-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgraph.py
735 lines (625 loc) · 26.9 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
import math
import random
from itertools import chain
import Utils
from Model import Direction
class Node:
GRASS_WEIGHT = 1
BREAD_WEIGHT = 1
DISTANCE_WEIGH = 10
GRASS_LIMIT = 10
BREAD_LIMIT = 10
def __init__(self, pos, discovered, wall=False, swamp=False, trap=False,
bread=0, grass=0,
ally_workers=0, ally_soldiers=0, enemy_workers=0,
enemy_soldiers=0):
# REMEMBER to change the encode/decode function after adding attrs
self.pos = pos
self.discovered = discovered
self.wall = wall
self.swamp = swamp
self.trap = trap
self.bread = bread
self.grass = grass
self.ally_workers = ally_workers
self.ally_soldiers = ally_soldiers
self.enemy_workers = enemy_workers
self.enemy_soldiers = enemy_soldiers
def __repr__(self):
return f"{self.__dict__}"
def __eq__(self, other):
if type(self) is type(other):
return self.__dict__ == other.__dict__
return False
def get_distance(self, node):
return abs(self.pos[0] - node.pos[0]) + abs(self.pos[1] - node.pos[1])
# todo: make get value better(use dest)
# todo: make default dist better
def grass_value(self, src, dest, graph, number=0):
distance = graph.get_shortest_distance(src, self, 'grass', default=math.inf) \
+ graph.get_shortest_distance((dest, 1), self, 'grass', default=math.inf)
return -distance * self.DISTANCE_WEIGH + self.grass + number * self.GRASS_WEIGHT
def bread_value(self, src, dest, graph, number=0):
distance = graph.get_shortest_distance(src, self, 'bread', default=math.inf) \
+ graph.get_shortest_distance((dest, 1), self, 'bread', default=math.inf)
return -distance * self.DISTANCE_WEIGH + self.bread + number * self.BREAD_WEIGHT
class Graph:
TSP_NODE_LIMIT = 5
def __init__(self, dim, base_pos):
self.base_pos = base_pos
self.dim = dim # width, height
self.enemy_base_pos = None
self.nodes = {}
self.bfs_info = {}
self.edge_nodes = []
self.shortest_path_info = {'bread': {}, 'grass': {}}
for i in range(dim[0]):
for j in range(dim[1]):
if (i, j) == base_pos:
self.nodes[(i, j)] = Node(
pos=(i, j),
discovered=True,
wall=False
)
else:
self.nodes[(i, j)] = Node(
pos=(i, j),
discovered=False
)
def step(self, src, dest):
if dest[0] - src[0] in [1, -(self.dim[0] - 1)]:
return "RIGHT"
if dest[0] - src[0] in [-1, self.dim[0] - 1]:
return "LEFT"
if dest[1] - src[1] in [-1, self.dim[1] - 1]:
return "UP"
if dest[1] - src[1] in [1, -(self.dim[1] - 1)]:
return "DOWN"
# @Utils.time_measure
def total_grass_number(self):
res = 0
for pos in self.nodes.keys():
if not self.nodes[pos].wall:
if self.nodes[pos].grass > 0:
if self.get_path(self.nodes[pos], self.nodes[self.base_pos]) is not None:
# print(pos)
res = res + self.nodes[pos].grass
return res
# @Utils.time_measure
def total_bread_number(self):
res = 0
# print("###########")
# print("total_bread_number:")
for pos in self.nodes.keys():
if not self.nodes[pos].wall:
if self.nodes[pos].bread > 0:
if self.get_path(self.nodes[pos], self.nodes[self.base_pos]) is not None:
# print(pos)
res = res + self.nodes[pos].bread
return res
# @Utils.time_measure
def shortest_path(self, src, dest):
q = [[src]]
visited = []
while q:
prev_path = q.pop(0)
node = prev_path[-1]
if node not in visited:
neighbors = self.get_neighbors(node)
for u in neighbors:
path = list(prev_path)
path.append(u)
q.append(path)
if u == dest:
return path
visited.append(node)
