selection sort 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Elements are 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1

Operation Count 190

Elements after selection sort 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20

Tabulate the values of n and opcount as shown below and plot the graph.

input size - (n) 5 10 15 20

Lab No 3

Page 17 of 56

Operation Count - c(n) 10 45 105 190

II. LAB EXERCISES

1). Write a program to sort set of integers using bubble sort. Analyze its time

efficiency. Obtain the experimental result of order of growth. Plot the result for

the best and worst case.

2). Write a program to implement brute-force string matching. Analyze its time

efficiency.

3). Write a program to implement solution to partition problem using brute-force

technique and analyze its time efficiency theoretically. A partition problem takes

a set of numbers and finds two disjoint sets such that the sum of the elements in

the first set is equal to the second set. [Hint: You may generate power set]

III. ADDITIONAL EXERCISES

1). Write a program to implement matrix multiplication using brute-force technique

 and analyze its time efficiency. Obtain the experimental result of order of growth.

Plot the result for the best and worst case.

 2). Write a program in C for finding maximal clique in a graph by brute-force

 approach. Clique is a maximal complete subgraph in a graph.

3). Write a program to implement solution to partition problem using recursion.

4) Write a program to sort a set of strings using Bubble Sort. Analyze its time

efficiency.

-50

0

50

100

150

200

0 5 10 15 20 25

O
p

er
at

io
n

 C
o

u
n

t
c(

n
)

input size (n)

Operation Count - c(n)

Lab No 4

Page 18 of 56

LAB NO: 4

BRUTE FORCE TECHNIQUE - II

Objectives:

In this lab, student will be able to:

• Apply brute-force design technique to few combinatorial and graph problems

• Determine the time complexity associated with brute-force combinatorial and

graph algorithms

I. SOLVED EXERCISE:

1). Write a program to implement Knapsack problem using brute-force design technique

and analyze its time efficiency. Obtain the experimental result of order of growth and plot

the result. Knapsack Problem: Given n items of known weights w1, w2, ..wn values v1, v2,

...vn and a knapsack of capacity B, find the most valuable subset of items that fit into the

knapsack.

Description: The exhaustive search approach to Knapsack problem leads to generating

all the subsets of the set of n items given computing the total weight of each subset in

order to identify feasible subsets and finding a subset of the largest value among them.

ALGORITHM Knapsack(W[0..n − 1],V[0..n-1],B)

//Determine the Knapsack for a capacity B

//Input: An array W[0..n − 1] of weights, V[0..n − 1] of values, capacity B

//Output: An array K[0..m-1] of Knapsack items

maxVal ← 0

while there is a unique bit array of size n

begin

 0 in the bit array at position i implies element vi is absent in Knapsack

 1 in the bit array at position i implies element vi is present in Knapsack

 Add all the weights corresponding to 1 in the bit array

 if total weight < B then

 Add all the Values corresponding to 1 in the bit array

 if total value > maxVal then

 maxVal ← total value

 end if

 end if

end while

Lab No 4

Page 19 of 56

Time Complexity :

The basic operation in this is comparison inside loop. This is repeated as many times

as the iterations of the loop. The loop is repeated 2n
 times.

Hence, C(n)= θ(2n)

This can be observed by repeating the experiment for knapsack problems with number

of items as 3, 4, 5, 10, 20….. by randomly generating the weight set and the profit set.

A plot of number of items, n, vs opcount (opcount is shown in the sample code) gives

an exponential curve.

Program

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

int Knapsack(unsigned int *w, unsigned int *v, unsigned int n, unsigned int B)

{

 unsigned int i,temp;

 unsigned int maxVal=0, maxSequence=0;

 unsigned int totalWeight, totalValue;

 int opcount=0; // Intialize the opcount variable

 unsigned int index=0;

 //Generate bit array

 for(i=1;i<pow(2,n);i++)

 {

 ++opcount; //increment opcount for every possible subsets

 //Compute total weight

 temp = i;

 totalWeight=totalValue=0;

 index=0;

 while(temp) {

 if(temp & 0x1) {

 totalWeight = totalWeight + w[index];

 totalValue = totalValue + v[index];

 }

 index++;

 temp = temp >> 1;

 }

 if(totalWeight <= B && totalValue > maxVal) {

 maxVal = totalValue;

 maxSequence = i;

Lab No 4

Page 20 of 56

 }

 }

 printf("\n Operation count = %d\n",opcount);

 return maxSequence;

}

int main() {

 unsigned int *v,*w, i,n,knaps, B;

 printf("Enter the number of elements ");

 scanf("%d", &n);

 v= (unsigned int *)calloc(n, sizeof(unsigned int));

 w = (unsigned int *) calloc(n, sizeof(unsigned int));

 printf("Please enter the weights");

 for(i=0;i<n;i++)

 scanf("%d",&w[i]);

 printf("Please enter the values");

 for(i=0;i<n;i++)

 scanf("%d",&v[i]);

 printf("Please enter the Knapsack capacity");

 scanf("%d", &B);

 knaps = Knapsack(w,v,n,B);

 printf("Knapsack contains the following items \n");

 i=0;

 while(knaps) {

 if(knaps & 0X1)

 printf("item %u value %u", (i+1), v[i]);

 i++;

 knaps = knaps >> 1;

 }

 return 0;

}

Sample Input and Output :

Enter the number of elements 3

Please enter the weights1 2 4

Please enter the values2 4 8

Please enter the Knapsack capacity5

Operation count = 7

Knapsack contains the following items

item 1 value 2item 3 value 8

Lab No 4

Page 21 of 56

II. LAB EXERCISES

 1). Write a program for assignment problem by brute-force technique and analyze its

time efficiency. Obtain the experimental result of order of growth and plot the

result.

 2). Write a program for depth-first search of a graph. Identify the push and pop order

of vertices.

 3). Write a program for breadth-first search of a graph.

