-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathformattingSensorData.py
1166 lines (946 loc) · 64.5 KB
/
formattingSensorData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Script to unzip downloaded EDA files from Empatica website, analyze skin conductance data, plot data, and save output as csv
import os
import sys
import zipfile
import shutil
import pandas as pd
import numpy as np
import cvxopt as cv
import cvxopt.solvers
import statistics
from scipy import stats
from statistics import mean
import datetime
import pytz
from datetime import datetime
import time
import csv
import pylab as pl
import plotly
import plotly.graph_objs as go
def cvxEDA(obs_EDA, delta, tau0=2., tau1=0.7, delta_knot=10., alpha=8e-4, gamma=1e-2, solver=None, options={'reltol': 1e-9, 'show_progress': False}):
# default options = same as Ledalab
"""CVXEDA Convex optimization approach to electrodermal activity processing
Arguments:
obs_EDA: observed skin conductance signal (we recommend normalizing it: obs_EDA = zscore(obs_EDA))
delta: sampling interval (in seconds) of obs_EDA
tau0: slow time constant of the Bateman function
tau1: fast time constant of the Bateman function
delta_knot: time between knots of the tonic spline function
alpha: penalization for the sparse SMNA driver
gamma: penalization for the tonic spline coefficients
solver: sparse QP solver to be used, see cvxopt.solvers.qp
options: solver options - 'reltol' = relative accuracy, 'abstol' = absolute accuracy, 'feastol' = tolerance for feasibility conditions
Returns (see paper for details):
phasic = phasic component
p: sparse SMNA driver of phasic component
tonic: tonic component
l: coefficients of tonic spline
d: offset and slope of the linear drift term
e: model residuals
obj: value of objective function being minimized (eq 15 of paper)
from Greco et al. (2016). cvxEDA: A Convex Optimization Approach to Electrodermal Activity Processing,
IEEE Transactions on Biomedical Engineering, 63(4): 797-804.
"""
n = len(obs_EDA)
obs_EDA = cv.matrix(obs_EDA)
# bateman ARMA model
a1 = 1./min(tau1, tau0) # a1 > a0
a0 = 1./max(tau1, tau0)
ar = np.array([(a1*delta + 2.) * (a0*delta + 2.), 2.*a1*a0*delta**2 - 8.,
(a1*delta - 2.) * (a0*delta - 2.)]) / ((a1 - a0) * delta**2)
ma = np.array([1., 2., 1.])
# matrices for ARMA model
i = np.arange(2, n)
A = cv.spmatrix(np.tile(ar, (n-2,1)), np.c_[i,i,i], np.c_[i,i-1,i-2], (n,n))
M = cv.spmatrix(np.tile(ma, (n-2,1)), np.c_[i,i,i], np.c_[i,i-1,i-2], (n,n))
# spline
delta_knot_s = int(round(delta_knot / delta))
spl = np.r_[np.arange(1.,delta_knot_s), np.arange(delta_knot_s, 0., -1.)] # order 1
spl = np.convolve(spl, spl, 'full')
spl /= max(spl)
# matrix of spline regressors
i = np.c_[np.arange(-(len(spl)//2), (len(spl)+1)//2)] + np.r_[np.arange(0, n, delta_knot_s)]
nB = i.shape[1]
j = np.tile(np.arange(nB), (len(spl),1))
p = np.tile(spl, (nB,1)).T
valid = (i >= 0) & (i < n)
B = cv.spmatrix(p[valid], i[valid], j[valid])
# trend
C = cv.matrix(np.c_[np.ones(n), np.arange(1., n+1.)/n])
nC = C.size[1]
# solve the problem
old_options = cv.solvers.options.copy()
cv.solvers.options.clear()
cv.solvers.options.update(options)
if solver == 'conelp':
# Use conelp
z = lambda m,n: cv.spmatrix([],[],[],(m,n))
G = cv.sparse([[-A,z(2,n),M,z(nB+2,n)],[z(n+2,nC),C,z(nB+2,nC)],
[z(n,1),-1,1,z(n+nB+2,1)],[z(2*n+2,1),-1,1,z(nB,1)],
[z(n+2,nB),B,z(2,nB),cv.spmatrix(1.0, range(nB), range(nB))]])
h = cv.matrix([z(n,1),.5,.5,obs_EDA,.5,.5,z(nB,1)])
c = cv.matrix([(cv.matrix(alpha, (1,n)) * A).T,z(nC,1),1,gamma,z(nB,1)])
res = cv.solvers.conelp(c, G, h, dims={'l':n,'q':[n+2,nB+2],'s':[]})
obj = res['primal objective']
else:
# Use qp
Mt, Ct, Bt = M.T, C.T, B.T
H = cv.sparse([[Mt*M, Ct*M, Bt*M], [Mt*C, Ct*C, Bt*C],
[Mt*B, Ct*B, Bt*B+gamma*cv.spmatrix(1.0, range(nB), range(nB))]])
f = cv.matrix([(cv.matrix(alpha, (1,n)) * A).T - Mt*obs_EDA, -(Ct*obs_EDA), -(Bt*obs_EDA)])
res = cv.solvers.qp(H, f, cv.spmatrix(-A.V, A.I, A.J, (n,len(f))),
cv.matrix(0., (n,1)), solver=solver)
obj = res['primal objective'] + .5 * (obs_EDA.T * obs_EDA)
cv.solvers.options.clear()