return None
def set_bread(self, pos, b):
self.nodes[pos].bread = b
def set_grass(self, pos, g):
self.nodes[pos].grass = g
def set_ally_workers(self, pos, aw):
self.nodes[pos].ally_workers = aw
def set_ally_soldiers(self, pos, a_s):
self.nodes[pos].ally_soldiers = a_s
def set_enemy_workers(self, pos, ew):
self.nodes[pos].enemy_workers = ew
def set_enemy_soldiers(self, pos, es):
self.nodes[pos].enemy_soldiers = es
def discover(self, pos, is_wall):
self.nodes[pos].wall = is_wall
self.nodes[pos].discovered = True
def get_neighbors(self, pos):
if self.nodes[pos].wall or not self.nodes[pos].discovered:
return []
neighbors = [self.up(pos), self.right(pos), self.down(pos),
self.left(pos)]
neighbors = [n for n in neighbors if not self.nodes[n].wall and
self.nodes[pos].discovered]
return neighbors
def get_neighbors_with_not_discovered_nodes(self, pos):
if self.nodes[pos].wall and self.nodes[pos].discovered:
return []
neighbors = [self.up(pos), self.right(pos), self.down(pos), self.left(pos)]
neighbors = [n for n in neighbors if not self.nodes[n].wall or not self.nodes[n].discovered]
return neighbors
def right(self, pos):
if pos[0] == self.dim[0] - 1:
return 0, pos[1]
return pos[0] + 1, pos[1]
def left(self, pos):
if pos[0] == 0:
return self.dim[0] - 1, pos[1]
return pos[0] - 1, pos[1]
def up(self, pos):
if pos[1] == 0:
return pos[0], self.dim[1] - 1
return pos[0], pos[1] - 1
def down(self, pos):
if pos[1] == self.dim[1] - 1:
return pos[0], 0
return pos[0], pos[1] + 1
def guess_node(self, node):
# todo: make guessing better
return Node(pos=node.pos, discovered=False, wall=True)
# opposite_node_pos = (self.dim[0] - 1 - node.pos[0], self.dim[1] - 1 - node.pos[1])
# opposite_node = self.nodes[opposite_node_pos]
# if not opposite_node.discovered or random.randint(1, 5) != 1:
# return Node(pos=node.pos, discovered=False, wall=random.choice([True, False, False, False]))
# return Node(
# pos=node.pos,
# discovered=False,
# wall=opposite_node.wall,
# bread=opposite_node.bread,
# grass=opposite_node.grass
# )
def get_node(self, pos):
return self.nodes[pos] if self.nodes[pos].discovered else self.guess_node(self.nodes[pos])
def get_worker_weight(self, src, dest):
return int(src.swamp) * Utils.SWAMP_TURNS + 1
# @Utils.time_measure
def get_shortest_path(self, src, name_of_other_object, number_of_object):
q = [src]
in_queue = {src.pos: True}
dist = {src.pos: 0}
parent = {src.pos: src.pos}
if (src.discovered and src.wall) or (getattr(src, name_of_other_object) > 0 and number_of_object == 0):
return {
'dist': dist,
'parent': parent,
}
while q:
current_node = q.pop(0)
neighbors = self.get_neighbors_with_not_discovered_nodes(current_node.pos)
in_queue[current_node.pos] = False
for neighbor in neighbors:
next_node = self.nodes[neighbor]
if getattr(next_node, name_of_other_object) > 0 and number_of_object == 0:
continue
if number_of_object and next_node.trap:
continue
weight = self.get_worker_weight(current_node, next_node)
if dist.get(next_node.pos) is None or weight + dist[current_node.pos] < dist.get(next_node.pos):
dist[next_node.pos] = weight + dist[current_node.pos]
parent[next_node.pos] = current_node.pos
if not in_queue.get(next_node.pos):
in_queue[next_node.pos] = True
q.append(next_node)
return {
'dist': dist,
'parent': parent,
}
# @Utils.time_measure
def get_path(self, src, dest):
q = [src]
parent = {src.pos: src.pos}
if src.wall:
return None
while q:
current_node = q.pop(0)
neighbors = self.get_neighbors(current_node.pos)
for neighbor in neighbors:
next_node = self.nodes[neighbor]
if parent.get(next_node.pos) is None:
parent[next_node.pos] = current_node.pos
q.append(next_node)
if next_node.pos == dest.pos:
path = []
last_node_pos = next_node.pos
while last_node_pos != src.pos:
path.append(self.nodes[last_node_pos])
last_node_pos = parent[last_node_pos]
return list(reversed(path))
return None
# @Utils.time_measure
def get_path_with_non_discovered(self, src, dest, unsafe_cells=None, name='soldier'):
if src == dest:
# print('IM IN TARGET')
raise
unsafe_pos = {}
for pos in (unsafe_cells or []):
unsafe_pos.update(
set(
Utils.get_view_distance_neighbors(
pos, self.dim[0], self.dim[1], Utils.BASE_RANGE, exact=False, sort=False
)
)
)
q = [src]
in_queue = {src.pos: True}
dist = {src.pos: 0}
parent = {src.pos: src.pos}
if src.wall:
return None
while q:
current_node = q.pop(0)
in_queue[current_node.pos] = False
neighbors = self.get_neighbors_with_not_discovered_nodes(current_node.pos)
for neighbor in neighbors:
next_node = self.nodes[neighbor]
if next_node.pos in unsafe_pos:
continue
if parent.get(next_node.pos) is None:
parent[next_node.pos] = current_node.pos
q.append(next_node)
weight = getattr(self, f'get_{name}_weight')(current_node, next_node)
if dist.get(next_node.pos) is None or weight + dist[current_node.pos] < dist.get(next_node.pos):
dist[next_node.pos] = weight + dist[current_node.pos]
parent[next_node.pos] = current_node.pos
if not in_queue.get(next_node.pos):
in_queue[next_node.pos] = True
q.append(next_node)
return self.get_first_move_from_parent(parent, src.pos, dest.pos) if dist.get(dest.pos) else None
# @Utils.time_measure
def get_path_with_max_length(self, src, dest, max_len):
q = [src]
parent = {src.pos: src.pos}
if src.wall:
return None
while q:
current_node = q.pop(0)
neighbors = self.get_neighbors_with_not_discovered_nodes(current_node.pos)
for neighbor in neighbors:
next_node = self.nodes[neighbor]
if parent.get(next_node.pos) is None:
parent[next_node.pos] = current_node.pos
path = []
last_node_pos = next_node.pos
while last_node_pos != src.pos:
path.append(self.nodes[last_node_pos])
last_node_pos = parent[last_node_pos]
if len(path) > max_len:
return None
q.append(next_node)
if next_node.pos == dest.pos:
path = []
last_node_pos = next_node.pos
while last_node_pos != src.pos:
path.append(self.nodes[last_node_pos])
last_node_pos = parent[last_node_pos]
return list(reversed(path))
return None
def get_random_nodes(self):
return {pos: self.get_node(pos) for pos in self.nodes.keys()}
# @Utils.time_measure
def find_all_shortest_path(self, number_of_object, name_of_object, nodes):
for node, is_dest in nodes:
pos = node.pos
key = pos
if is_dest:
key = (pos, 1)
self.shortest_path_info[name_of_object][key] = self.get_shortest_path(
node, 'bread' if name_of_object == 'grass' else 'grass',
number_of_object.get(name_of_object, is_dest)
)
# @Utils.time_measure
def get_nearest_grass_nodes(self, src, dest, number_of_object):
number = number_of_object.get('grass', 0)
grass_nodes_temp = []
for node in self.nodes.values():
if node.grass > 0 and node.pos != src.pos and node.pos != dest.pos:
grass_nodes_temp.append(node)
self.find_all_shortest_path(
number_of_object, 'grass', [(src, 0), (dest, 1)]
)
# print(grass_nodes_temp)
grass_nodes = []
for node in grass_nodes_temp:
if self.get_shortest_distance(