III. ADDITIONAL EXERCISES

 1). Write a program to check whether a graph is bipartite or not using

i. DFS to check for bipartite

ii. BFS to check for bipartite

 A graph is said to be bipartite if all its vertices can be partitioned into two

 disjoint subsets X and Y so that every edge connects a vertex in X with a vertex

 in Y.

 2). Write a program to construct a graph for the following maze. One can model a

maze by having a vertex for a starting point, a finishing point, dead ends, and all

the points in the maze where more than one path can be taken, and then connecting

the vertices according to the paths in the maze. Also find the solution to the maze

using Depth-First-Search.

3) Write a program to implement the Traveling Salesman Problem using Brute

Force Method

--

 Lab No: 5

Page 22 of 56

LAB NO: 5

DECREASE AND CONQUER

Objectives:

In this lab, student will be able to:

• Understand decrease and conquer design technique

• Apply this technique to examples like Topological sorting, diameter of a graph

• Determine the time efficiency

Description : The decrease-and-conquer technique is based on exploiting the

relationship between solution to a given instance of a problem and a solution to its

smaller instance. Once such a relationship is established, it can be exploited either top

down or bottom up. The former leads to a recursive implementation. The bottom-up

version is implemented iteratively. There are three major variations of decrease and

conquer. Decrease by constant, decrease by a constant factor and variable size decrease.

I. SOLVED EXERCISE:

1). Write a program to sort a set of numbers using insertion sort and analyze its time

efficiency. Obtain the experimental result of order of growth and plot the result.

Description: We assume that smaller problem of sorting the array A[0,...n-2] has

already been solved to give us a sorted array of size n-1 : A[0] ≤ A[1]... ≤A[n-2]

has already been solved to give us a sorted array of size n-1. The new element A[n-

1] need to be inserted into the right position. We compare each element starting

from A[n-2] down to A[0] to check the right position for A[n-1]. Once found, we

insert into that position.

ALGORITHM InsertionSort(A[0..n − 1])

//Sorts a given array by insertion sort

//Input: An array A[0..n − 1] of n orderable elements

//Output: Array A[0..n − 1] sorted in nondecreasing order

for i ←1 to n − 1 do

 v ←A[i]

 j ←i − 1

 while j ≥ 0 and A[j]> v do

 A[j + 1]←A[j]

 j ←j – 1

 end while

 A[j + 1]←v

end for

 Lab No: 5

Page 23 of 56

Time Complexity :

Cworst(n)= ∑ ∑ 1i−1
j=0

n−1
i=1

The worst case occurs when elements are given in decreasing order.

In such cases, j will range from 0 to i-1.

Cworst(n) = ∑ i − 1 − 1 + 1n−1
i=1

 = ∑ i − 1n−1
i=1

 = n-2 + n-3 … +0

 =
(n−2)(n−2+1)

2

 =
(n−2)(n−1)

2

 = θ(n2)

This can be observed by repeating the experiment with the worst-case inputs for

different array sizes say 10, 15, 20, 35, 100. A plot of number of elements in the

array vs opcount (opcount is shown in the sample code) gives a quadratic curve.

Program :

#include<stdio.h>

#include<stdlib.h>

void insertionSort(int *a, unsigned int n)

{

 int i, j, v;

 int opcount=0;

 for(i=1;i<n;i++)

 {

 v=a[i];

 j=i-1;

 // increment opcount whenever there is an element comparison

 while(++opcount && j>=0 && a[j]> v)

 {

 a[j+1]=a[j];

 j=j-1;

 }

 a[j+1]=v;

 }

 printf(“\n Operation count %d\n”,opcount);

}

int main() {

 int *a;

 int i,n = 5;

 // generate worst case input of different input size

 Lab No: 5

Page 24 of 56

 for (int j=0; j < 4; j++) // repeat experiment for 4 trials

 {

 a = (int *)malloc(sizeof(int)*n);

 for (int k=0; k< n; k++)

 a[k] = n-k; // descending order list

 printf("Elements are ");

 for(i=0;i<n;i++)

 printf("%d ",a[i]);

 insertionSort(a,n);

 printf("Elements after selection sort ");

 for(i=0;i<n;i++)

 printf("%d ",a[i]);

 printf("\n");

 free(a);

 n = n + 5; // try with a new input size

 }

 return 0;

}

Sample Input and Output :

Elements are 5 4 3 2 1

 Operation count 14

Elements after selection sort 1 2 3 4 5

Elements are 10 9 8 7 6 5 4 3 2 1

 Operation count 54

Elements after selection sort 1 2 3 4 5 6 7 8 9 10

Elements are 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

 Operation count 119

Elements after selection sort 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Elements are 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

2 1

 Operation count 209

Elements after selection sort 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20

Tabulate the values of n and opcount as shown below and plot the graph.

Input Size (n) 5 10 15 20

Operation Count - c(n) 14 54 119 209

 Lab No: 5

Page 25 of 56

II. LAB EXERCISES

1).Write a program to determine the Topological sort of a given graph using

i. Depth-First technique

ii. Source removal technique

 2). Write a C program to find Closest Common Ancestor (CCA) in a Binary Tree.

The CCA of n1 and n2 in T is the shared ancestor of n1 and n2 that is located

farthest from the root [i.e., closest to n1 and n2].

 For Example: Consider the following BT

s

III. ADDITIONAL EXERCISES

1). A student management system should be developed by a software company. There

are certain dependent and independent modules that must be developed by K teams. The

unit testing and integration testing is done before the deployment of the product. Design

an algorithm using decrease and conquer technique such that it gives a schedule of tasks

in the order in which it must be executed.

0

50

100

150

200

250

0 5 10 15 20 25

O
p

er
at

io
n

 C
o

u
n

t
C

(n
)

Input Size n

Operation Count - c(n)

Input: CCA of 10 and 14

Output: 12

Input: CCA of 8 and 14

Output: 8

 Lab No: 5

Page 26 of 56

2). Modify the algorithm such that it checks whether there is any task dependency

between the teams.