cv.solvers.options.update(old_options)
l = res['x'][-nB:]
d = res['x'][n:n+nC]
tonic = B*l + C*d
q = res['x'][:n]
p = A * q
phasic = M * q
e = obs_EDA - phasic - tonic
# return [np.array(a).ravel() for a in (phasic, p, tonic, l, d, e, obj)]
return [np.array(a).ravel() for a in (phasic, tonic, e)]
def extract_zip_format_filenames(working_dir):
"""
Input: working directory (working_dir) where all data are downloaded from Empatica website.
Goal: move all data from downloaded zip archives into working directory
What it does: Searches working_dir and all subdirectories for .zip archives, unzips all zipped archives,
extracts the sensor name and date (first 10 digits of file name) as 'zipfile_name,' prints
the sensor number as a check, and then pulls out the EDA, HR, and tags.csv files from each archive.
All .csv files are extracted to the working_dir and renamed with the sensor name/date.
E.g., 1523940183_A0108B_EDA.csv, 1523940183_A0108B_HR.csv...
All EDA, HR, tag files are appended to lists when they're extracted to the working_dir, so the
rest of the functions read data out of the lists and keep files in the same order.
"""
zip_list = []
EDA_list = []
HR_list = []
tag_list = []
for dirpath, dirnames, filenames in os.walk(working_dir): # goes through every file in working_dir and all subdirectories
dirnames[:] = [d for d in dirnames if not d.startswith('calibration')] # skips the calibration directory if there's a separate baseline
# name of current dirctory, directories inside current dir, and files inside current dir
for filename in filenames:
# for the current dir, for all filenames in that dir...
if '.zip' in filename:
# is string.zip in string filename?
path_to_zip_file = os.path.join(dirpath, filename)
zip_list.append(path_to_zip_file)
zip_ref = zipfile.ZipFile(path_to_zip_file, 'r')
zipfile_name = os.path.splitext(os.path.basename(path_to_zip_file))[0]
# check if the zip archive has already been unzipped
# zipfile_name is sensor number
if not os.path.exists(zipfile_name):
os.mkdir(zipfile_name)
zip_ref.extractall(os.path.join(working_dir, zipfile_name))
zip_ref.close()
sensorNum = path_to_zip_file[-21:-4]
# Check current working directory.
working_sub_dir = os.path.join(working_dir, sensorNum)
eda_filepath = os.path.join(working_sub_dir, 'EDA.csv')
if os.path.isfile(eda_filepath): # check if an EDA.csv file exists in the folder
eda_filename = working_dir + '/' + str(sensorNum) + '_EDA.csv'
os.rename(eda_filepath, eda_filename)
EDA_list.append(eda_filename)
# if os.path.isfile(os.path.join(working_sub_dir, 'HR.csv')): # check if a HR.csv file exists in the folder
# hr_filename = working_dir + '/' + str(sensorNum) + '_HR.csv'
# os.rename(working_sub_dir + '/' + 'HR.csv', hr_filename)
# HR_list.append(hr_filename)
#
# if os.path.isfile(os.path.join(working_sub_dir, 'tags.csv')): # check if a tags.csv file exists in the folder
# tag_filename = working_dir + '/' + str(sensorNum) + '_tags.csv'
# os.rename(working_sub_dir + '/' + 'tags.csv', tag_filename)
# tag_list.append(tag_filename)
shutil.rmtree(working_sub_dir)
return zip_list, EDA_list, HR_list, tag_list
def get_activity_timing(working_dir, timing_xcel, sheetname, EDA_data_df, EDA_data_df2, beri_exists):
"""
Input: working directory (working_dir) where all data are downloaded from Empatica website;
spreadsheet (timing_xcel) where all component timing is recorded (see example);
sheet name in spreadsheet (sheetname) where all component timing is recorded;
skin conductance dataframe (EDA_data_df)
Goal: Find data within specific date/time ranges
What it does: Opens the spreadsheet where all component timing is recorded, reads through
each row of the starting time ('datetime_start') and creates a YYYYMMDDHHMMSS timestamp,
reads through each row of the ending time ('datetime_end') and creates a YYYYMMDDHHMMSS timestamp,
then reads through every timestamp of the skin conductance dataframe to find the values that fall
within the start and end time of each component. Also counts the total number of seconds spent on
each class activity.