(dest, 1), node, 'grass'
) is not None and self.get_shortest_distance(
src, node, 'grass'
) is not None:
grass_nodes.append(node)
return sorted(grass_nodes, key=lambda n: n.grass_value(src, dest, self, number), reverse=True)[
:self.TSP_NODE_LIMIT]
# @Utils.time_measure
def get_nearest_bread_nodes(self, src, dest, number_of_object):
number = number_of_object.get('bread', 0)
bread_nodes_temp = []
for node in self.nodes.values():
if node.bread > 0 and node.pos != src.pos and node.pos != dest.pos:
bread_nodes_temp.append(node)
self.find_all_shortest_path(
number_of_object, 'bread', [(src, 0), (dest, 1)]
)
# print(bread_nodes_temp)
bread_nodes = []
for node in bread_nodes_temp:
if self.get_shortest_distance(
(dest, 1), node, 'bread'
) is not None and self.get_shortest_distance(
src, node, 'bread'
) is not None:
bread_nodes.append(node)
return sorted(bread_nodes, key=lambda n: n.bread_value(src, dest, self, number), reverse=True)[
:self.TSP_NODE_LIMIT]
# @Utils.time_measure
def get_shortest_distance(self, src, dest, name_of_object, default=None):
if isinstance(src, Node):
key = src.pos
else:
key = (src[0].pos, 1)
return self.shortest_path_info[name_of_object].get(key, {}).get('dist', {}).get(dest.pos, default)
# @Utils.time_measure
def get_shortest_path_from_shortest_path_info(self, src_pos, dest_pos, name_of_object):
parent = self.shortest_path_info[name_of_object][src_pos].get('parent', [])
pos = dest_pos
path = []
while parent[pos] != pos:
path.append(pos)
pos = parent[pos]
return list(reversed(path))
# @Utils.time_measure
def get_first_move_to_enemy_base(self, src_pos):
our_base = self.base_pos
their_base = self.enemy_base_pos or (self.dim[0] - 1 - our_base[0], self.dim[1] - 1 - our_base[1])
path = self.get_path(self.nodes[src_pos], self.nodes[their_base])
return self.step(src_pos, path[0].pos) if path else "None"
# @Utils.time_measure
def get_first_move_to_opposite_node(self, src_pos):
opposite_node_pos = (self.dim[0] - 1 - src_pos[0], self.dim[1] - 1 - src_pos[1])
path = self.get_path(self.nodes[src_pos], self.nodes[opposite_node_pos])
return self.step(src_pos, path[0].pos) if path else "None"
# @Utils.time_measure
def get_edge_nodes(self, src):
q = [src]
parent = {src.pos: src.pos}
dist = {src.pos: 0}
edge_nodes = set()
if src.wall:
return None
while q:
current_node = q.pop(0)
neighbors = self.get_neighbors_with_not_discovered_nodes(current_node.pos)
for neighbor in neighbors:
next_node = self.nodes[neighbor]
if not next_node.discovered:
edge_nodes.add(current_node.pos)
continue
if parent.get(next_node.pos) is None:
parent[next_node.pos] = current_node.pos
dist[next_node.pos] = dist[current_node.pos] + 1
q.append(next_node)
return {
'edge_nodes': sorted(list(edge_nodes)),
'distance': dist,
'parent': parent,
}
# @Utils.time_measure
def get_best_list(self, src, each_list_max_size):
if not self.edge_nodes:
self.bfs(src)
edge_nodes = self.edge_nodes
distance = self.bfs_info.get('dist')
parent = self.bfs_info.get('parent')
# print("BEST LIST EDGE NODES", edge_nodes)
while len(edge_nodes) > each_list_max_size and len(
edge_nodes) % each_list_max_size != 0:
edge_nodes.pop(0)
all_list = []
for i in range(len(edge_nodes)):
if all_list and edge_nodes[i] in all_list[0]:
break
all_list.append([])
for j in range(i, len(edge_nodes), math.ceil(len(edge_nodes) / each_list_max_size)):
all_list[-1].append(edge_nodes[j])
# print("ALL LIST", all_list)
mn_value = math.inf