3) Write a program in C to find gcd of two numbers using Euclid’s algorithm

employing the Decrease and Conquer strategy.

--

 Lab No:6

Page 27 of 56

LAB NO: 6

DIVIDE AND CONQUER

Objectives:

In this lab, student will be able to:

• Understand divide and conquer algorithm design technique

• Apply this technique to merge sort, quick sort etc.

• Determine the time complexity associated with divide and conquer algorithms

Description : In divide-and-conquer a problem is divided into several sub-problems of

the same type, ideally of about equal size. The sub-problems are solved and if necessary,

the solutions to the sub-problems are combined to get a solution to the original problem.

I. SOLVED EXERCISE:

1). Write a program to determine the height of a binary search tree and analyze its time

efficiency.

Description : A binary search tree is a data structure in which orderable elements

are stored. It is a special form of binary tree in which root will have larger value

than all the children on the left and root will have lesser value than all the children

on the right. This condition is applicable for all the nodes of a binary search tree.

ALGORITHM Height(T)

//Computes recursively the height of a binary tree

//Input: A binary tree T

//Output: The height of T

if T = NULL then

 return −1

else

 return max{Height(Tleft), Height(Tright)} + 1

 end if

Time Complexity : The time complexity of this algorithm is 𝜃(n) considering

the basic operation as comparison (or addition). This can be observed by repeating

the experiment for trees with different number of nodes as 5, 7, 10, 12, 20….. A

plot of number of nodes, n, vs opcount (opcount is shown in the sample code)

gives a linear curve.

 Lab No:6

Page 28 of 56

Program

#include<stdio.h>

#include<stdlib.h>

#define MAX(a,b) ((a) > (b) ? a : b)

 int opcount=0; //initialize the opcount variable

struct node{

 int val;

 struct node *left, *right;

};

typedef struct node *NODE;

NODE root=NULL;

NODE insert(int ele, NODE node)

{

 NODE temp;

 if(node == NULL) {

 temp= (NODE)malloc(sizeof(struct node));

 temp->val=ele;

 temp->left = temp->right=NULL;

 if(root == NULL)

 root=temp;

 return temp;

 }

 else if(ele < node->val) {

 node->left = insert(ele, node->left);

 return node;

 }

 else if(ele > node->val) {

 node->right = insert(ele,node->right);

 return node;

 }

 else {

 printf("Duplicate element found while inserting. Insertion

failed\n");

 return NULL;

 }

}

 Lab No:6

Page 29 of 56

int height(NODE node) {

 opcount++; // increment opcount for the comparison statement

 if(node==NULL)

 return -1;

 else

 return MAX(height(node->left), height(node->right))+1;

}

void main() {

 int choice,ele;

 do {

 printf("1. Insert an element\n");

 printf("2. Find Height of BST\n");

 printf("3. Exit\n");

 printf("Please enter your choice");

 scanf("%d",&choice);

 switch(choice) {

 case 1: printf("Insertion : Please enter an element\n");

 scanf("%d", &ele);

 insert(ele,root);

 break;

 case 2: printf("Height of BST : %d\n",height(root));

 printf(“Opcount=” %d);

 break;

 case 3: break;

 default: printf("Invalid choice. Please enter valid

choice\n");

 break;

 }

 }while(choice != 3);

}

Sample Input and output:

1. Insert an element

2. Find Height of BST

3. Exit

Please enter your choice: 1

Insertion : Please enter an element 5

1. Insert an element

2. Find Height of BST

3. Exit

Please enter your choice: 1

 Lab No:6

Page 30 of 56

Insertion : Please enter an element 3

1. Insert an element

2. Find Height of BST

3. Exit

Please enter your choice: 1

Insertion : Please enter an element 1

1. Insert an element

2. Find Height of BST

3. Exit

Please enter your choice: 2

1. Insert an element

2. Find Height of BST

3. Exit

Please enter your choice: 3

II. LAB EXERCISE:

 Write a program to:

1) Find total number of nodes in a binary tree and analyze its efficiency. Obtain the

experimental result of order of growth and plot the result.

2) Sort given set of integers using Quick sort and analyze its efficiency. Obtain the

experimental result of order of growth and plot the result.

3) Sort the given set of integers using Merge sort and display the number of

inversions performed during the merging step. Obtain the experimental result of

order of growth by analysing its efficiency and plot the result.

III. ADDITIONAL EXERCISES:

1) Write a program in C to find an where n > 0 using divide and conquer strategy.

2) Using divide and conquer strategy, count the number of ways to tile the given

“2 x n” board. The tiles are of size “2 x 1” and it can either be placed horizontally

or vertically.

3) Given an image, find the defective region in the image using divide and conquer

technique. The defective region is denoted by 0 and the non-defective region is

denoted by 1.

4) Write a C program to find the convex hull of a given set of points using divide

and conquer strategy

 Lab No:7

Page 31 of 56

LAB NO: 7

TRANSFORM AND CONQUER - I

Objectives:

In this lab, student will be able to:

• Understand Transform and Conquer design technique

• Apply this technique to examples like AVL tree, 2-3 tree, etc.

• Determine the time complexity associated with this technique

Description: The technique is called as Transform and Conquer because these methods

work as two-stage procedures. First in the transformation stage, the problem’s instance is

modified to be, for one reason or another, more amenable to solution. Then in the second

or conquering stage it is solved.

There are three major variations of this idea that differ by what we transform a given

instance.

➢ Transformation to a simpler or more convenient instance of the same problem-we

call it instance simplification.

➢ Transforming to a different representation of the same instance-we call it

representation change.

➢ Transformation to an instance of a different problem for which an algorithm is

already available-we call it problem reduction.

I. SOLVED EXERCISE:

1). Write a program to create a binary search tree and display its elements using all

the traversal methods and analyse its time efficiency.

Description: Binary search tree is a binary tree whose nodes contain elements of a set

of orderable items, one element per node, so that all elements in the left subtree are

smaller than the element in the subtree’s root, and all the elements in the right subtree

are greater than it. Note that this transformation from a set to a binary search tree is an

example of the representation-change technique.