"""
os.chdir(working_dir)
# lambda = defines anonymous functions that can only produce one line of output but still require varied inputs
excel_timing = os.path.join(working_dir, str(timing_xcel))
xcel = pd.read_excel(excel_timing, sheet_name = str(sheetname))
xcel['datetime_start'] = xcel.apply(lambda row: datetime.strptime(str(row['Year Start']) + \
str(row['Month Start']).zfill(2) + \
str(row['Day Start']).zfill(2) + \
str(row['Hour Start']).zfill(2) + \
str(row['Minute Start']).zfill(2) + \
str(row['Second Start']).zfill(2), "%Y%m%d%H%M%S"), axis=1)
xcel['datetime_end'] = xcel.apply(lambda row: datetime.strptime(str(row['Year End']) + \
str(row['Month End']).zfill(2) + \
str(row['Day End']).zfill(2) + \
str(row['Hour End']).zfill(2) + \
str(row['Minute End']).zfill(2) + \
str(row['Second End']).zfill(2), "%Y%m%d%H%M%S"), axis=1)
x_out = xcel.apply(lambda row : EDA_data_df[(EDA_data_df['timestamp']>=row['datetime_start'])&(EDA_data_df['timestamp']<row['datetime_end'])].assign(activity=row['Activity']), axis=1)
activity_mean = pd.concat(list(x_out)).reset_index().groupby(['level_0', 'activity'])['skin_conduct'].mean()
print("activity_mean:")
print(activity_mean)
print(" ")
activity_stddev = pd.concat(list(x_out)).reset_index().groupby(['level_0', 'activity'])['skin_conduct'].std()
activity_stderr = pd.concat(list(x_out)).reset_index().groupby(['level_0', 'activity'])['skin_conduct'].sem()
if beri_exists == True:
x_out_beri = xcel.apply(lambda row : EDA_data_df2[(EDA_data_df2['timestamp']>=row['datetime_start'])&(EDA_data_df2['timestamp']<row['datetime_end'])].assign(activity=row['Activity']), axis=1)
activity_mean_beri = pd.concat(list(x_out_beri)).reset_index().groupby(['level_0', 'activity'])['skin_conduct'].mean()
# select all activities except for exams
xcel_activities = xcel
xcel_activities = xcel_activities.reset_index().set_index('Activity')
xcel_activities['datetime_start'] = pd.to_datetime(xcel_activities['datetime_start'])
xcel_activities['datetime_end'] = pd.to_datetime(xcel_activities['datetime_end'])
if xcel_activities.index.contains('Exam') == True:
xcel_activities = xcel_activities[~xcel_activities.index.str.startswith('Exam')]
EDA_data_df['timestamp'] = pd.to_datetime(EDA_data_df['timestamp'])
act_start = xcel_activities['datetime_start']
act_end = xcel_activities['datetime_end']
if beri_exists == False:
mask = []
for idx in range(0,len(act_start)): # take only the skin conductance that falls between the start/stop time of study activities
mask1 = EDA_data_df[(EDA_data_df['timestamp'] > act_start.iloc[idx]) & (EDA_data_df['timestamp'] <= act_end.iloc[idx])]
mask.append(mask1)
mask = pd.concat(mask, axis=0)
del mask1
baseline_activities = mask.groupby(['sensor_ids']).mean() # baseline for each student = average skin conductance during activities
if beri_exists == True:
mask = []
for idx in range(0,len(act_start)):
mask1 = EDA_data_df2[(EDA_data_df2['timestamp'] > act_start.iloc[idx]) & (EDA_data_df2['timestamp'] <= act_end.iloc[idx])]
mask.append(mask1)
mask = pd.concat(mask, axis=0)
del mask1
baseline_activities_beri = mask.groupby(['sensor_ids']).mean()
# to get the total time spent on each class activity
xcel['total_time'] = pd.to_datetime(xcel['datetime_end'], infer_datetime_format=True) - pd.to_datetime(xcel['datetime_start'], infer_datetime_format=True)
total_time = xcel[['Activity','total_time']]
total_time = total_time.set_index('Activity')
if (total_time.index == 'Baseline').any() == True:
total_time = total_time.drop(['Baseline'], axis=0)
total_time = total_time.groupby(['Activity'])['total_time'].sum()