mn_idx = 0
for i in range(len(all_list)):
value = self.get_value_of_list(all_list[i], distance)
if value < mn_value:
mn_idx = i
mn_value = value
return all_list[mn_idx], parent
@staticmethod
def get_value_of_list(list_of_candidate, dist):
value = 0
for pos in list_of_candidate:
value += dist.get(pos)
return value / len(list_of_candidate)
# @Utils.time_measure
def get_first_move_to_discover(self, curr_pos, src_pos, each_list_max_size, my_id, all_ids):
src = self.nodes[src_pos]
# print("FIRST MOVE EDGE NODES", self.edge_nodes)
best_list, parent = self.get_best_list(src, each_list_max_size)
# print(best_list)
idx = random.randint(0, len(best_list) - 1)
ids = all_ids[-each_list_max_size:]
for i in range(len(ids)):
if ids[-i] == my_id:
idx = i
break
# print("MY GOAL IS TO REACH", best_list[idx % len(best_list)])
# print("1", parent, src_pos, best_list[idx % len(best_list)])
# print("HAHAAHHAHAHAH", self.step(curr_pos.pos, self.get_first_move_from_parent(parent, src_pos, best_list[idx % len(best_list)])), best_list[idx % len(best_list)])
return self.step(
curr_pos.pos, self.get_first_move_from_parent(
parent, src_pos, best_list[idx % len(best_list)])
), best_list[idx % len(best_list)]
@staticmethod
def get_first_move_from_parent(parent, src, dest):
last = dest
while parent[last] != src:
last = parent[last]
return last
# @Utils.time_measure
def bfs(self, src):
self.edge_nodes = []
q = [src]
in_queue = {src.pos: True}
dist = {src.pos: 0}
parent = {src.pos: src.pos}
while q:
current_node = q.pop(0)
neighbors = self.get_neighbors_with_not_discovered_nodes(current_node.pos)
in_queue[current_node.pos] = False
for neighbor in neighbors:
next_node = self.nodes[neighbor]
if not next_node.discovered:
self.edge_nodes.append(current_node.pos)
continue
weight = self.get_soldier_weight(current_node, next_node)
if dist.get(next_node.pos) is None or weight + dist[current_node.pos] < dist.get(next_node.pos):
dist[next_node.pos] = weight + dist[current_node.pos]
parent[next_node.pos] = current_node.pos
if not in_queue.get(next_node.pos):
in_queue[next_node.pos] = True
q.append(next_node)
# print("EDGE NODES", self.edge_nodes)
self.edge_nodes = list(set(self.edge_nodes))
self.edge_nodes.sort()
self.bfs_info = {
'dist': dist,
'parent': parent,
}
return self.bfs_info
def get_soldier_weight(self, src, dest):
return int(src.swamp) * Utils.SWAMP_TURNS + 1
# @Utils.time_measure
def get_best_node_to_support(self, src_pos, grass_weight=1, bread_weight=1, distance_weight=1):
src = self.nodes[src_pos]
best_value = -math.inf
best_pos = None
dist = self.bfs_info.get('dist')
parent = self.bfs_info.get('parent')
for node in self.nodes.values():
poses = Utils.get_view_distance_neighbors(node.pos, self.dim[0], self.dim[1], 3, sort=False)
bread_number = 0
grass_number = 0
distance = dist.get(node.pos, 0)
for pos in poses:
bread_number += self.nodes[pos].bread
grass_number += self.nodes[pos].grass
value = grass_number * grass_weight + bread_number * bread_weight - distance * distance_weight
if distance and value > best_value:
best_value = value
best_pos = node.pos
return self.get_first_move_from_parent(parent, src.pos, best_pos)
# @Utils.time_measure
def get_resource_best_move(self, src_pos, dest_pos, name_of_object, limit, number_of_object):
best_nodes = getattr(
self, f'get_nearest_{name_of_object}_nodes'
)(self.nodes[src_pos], self.nodes[dest_pos], number_of_object)