 To create and maintain the information stored in a binary search tree, we need an

operation that inserts new nodes into the tree. We use the following insertion approach.

A new node is always inserted into its appropriate position in the tree as a leaf. We write

a function that inserts an item into the tree, given a pointer to the root of the whole tree:

create(tree, item). We compare the item to the data of the (current) root node and then

call the function to insert the item into the correct subtree-the left subtree if item's key is

less than the key of the root node, and the right subtree if item's key is greater than the

key of the root node. The argument ‘tree’, to the create(), is a reference parameter. The

case where tree is NULL is the base case where a node will be created and the element

will be stored. The recursive call will pass the reference to the appropriate left or right

 Lab No:7

Page 32 of 56

subtree depending on the item to be inserted. The important point to remember is that

passing a pointer by value allows the function to change what the caller's pointer points

to; passing a pointer by reference allows the function to change the caller's pointer as

well as to change what the pointer points to.

Algorithm: Create binary search tree

Step1 : If tree is NULL, then allocate a new leaf to contain item.

Step2: If item < tree->info, then recursively call Insert(tree->llink, item).

Step3: Else If item > tree->info, then recursively call lnsert(tree->rlink, item).

Step4: Else Write(“Error: duplicate item”)

Time Efficiency:

T(n)=O(n), where n is number of nodes

Program

#include<stdio.h>

typedef struct node

{

 int info;

 struct node *left,*right;

}NODE;

NODE* create(NODE *bnode,int x)

{

 NODE *getnode;

 if(bnode==NULL)

 {

 bnode=(NODE*) malloc(sizeof(NODE));

 bnode->info=x;

 bnode->left=bnode->right=NULL;

 }

 else if(x>bnode->info)

 bnode->right=create(bnode->right,x);

 else if(x<bnode->info)

 bnode->left=create(bnode->left,x);

 else

 {

 printf("Duplicate node\n");

 exit(0);

 Lab No:7

Page 33 of 56

 }

 return(bnode);

}

void inorder(NODE *ptr)

{

 if(ptr!=NULL)

 {

 inorder(ptr->left);

 printf("%5d",ptr->info);

 inorder(ptr->right);

 }

}

void postorder(NODE *ptr)

{

 if(ptr!=NULL)

 {

 postorder(ptr->left);

 postorder(ptr->right);

 printf("%5d",ptr->info);

 }

}

void preorder(NODE *ptr)

{

 if(ptr!=NULL)

 {

 printf("%5d",ptr->info);

 preorder(ptr->left);

 preorder(ptr->right);

 }

}

void main()

{

 int n,x,ch,i;

 NODE *root;

 root=NULL;

 while(1)

 {

 printf("********************Output********************\n\n");

 printf("-----------Menu-----------\n");

 printf(" 1. Insert\n 2. All traversals\n 3. Exit\n");

 printf("Enter your choice:");

 scanf("%d",&ch);

 Lab No:7

Page 34 of 56

 switch(ch)

 {

 case 1: printf("Enter node (do not enter duplicate nodes):\n");

 scanf("%d",&x);

 root=create(root,x);

 break;

 case 2: printf("\nInorder traversal:\n");

 inorder(root);

 printf("\nPreorder traversal:\n");

 preorder(root);

 printf("\nPostorder traversal:\n");

 postorder(root);

 printf("\n\n***");

 break;

 case 3: exit(0);

 }

 }

}

Sample Input and Output

********************Output********************

-----------Menu-----------

 1. Insert

 2. All traversals

 3. Exit

Enter your choice:1

Enter node (do not enter duplicate nodes):

234

********************Output********************

-----------Menu-----------

 1. Insert

 2. All traversals

 3. Exit

Enter your choice:1

Enter node (do not enter duplicate nodes):

22

********************Output********************

 Lab No:7

Page 35 of 56

-----------Menu-----------

 1. Insert

 2. All traversals

 3. Exit

Enter your choice:1

Enter node (do not enter duplicate nodes):

65

********************Output********************

-----------Menu-----------

 1. Insert

 2. All traversals

 3. Exit

Enter your choice:1

Enter node (do not enter duplicate nodes):

25

********************Output********************

-----------Menu-----------

 1. Insert

 2. All traversals

 3. Exit

Enter your choice:2

Inorder traversal:

 22 25 65 234

Preorder traversal:

 234 22 65 25

Postorder traversal:

 25 65 22 234

II. LAB EXERCISES:

1) Write a program to create the AVL tree by iterative insertion.

2) Using the AVL created in question 1, display the successor (next greater key)

and predecessor (next smaller key) of a given key.

III. ADDITIONAL EXERCISES:

1) For the AVL tree created in exercise 1 above, insert an element 6

2) Write a program to create a 2-3 tree for a set of integers.

3) For the 2-3 tree created in exercise 2 above, insert an element 6.

 Lab No:8

Page 36 of 56

LAB NO: 8

TRANSFORM AND CONQUER - II

Objectives:

In this lab, student will be able to:

• Understand construction of heap using Transform and Conquer design

technique

• Apply heap concepts to sort set of elements.

• Determine the time complexity associated with this technique.

Description: A heap can be defined as a binary tree with keys assigned to its nodes, one

key per node, provided the following two conditions are met:

 1. The shape property—the binary tree is essentially complete (or simply complete), i.e.,

all its levels are full except possibly the last level, where only some rightmost leaves

may be missing.

 2. The parental dominance or heap property—the key in each node is greater than or

equal to the keys in its children. (This condition is considered automatically satisfied

for all leaves.)

I. SOLVED EXERCISE:

1). Write a program to construct a heap for a given list of keys using bottom-up heap

construction algorithm.

