forked from sigmaai/semantic-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualization.py
executable file
·79 lines (56 loc) · 2.08 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -----------------------------------
# visualization.py, visualize road segmentation
# on Udacity testing data
# (c) Neil Nie, 2017
# All Rights Reserved.
# -----------------------------------
import models.enet_naive_upsampling.model as enet
import utils
import configs
import time
import cv2
import pandas as pd
import numpy as np
from PIL import Image
import pygame
# init pygame
pygame.init()
size = (configs.img_width, configs.img_height)
pygame.display.set_caption("road segmentation")
screen = pygame.display.set_mode(size, pygame.DOUBLEBUF)
screen.set_alpha(None)
camera_surface = pygame.surface.Surface((configs.img_width, configs.img_height), 0, 24).convert()
clock = pygame.time.Clock()
def test_video_stream():
# init model
m = enet.build(len(utils.labels), configs.img_height, configs.img_width)
# m = icnet.build(3, 512, 512)
m.load_weights("./weights/enet-c-v1-3.h5")
m.summary()
# load testing data
label_path = configs.data_path + "extra_labels.csv"
df_truth = pd.read_csv(label_path).values
print("loaded dataset", len(df_truth))
for i in range(len(df_truth)):
for event in pygame.event.get():
if event.type == pygame.QUIT:
break
path = configs.test_dataset + df_truth[i][0]
image = Image.open(path)
image = np.array(image, dtype=np.uint8)
input = cv2.resize(image, (configs.img_width, configs.img_height))
start = time.time()
output = m.predict(np.array([input]))[0]
im_mask = utils.convert_class_to_rgb(output, 0.02)
end = time.time()
print(1 / (end - start))
im_mask = cv2.resize(im_mask, (configs.img_width, configs.img_height))
image = cv2.resize(image, (configs.img_width, configs.img_height))
img_pred = cv2.addWeighted(im_mask, 0.8, image, 0.8, 0)
# show it in pygame
# -----------------
pygame.surfarray.blit_array(camera_surface, img_pred.swapaxes(0, 1))
screen.blit(camera_surface, (0, 0))
pygame.display.flip()
if __name__ == '__main__':
test_video_stream()