number_of_bread_need = max(0, limit[name_of_object]['min'] - number_of_object.get(name_of_object, 0))
if number_of_bread_need == 0:
return Direction.get_value(self.step(
src_pos, self.get_shortest_path_from_shortest_path_info(src_pos, self.base_pos, name_of_object)[0])
), name_of_object, self.get_shortest_distance(
self.nodes[src_pos], self.nodes[self.base_pos], name_of_object
)
if not best_nodes:
return None, None, math.inf
return Direction.get_value(self.step(
src_pos, self.get_shortest_path_from_shortest_path_info(src_pos, best_nodes[0].pos, name_of_object)[0])
), name_of_object, self.get_shortest_distance(
self.nodes[src_pos], self.nodes[best_nodes[0].pos], name_of_object, default=math.inf
)
# @Utils.time_measure
def convert_grass_cells_to_wall(self):
converted_map = Graph((self.dim[0], self.dim[1]), self.base_pos)
for pos in self.nodes.keys():
if self.nodes[pos].grass > 0:
converted_map.nodes[pos] = Node(
pos=pos,
discovered=True,
wall=True
)
else:
converted_map.nodes[pos] = self.nodes[pos]
return converted_map
# @Utils.time_measure
def convert_bread_cells_to_wall(self):
converted_map = Graph((self.dim[0], self.dim[1]), self.base_pos)
for pos in self.nodes.keys():
if self.nodes[pos].bread > 0:
converted_map.nodes[pos] = Node(
pos=pos,
discovered=True,
wall=True
)
else:
converted_map.nodes[pos] = self.nodes[pos]
return converted_map
def convert_base_possible_cells_to_wall(self, base_possible_cells):
converted_map = Graph((self.dim[0], self.dim[1]), self.base_pos)
possible_list = [p[1] for p in base_possible_cells]
for pos in self.nodes.keys():
if pos in possible_list:
converted_map.nodes[pos] = Node(
pos=pos,
discovered=True,
wall=True
)
else:
converted_map.nodes[pos] = self.nodes[pos]
return converted_map
def get_first_move_to_base(self, src, number_of_object):
dest = self.nodes[self.base_pos]
resource_number = number_of_object.get('bread', 0) + number_of_object.get('grass', 0)
if src.pos == dest.pos:
# print('IM IN base')
return None
q = [src]
in_queue = {src.pos: True}
dist = {src.pos: 0}
parent = {src.pos: src.pos}
if src.wall:
return None
while q:
current_node = q.pop(0)
in_queue[current_node.pos] = False
neighbors = self.get_neighbors(current_node.pos)
for neighbor in neighbors:
next_node = self.nodes[neighbor]
if int(next_node.trap) * resource_number:
continue
if parent.get(next_node.pos) is None:
parent[next_node.pos] = current_node.pos
q.append(next_node)
weight = self.get_worker_weight(current_node, next_node)
if dist.get(next_node.pos) is None or weight + dist[current_node.pos] < dist.get(next_node.pos):
dist[next_node.pos] = weight + dist[current_node.pos]
parent[next_node.pos] = current_node.pos
if not in_queue.get(next_node.pos):
in_queue[next_node.pos] = True
q.append(next_node)
return Direction.get_value(
self.step(src.pos, self.get_first_move_from_parent(parent, src.pos, dest.pos))
) if dist.get(dest.pos) else None
def get_reachable_resource_from_base(self):
reachable_resource = set()
q = [self.nodes[self.base_pos]]
parent = {self.base_pos: self.base_pos}
while q:
current_node = q.pop(0)
if current_node.bread + current_node.grass > 0:
reachable_resource.add(current_node.pos)
neighbors = self.get_neighbors(current_node.pos)
for neighbor in neighbors:
next_node = self.nodes[neighbor]
if not next_node.trap and parent.get(next_node.pos) is None:
parent[next_node.pos] = current_node.pos
q.append(next_node)
return reachable_resource