Description: The bottom-up heap construction algorithm initializes the essentially

complete binary tree with n nodes by placing keys in the order given and then

“heapifies” the tree as follows. Starting with the last parental node, the algorithm

checks whether the parental dominance holds for the key in this node. If it does not,

the algorithm exchanges the node’s key K with the larger key of its children and checks

whether the parental dominance holds for K in its new position. This process continues

until the parental dominance for K is satisfied. (Eventually, it has to because it holds

automatically for any key in a leaf.) After completing the “heapification” of the subtree

rooted at the current parental node, the algorithm proceeds to do the same for the node’s

immediate predecessor. The algorithm stops after this is done for the root of the tree.

 Lab No:8

Page 37 of 56

ALGORITHM HeapBottomUp(H[1..n])

//Constructs a heap from the elements of a given array

//by the bottom-up algorithm

//Input: An array H[1..n] of orderable items

//Output: A heap H[1..n]

for i ← ⌊
𝑛

2
⌋ downto 1 do

 k ← i; v ← H[k]

 heap ← false

 while not heap and 2*k≤n do

 j ← 2*k

 if j<n //there are two children

 if H[j] < H[j+1] j ← j+1

 if v≥H[j]

 heap ← true

 else H[k] ← H[j]; k ← j

 H[k] ← v

Time Efficiency:

Tworst(n)=2(n-log2(n+1)), where n is number of elements

Program

#include<stdio.h>

#include<conio.h>

void heapify(int h[],int n)

 {

 int i,k,v,heapify,j;

 for(i=(n/2);i>=1;i--)

 {

 k=i;v=h[k];heapify=0;

 while(heapify==0&&2*k<=n)

 {

 j=2*k;

 if(j<n)

 if(h[j]<h[j+1])

 j=j+1;

 if(v>=h[j])

 heapify=1;

 else

 Lab No:8

Page 38 of 56

 {

 h[k]=h[j];

 k=j;

 }

 }

 h[k]=v;

 }

 return;

 }

void main()

 {

 int h[20],i,n;

 clrscr();

 printf("\nEnter the number of Elements:");

 scanf("%d",&n);

 printf("\nEnter the Elements:");

 for(i=1;i<=n;i++)

 scanf("%d",&h[i]);

 printf("\ndisplay the array:");

 for(i=1;i<=n;i++)

 {

 printf("%d\t",h[i]);

 }

 heapify(h,n);

 printf("\nThe heap created:");

 for(i=1;i<=n;i++)

 {

 printf("%d\t",h[i]);

 }

 getch();

 }

Sample Input and Output

Enter the number of Elements

6

Enter the Elements

2 9 7 6 5 8

The heap created

9 6 8 2 5 7

 Lab No:8

Page 39 of 56

II. LAB EXERCISES:

 1) Write a program to create a heap for the list of integers using top-down heap

construction algorithm and analyze its time efficiency. Obtain the experimental

results for order of growth and plot the result.

 2) Write a program to sort the list of integers using heap sort with bottom up max heap

construction and analyze its time efficiency. Prove experimentally that the worst

case time complexity is O(n log n)

ADDITIONAL EXERCISES:

 1) Write a program to check whether an array H[1..n] is a heap or not

 2) Write a program for finding and deleting an element of a given value in a

 heap.

 3) Write a program to find and delete the smallest element in the max heap.

--

 Lab No:9

Page 40 of 56

LAB NO: 9

SPACE AND TIME TRADEOFFS

Objectives:

In this lab, student will be able to:

• Understand Space and Time tradeoffs design technique

• Apply this technique in input enhancement & pre-structuring techniques.

• Determine the time complexity associated with this technique.

Description: In time and space tradeoffs technique if time is at premium, we can pre-

compute the function’s values and store then in a table. In somewhat more general terms,

the idea is to preprocess the problem’s input, in whole or in part, and store the additional

information obtained to accelerate solving the problem afterward. We call this approach

input enhancement. The other type of technique that exploits space-for-time trade-offs

simply uses extra space to facilitate faster and/or more flexible access to the data. We call

this approach pre-structuring.

I. SOLVED EXERCISE:

1) Write a program to sort set of integers using comparison counting algorithm.

Description: Comparison counting sort uses the input-enhancement technique. One

rather obvious idea is to count, for each element of a list to be sorted, the total number

of elements smaller than this element and record the results in a table. These numbers

will indicate the positions of the elements in the sorted list: e.g., if the count is 10 for

some element, it should be in the 11th position (with index 10, if we start counting with

0) in the sorted array. Thus, we will be able to sort the list by simply copying its elements

to their appropriate positions in a new, sorted list.

ALGORITHM ComparisonCountingSort(A[0..n − 1])

 //Sorts an array by comparison counting

 //Input: An array A[0..n − 1] of orderable elements

 //Output: Array S[0..n − 1] of A’s elements sorted in nondecreasing order

 for i ←0 to n − 1 do Count[i]←0

 for i ←0 to n − 2 do

 for j ←i + 1 to n − 1 do

 if A[i]<A[j]

 Count[j]←Count[j]+ 1

 else Count[i]←Count[i]+ 1

 for i ←0 to n − 1 do S[Count[i]]←A[i]

 return S

 Lab No:9

Page 41 of 56

Time Efficiency:

T(n)=O(n2), where n is number of integers

Program

1. #include <stdio.h>

2. void counting_sort(int A[])

3. {

4. int i, j;

5. int S[15], C[100];

6. for (i = 0; i <= n-1; i++)

7. C[i] = 0;

8. for (i = 0; i <= n-2; i++)

9. {

 for (j = i+1; j <= n-1; j++)

 {

 if A[i]<A[j]

 Count[j]←Count[j]+ 1;

 else Count[i]←Count[i]+ 1;

 }

 }

 for (i = 0; i <= n-1; i++)

 S[c[i]]=A[i];

 printf("The Sorted array is : ");

 for (i = 0; i <= n-1; i++)

 printf("%d ", S[i]);

}

int main()

{

 int n, k = 0, A[15], i;

 printf("Enter the number of integers : ");

 scanf("%d", &n);

 printf("\nEnter the integers to be sorted :\n");

 for (i = 1; i <= n; i++)

 scanf("%d", &A[i]);

 counting_sort(A);

 printf("\n");

 return 0;

}

 Lab No:9

Page 42 of 56

Sample Input and Output

Enter the number of integers :

6

Enter the integers to be sorted :

62 31 84 96 19 47

The Sorted array is :

19 31 47 62 84 96

II. LAB EXERCISES:

 1) Write a program to implement Horspool’s algorithm for String Matching and find

the number of key comparisons in successful search and unsuccessful search.