# to get the total number of seconds spent on each class activity
xcel['total_time_seconds'] = xcel['total_time'].dt.total_seconds()
total_time_seconds = xcel[['Activity', 'total_time_seconds']]
total_time_seconds = total_time_seconds.set_index('Activity')
if (total_time_seconds.index == 'Baseline').any() == True:
total_time_seconds = total_time_seconds.drop(['Baseline'], axis=0)
total_time_seconds = total_time_seconds.groupby(['Activity'])['total_time_seconds'].sum()
if beri_exists == True:
return activity_mean, activity_mean_beri, activity_stddev, activity_stderr, total_time, total_time_seconds, EDA_data_df, baseline_activities_beri
else:
return activity_mean, activity_stddev, activity_stderr, total_time, total_time_seconds, EDA_data_df, baseline_activities
def reduce_function(row, data_reduce, student_overview):
if not isinstance(row.name, pd.Timestamp):
pass
seat_num = int(row.index[0].split('-')[1])
out = np.NaN
if row[(row.index[row.index.str.contains('-E|-W|-L', regex=True)])].any():
out = True
elif row[(row.index[row.index.str.contains('-D|-U|-S', regex=True)])].any():
out = False
if len(student_overview.loc[str(row.name.normalize())][student_overview.loc[str(row.name.normalize())] == seat_num].index) > 0:
data_reduce.at[str(row.name), student_overview.loc[str(row.name.normalize())][student_overview.loc[str(row.name.normalize())] == seat_num].index[0]] = out
def get_beri_protocol(working_dir, beri_files, beri_exists):
"""
Input: working directory (working_dir) where all data are downloaded from Empatica website;
spreadsheet (timing_beri) where BERI protocol observations are recorded (see example)
Goal: Find how many students exhibited engaged/disengaged behaviors
What it does: Opens the folder where all BERI observations are recorded, sums the number of
engaged/disengaged students during each type of activity, then normalizes it by the number of
instances of that activity
"""
os.chdir(working_dir)
beri_df = []
beri_data = []
if beri_exists == True :
student_overview = pd.read_excel(os.path.join(working_dir, "StudentDataOverview.xlsx"))
student_overview = student_overview.set_index('Sensor').T
student_overview.index = pd.to_datetime(student_overview.index).normalize()
beri_dir = os.path.join(working_dir, 'beri_files')
os.chdir(beri_dir)
for dirpath, dirnames, filenames in os.walk(beri_dir):
for filename in filenames:
if 'Our Changing Environment' in filename:
path_to_beri_file = os.path.join(dirpath, filename)
data = pd.read_csv(filename, parse_dates=[['class_date','time']])
data = data[data.columns.drop(list(data.filter(regex=('id|observer|instructor|class_subject_code|class_number|value|Instructor_Activity|Notes'))))] # drop columns that don't include student behaviors
data = data.sort_values("class_date_time")
data = data.set_index('class_date_time')
prefixes = [c.split('-')[1] if '-' in c else c for c in data.columns]
prefixes = list(dict.fromkeys(prefixes))
for p in prefixes:
p = int(p)
grouper = [next(p for p in prefixes if (p == (c.split('-')[1]))) for c in data.columns]
data_grouped = data.groupby(grouper, axis=1)
data_reduce = pd.DataFrame(index=data.index)
data_grouped.apply(lambda df: df.apply(reduce_function, axis=1, data_reduce=data_reduce, student_overview=student_overview))
data_reduce = data_reduce.resample('250L', label='right', closed='right').nearest().ffill()
beri_df.append(data_reduce)
########
data = pd.read_csv(filename, parse_dates=[['class_date','time']])
beri_data.append(data)
beri_df = pd.concat(beri_df, sort=False)
beri_data = pd.concat(beri_data, sort=False)
