forked from sigmaai/semantic-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_fusion.py
78 lines (64 loc) · 3.49 KB
/
train_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/python
from time import gmtime, strftime
from keras import optimizers
from keras.callbacks import ModelCheckpoint
from keras.callbacks import TensorBoard
from keras.callbacks import LearningRateScheduler
from keras.utils.vis_utils import plot_model
import utils
from utils import PolyDecay
from models.icnet_fusion import ICNet
import configs
# ==========
# Parameters
# ==========
batch_size = 3
epochs = 10
init_epoch = 5
model_type = "cross_fusion_gl"
#### Train ####
# Callbacks
checkpoint = ModelCheckpoint('output/icnet_' + model_type + '_{epoch:03d}_{conv6_cls_categorical_accuracy:.3f}.h5', mode='max')
tensorboard = TensorBoard(batch_size=batch_size,
log_dir="./logs/ICNet/" + model_type + "/{}/".format(strftime("%Y-%m-%d-%H-%M-%S", gmtime())))
lr_decay = LearningRateScheduler(PolyDecay(0.01, 0.9, epochs).scheduler)
# ==========
# Generators
# ==========
if model_type == "early_fusion":
train_generator = utils.early_fusion_generator(df=utils.load_train_data(configs.label_depth_color_path),
batch_size=batch_size,
resize_shape=(configs.img_width, configs.img_height),
crop_shape=(configs.img_width, configs.img_height),
n_classes=34,
training=True)
val_generator = utils.early_fusion_generator(df=utils.load_val_data(configs.val_depth_color_path), batch_size=1,
resize_shape=(configs.img_width, configs.img_height),
crop_shape=(configs.img_width, configs.img_height),
n_classes=34,
training=False)
elif "cross_fusion" in model_type:
train_generator = utils.fusion_generator(df=utils.load_train_data(configs.label_depth_color_path),
batch_size=batch_size,
resize_shape=(configs.img_width, configs.img_height),
n_classes=34,
training=True)
val_generator = utils.fusion_generator(df=utils.load_val_data(configs.val_depth_color_path), batch_size=1,
resize_shape=(configs.img_width, configs.img_height),
n_classes=34,
training=False)
else:
raise ValueError("Model type not found")
# Optimizer
optim = optimizers.SGD(lr=0.01, momentum=0.9)
# Model
net = ICNet(width=configs.img_width, height=configs.img_height, n_classes=34, depth=6, mode=model_type, training=True,
weight_path='output/icnet_' + model_type + '_004_0.776.h5')
print(net.model.summary())
plot_model(net.model, to_file='model.png', show_shapes=True, show_layer_names=True)
# Training
net.model.compile(optim, 'categorical_crossentropy', metrics=['categorical_accuracy'])
net.model.fit_generator(generator=train_generator, steps_per_epoch=1500, epochs=epochs,
validation_data=val_generator, validation_steps=800,
callbacks=[checkpoint, tensorboard, lr_decay], shuffle=True,
max_queue_size=5, use_multiprocessing=True, workers=12, initial_epoch=init_epoch)