 2) Write a program to construct the Open hash table. Find the number of key

comparisons in successful search and unsuccessful search. This should be done by

varying the load factor of the hash table. You may consider varying the number of

keys for a fixed value of hash table size say m=10 and n=50, 100, and 200. This

should be repeated for at least four different hash table sizes say m= 20, m=50.

 3) Write a program to construct the closed hash table. Find the number of key

comparisons in successful search and unsuccessful search.

III. ADDITIONAL EXERCISES:

 1). Write a program to implement Boyer-Moore algorithm for String Matching and

 find the number of key comparisons in successful search and unsuccessful search.

 2). Write a program to sort the elements using distribution counting method.

--- -

 Lab No:10

Page 43 of 56

LAB NO: 10

DYNAMIC PROGRAMMING

Objectives:

In this lab, student will be able to:

• Understand Dynamic Programming design technique

• Apply this technique to examples like Warshall's and Floyd’s algorithm.

• Determine the time complexity associated with this technique.

Description: Dynamic programming is a technique for solving problems with

overlapping sub-problems. Typically, these sub-problems arise from a recurrence relating

a solution to a given problem with solutions to its smaller sub-problems of the same type.

Rather than solving overlapping sub-problems again and again, dynamic programming

suggests solving each of the smaller sub-problems only once and recording the results in

a table from which we can then obtain a solution to the original problem.

I. SOLVED EXERCISE:

1) Write a program to find the Binomial Co-efficient using Dynamic Programming.

Description: Computing a binomial coefficient is a standard example of applying

dynamic programming to a nonoptimization problem. You may recall from your studies

of elementary combinatorics that the binomial coefficient, denoted C(n, k) is the number

of combinations (subsets) of k elements from an n-element set (0 <= k <= n). The name

"binomial coefficients" comes from the participation of

these numbers in the binomial formula.

So,

C(n, k) = C(n- 1, k- 1) + C(n- 1, k) for n > k > 0

and

C(n, 0) = C(n, n) = 1.

Time Efficiency:

T(n)=O(nk) for binomial coefficient of any number n & k

ALGORITHM Binomial(n,k)
// Computes C(n,k) by the dynamic programming algorithm

//Input: A pair of nonnegative integers n≥k≥0

//Output: The value of C(n,k)

 for i ← 0 to n do

 for j ← 0 to min(i,k) do

 Lab No:10

Page 44 of 56

 if j=0 or j=i

 C[i,j] ← C[i-1,j-1] + C[i-1,j]

 return C[n,k]

Program

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

int

c[20][20];

void binomial(int n,int k)

{

 int i,j;

 for(i=0;i<=n;i++)

 {

 for(j=0;j<=min(i,k);j++)

 {

 if(j==0||j==i)

 c[i][j]=1;

 else

 c[i][j]=c[i-1][j-1]+c[i-1][j];

 }

 }

}

void main()

{

 int n,k,i,j;

 clrscr();

 printf("Enter the value of n\n");

 scanf("%d",&n);

 printf("Enter the value of k\n");

 scanf("%d",&k);

 if(n<k)

 printf("Invalid input: n cannot be less than k\n");

 else if(k<0)

 printf("Invalid input: k cannot be less than 0\n");

 else

 {

 binomial(n,k);

 printf("Computed matrix is \n");

 for(i=0;i<=n;i++)

 Lab No:10

Page 45 of 56

 {

 for(j=0;j<=min(i,k);j++)

 printf("%d\t",c[i][j]);

 printf("\n");

 }

 printf("binomial coefficient c[%d,%d]=%d\n",n,k,c[n][k]);

 }

 getch();

}

Sample Input and Output

Enter the value of n

6

Enter the value of k

3

Computed matrix is
 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4
 1 5 10 10
 1 6 15 20

binomial coefficient c[6 3]=20

II. LAB EXERCISES:

 1). Write a program to compute the transitive closure of a given directed graph using

Warshall’s algorithm and analyse its time efficiency. Obtain the experimental results

for order of growth and plot the result.

 2). Write a program to implement Floyd’s algorithm for the All-Pairs- Shortest-Paths

problem for any given graph and analyse its time efficiency. Obtain the experimental

results for order of growth and plot the result.

 3). Write a program to implement 0/1 Knapsack problem using bottom-up dynamic

programming

III. ADDITIONAL EXERCISES:

 1). Write a program to implement 0/1 Knapsack problem using memory function.

 2). Write a function to find the composition of an optimal subset from the table generated

by the bottom-up dynamic programming algorithm for the knapsack problem.

 Lab No:11

Page 46 of 56

LAB NO: 11

GREEDY TECHNIQUE

Objectives:

In this lab, student will be able to:

• Understand Greedy Technique design technique

• Apply this technique to examples like Prim’s, Kruskal’s and Dijkstra’s Algorithm

• Determine the time complexity associated with this technique

Description: The greedy approach suggests constructing a solution through a sequence

of steps, each expanding a partially constructed solution obtained so far, until a complete

solution to the problem is reached. On each step-and this is a central point of this

technique-the choice made must be

➢ Feasible, i.e., it has to satisfy the problem’s constraints.

➢ Locally optimal, i.e., it has to be the best local choice among all feasible choices

available on that step.

➢ Irrevocable, i.e., once made, it cannot be changed on subsequent steps of the

algorithm.

I. SOLVED EXERCISE:

1) Write a program to find Minimum Cost Spanning Tree of a given undirected graph

using Prim’s algorithm.

Description: A spanning tree of an undirected connected graph is its connected acyclic

subgraph (i.e., a tree) that contains all the vertices of the graph. If such a graph has

weights assigned to its edges, a minimum spanning tree is its spanning tree of the smallest

weight, where the weight of a tree is defined as the sum of the weights on all its edges.

The minimum spanning tree problem is the problem of finding a minimum spanning tree

for a given weighted connected graph.

Prim’s algorithm constructs a minimum spanning tree through a sequence of expanding

subtrees. The initial subtree in such a sequence consists of a single vertex selected

arbitrarily from the set V of the graph’s vertices. On each iteration, the algorithm expands

the current tree in the greedy manner by simply attaching to it the nearest vertex not in

that tree. (By the nearest vertex, we mean a vertex not in the tree connected to a vertex

in the tree by an edge of the smallest weight. Ties can be broken arbitrarily.) The

algorithm stops after all the graph’s vertices have been included in the tree being

constructed. Since the algorithm expands a tree by exactly one vertex on each of its

iterations, the total number of such iterations is n -1, where n is the number of vertices

 Lab No:11

Page 47 of 56

in the graph. The tree generated by the algorithm is obtained as the set of edges used for

the tree expansions.

Time Efficiency:

T(n)=O(|E| log|V|), for a graph with E edges and V vertices, represented as adjacency

list

Program

#include<stdio.h>

#include<conio.h>

int a[50][50],t[50][50],root[50],parent[50],n,i,j,value,e=0,k=0;

int ivalue,jvalue,cost=0,mincost=0,TV[50],count=0,present=0;

main()

{

 clrscr();

 printf("\n\t\t\t PRIMS ALGORITHM\n");

 TV[++count]=1;

 read_cost();

 prims();

 display();

 getch();

}

read_cost()

{

 printf("\n Enter the number of vertices:");

ALGORITHM Prim(G)

//Prim’s algorithm for constructing a minimum spanning tree

//Input: A weighted connected graph G=<V,E>

//Output: ET, the set of edges composing a minimum spanning tree of G

VT ← {v0} // The set of tree vertices can be initialized with any vertex

ET ← Φ

for i ← 1 to |V| -1 do

 find a minimum-weight edge e*=(v*,u*) among all the edges (u,v)

 such that v is in VT and u is in V-VT

 VT ← VT U {u*}

 ET ← ET U{e*}

return ET

 Lab No:11

Page 48 of 56

 scanf("%d",&n);

 printf("\n Enter cost adjacency matrix\n");

 for(i=1;i<=n;i++)

 for(j=1;j<=n;j++)

 if(i<j)

 {

 printf("(%d,%d):",i,j);

 scanf("%d",&value);

 a[i][j]=value;

 if(value!=0)

 e++;

 }

 else if(i>j)

 a[i][j]=a[j][i];

 else

 a[i][j]=0;

}

prims()

{

 while(e && k<n-1)

 {

 for(i=1;i<=n;i++)

 for(j=1;j<=n;j++)

 {

 if(a[i][j]!=0)

 {

 int x,y;

 x=check_reach(i);

 y=check_reach(j);

 if((x==1) && (y==0))

 {

 present=1;

 if((a[i][j] < cost) || (cost==0))

 {

 cost=a[i][j];

 ivalue=i;

 jvalue=j;

 }

 }

 }

 }

 Lab No:11

Page 49 of 56

 if(present==0) break;

 a[ivalue][jvalue]=0;

 a[jvalue][ivalue]=0;

 e--;

 TV[++count]=jvalue;

 t[ivalue][jvalue]=cost;

 k++;

 present=cost=0;

 }

}

display()

{

 if(k==n-1)

 {

 printf("\n Minimum cost spanning tree is\n");

 for(i=1;i<=n;i++)

 for(j=1;j<=n;j++)

 {

 if(t[i][j]!=0)

 printf("\n(%d,%d):%d",i,j,t[i][j]);

 mincost=mincost+t[i][j];

 }

 printf("\n Cost of this spanning tree:%d",mincost);

 }

 else

 printf("\n Graph is not connected");

}

int check_reach(int v)

{

 int p;

 for(p=1;p<=count;p++)

 if(TV[p]==v) return 1;

 return 0;

}

 Lab No:11

Page 50 of 56

Sample Input and Output

PRIMS ALGORITHM

Enter the number of vertices:

6

Enter cost adjacency matrix

1 2 3

1 3 0

1 4 0

1 5 6

1 6 5

2 3 1

2 4 0

2 5 0

2 6 4

3 4 6

3 5 0

3 6 4

4 5 8

4 6 5

5 6 2

Minimum cost spanning tree is

1 2 3

2 3 1

2 6 4

6 5 2

6 4 5

Cost of this spanning tree

15

 Lab No:11

Page 51 of 56

II. LAB EXERCISES:

1). Write a program to find Minimum Cost Spanning Tree of a given undirected graph

 using Kruskal's algorithm and analyse its time efficiency.

2) Given a weighted connected graph, write a program to implement Dijkstra’s algorithm

to find the shortest path from a given vertex to other vertices in the graph. Also, analyze

the time efficiency of the algorithm.

3) Write a program to implement Huffman tree construction algorithm.

III. ADDITIONAL EXERCISES:

1). Write a program to find a maximum spanning tree – a spanning tree with the largest

possible edge weight of a weighted connected graph.

2). Write a program to implement the greedy algorithm for the change-making problem,

with an amount n and coin denominations d1 > d2 > ... > dm as its input.

--- --

Lab No. 12

Page 52 of 56

LAB NO: 12

BACKTRACKING & BRANCH AND BOUND

Objectives:

In this lab, student will be able to:

• Understand Backtracking & Branch and Bound design technique

• Apply this technique to examples like subset-sum problem and knapsack problem.

Description: The principle idea in Backtracking is to construct solutions one component

at a time and evaluate such partially constructed candidates as follows. If a partially

constructed solution can be developed further without violating the problem’s constraints,

it is done by taking the first legitimate option for the next component. If there is no

legitimate option for the next component, no alternative for any remaining component

need to be considered. In this case, the algorithm backtracks to replace the last component

of the partially constructed solution with the next option. Branch-and-bound requires two

additional items, compared to backtracking:

1) A way to provide, for every node of a state-space tree, a bound on the best value of

the objective function on any solution that can be obtained by adding further

components to the partially constructed solution represented by the node.

2) The value of the best solution seen so far.

If this information is available, we can compare a node’s bound value with the value of

the best solution seen so far. If the bound value is not better than the value of the best

solution seen so far-i.e., not smaller for a minimization problem and not larger for a

maximization problem-the node is nonpromising and can be terminated (some people say

the branch is “pruned”). Indeed, no solution obtained from it can yield a better solution

than the one already available. This is the principal idea of the branch-and-bound

technique.

In general, we terminate a search path at the current node in a state-space tree of a branch-

and-bound algorithm for any one of the following three reasons:

1) The value of the node’s bound is not better than the value of the best solution seen so

far.

2) The node represents no feasible solutions because the constraints of the problem are

already violated.

3) The subset of feasible solutions represented by the node consists of a single point (and

hence no further choices can be made)—in this case, we compare the value of the

objective function for this feasible solution with that of the best solution seen so far

and update the latter with the former if the new solution is better.

Lab No. 12

Page 53 of 56

I. SOLVED EXERCISE:

1) Write a program for n-Queens problem using backtracking technique.

Description: The n-queens problem is to place ‘n’ Queens on an n × n chessboard so

that no two queens attack each other by being in the same row or in the same column or

on the same diagonal. For n = 1, the problem has a trivial solution, and it is easy to see

that there is no solution for n = 2 and n = 3. So let us consider the 4-Queens problem and

solve it by the backtracking technique. Since each of the four queens has to be placed in

its own row, all we need to do is to assign a column for each queen on the board. We start

with the empty board and then place queen 1 in the first possible position of its row, which

is in column 1 of row 1. Then we place queen 2, after trying unsuccessfully columns 1

and 2, in the first acceptable position for it, which is square (2, 3), the square in row 2 and

column 3. This proves to be a dead end because there is no acceptable position for queen

3. So, the algorithm backtracks and puts queen 2 in the next possible position at (2, 4).

Then queen 3 is placed at (3, 2), which proves to be another dead end. The algorithm then

backtracks all the way to queen 1 and moves it to (1, 2). Queen 2 then goes to (2, 4),

queen 3 to (3, 1), and queen 4 to (4, 3), which is a solution to the problem.

Time Efficiency:

Size of state space tree

ALGORITHM Backtrack(X[1..i])

//Gives a template of a generic backtracking algorithm

//Input: X[1..i] specifies first i promising components of a solution

//Output: All the tuples representing the problem’s solutions

if X[1..i] is a solution write X[1..i]

else /* This algorithm works correctly only if no solution is a prefix to another

 solution to the problem. The pseudocode needs to be changed to work correctly

 for such problems as well. */

 for each element x ε S i+1 consistent with X[1..i] and the constraints do

 X[i+1] ← x

 Backtrack(X[1..i+1])

 end for

end if

Lab No. 12

Page 54 of 56

Program

int place(int[],int);

void printsolution(int,int[]);

void main()

{

 int n;

 clrscr();

printf("Enter the no.of queens: ");

scanf("%d",&n);

nqueens(n);

getch();

}

void nqueens(int n)

{

int x[10],count=0,k=1;

x[k]=0;

while(k!=0)

 {

 x[k]=x[k]+1;

while(x[k]<=n&&(!place(x,k)))

x[k]=x[k]+1;

if(x[k]<=n)

 {

 if(k==n)

 {

 count++;

 printf("\nSolution %d\n",count);

 printsolution(n,x);

 }

 else

 {

 k++;

 x[k]=0;

 }

 }

 else

 {

 k--; //backtracking

 }

 }

return;

Lab No. 12

Page 55 of 56

}

int place(int x[],int k)

{

int i;

for(i=1;i<k;i++)

if(x[i]==x[k]||(abs(x[i]-x[k]))==abs(i-k))

return 0;

return 1;

}

void printsolution(int n,int x[])

{

int i,j;

char c[10][10];

for(i=1;i<=n;i++)

{

 for(j=1;j<=n;j++)

 c[i][j]='X';

 }

 for(i=1;i<=n;i++)

 c[i][x[i]]='Q';

 for(i=1;i<=n;i++)

 {

 for(j=1;j<=n;j++)

 {

 printf("%c\t",c[i][j]);

 }

 printf("\n");

 }

}

Sample Input and Output

Enter the no. of queens: 4

Solution 1

X Q X X

X X X Q

Q X X X

X X Q X

Lab No. 12

Page 56 of 56

Solution 2

X X Q X

Q X X X

X X X Q

X Q X X

II. LAB EXERCISES:

 1). Write a program to find the solution to the subset-sum problem using backtracking.

Consider the test case S={1, 2, 5, 6, 8} and d=9, to verify your answer.

 2). Write a program to implement Knapsack problem using branch and bound

 technique.

III. ADDITIONAL EXERCISES:

 1). Write a program for finding Hamiltonian circuit for the graph, using backtracking.

 2). Write a program to implement assignment problem using Branch and Bound.

 3). Solve job assignment problem using Hungarian method.
--- ------------------

References:

1. Anany Levitin, Introduction to The Design and Analysis of Algorithms, 3rd

 Edition, Pearson Education, India, 2012.

2. Ellis Horowitz and Sartaj Sahni, Computer Algorithms/C++, Second Edition,

 University Press, 2007.

 3. Thomas H. Cormen, Charles E. Leiserson, Ronal L, Rivest, Clifford Stein,

 Introduction to Algorithms, PHI, 2nd Edition, 2006.