beri_data['total_eng'] = beri_data[(beri_data.columns[beri_data.columns.str.contains('-E')] | beri_data.columns[beri_data.columns.str.contains('-L')] | beri_data.columns[beri_data.columns.str.contains('-W')])].sum(axis=1)
beri_data['total_diseng'] = beri_data[(beri_data.columns[beri_data.columns.str.contains('-D')] | beri_data.columns[beri_data.columns.str.contains('-U')] | beri_data.columns[beri_data.columns.str.contains('-S')])].sum(axis=1)
beri_data = beri_data.drop(['id', 'class_number'], axis=1).sort_values("class_date_time")
return beri_df, beri_data
def get_grades(working_dir, grade_files, EDA_by_sensor, output_dir):
"""
Input: working directory (working_dir) where all data are downloaded from Empatica website;
spreadsheet (grade_files) where grades and students' sensor numbers are recorded
Goal: Compare students' engagement levels with their grades
What it does: Opens the grade spreadsheet, reads the sensor number and associated grade
"""
os.chdir(working_dir)
grades_all = pd.read_excel(os.path.join(working_dir, grade_files))
grades = []
# Sensor Count = sensor number
grades = grades_all.loc[grades_all['Sensor ID'] != 0]
grades = grades[['Class Level','STEM/non-STEM [STEM major=1, non-STEM major=2, undeclared=3]','Gender [male=1, female=2, other=3]','Midterm #1','Midterm #2','Final Exam','Homework','Final Course Grade','Sensor ID']]
grades = grades.rename(columns={'STEM/non-STEM [STEM major=1, non-STEM major=2, undeclared=3]': 'STEM=1, non-STEM=2, undec=3', 'Final Course Grade':'Final Grade', 'Sensor ID':'sensor_ids'})
stem = grades.loc[grades['STEM=1, non-STEM=2, undec=3'] == 1]
nonstem = grades.loc[grades['STEM=1, non-STEM=2, undec=3'] == 2]
undec = grades.loc[grades['STEM=1, non-STEM=2, undec=3'] == 3]
female = grades.loc[grades['Gender [male=1, female=2, other=3]'] == 2]
male = grades.loc[grades['Gender [male=1, female=2, other=3]'] == 1]
index = [('STEM', 'Midterm #1'), ('STEM', 'Midterm #2'), ('STEM', 'Final Exam'), ('STEM', 'Final Grade'),
('Non-STEM', 'Midterm #1'), ('Non-STEM', 'Midterm #2'), ('Non-STEM', 'Final Exam'), ('Non-STEM','Final Grade'),
('Undeclared', 'Midterm #1'), ('Undeclared', 'Midterm #2'), ('Undeclared', 'Final Exam'), ('Undeclared', 'Final Grade'),
('Female', 'Midterm #1'), ('Female', 'Midterm #2'), ('Female', 'Final Exam'), ('Female', 'Final Grade'),
('Male', 'Midterm #1'), ('Male', 'Midterm #2'), ('Male', 'Final Exam'), ('Male', 'Final Grade')]
numbers = [stem['Midterm #1'].mean(), stem['Midterm #2'].mean(), stem['Final Exam'].mean(), stem['Final Grade'].mean(),
nonstem['Midterm #1'].mean(), nonstem['Midterm #2'].mean(), nonstem['Final Exam'].mean(), nonstem['Final Grade'].mean(),
undec['Midterm #1'].mean(), undec['Midterm #2'].mean(), undec['Final Exam'].mean(), undec['Final Grade'].mean(),
female['Midterm #1'].mean(), female['Midterm #2'].mean(), female['Final Exam'].mean(), female['Final Grade'].mean(),
male['Midterm #1'].mean(), male['Midterm #2'].mean(), male['Final Exam'].mean(), male['Final Grade'].mean()]
sep_grades = pd.Series(numbers, index=index)
index = pd.MultiIndex.from_tuples(index)
sep_grades = sep_grades.reindex(index).round(2)
sep_grades_df = pd.DataFrame({'Avg. Grade': sep_grades,
'Std. Dev': [stem['Midterm #1'].std(), stem['Midterm #2'].std(), stem['Final Exam'].std(), stem['Final Grade'].std(),
nonstem['Midterm #1'].std(), nonstem['Midterm #2'].std(), nonstem['Final Exam'].std(), nonstem['Final Grade'].std(),
undec['Midterm #1'].std(), undec['Midterm #2'].std(), undec['Final Exam'].std(), undec['Final Grade'].std(),
female['Midterm #1'].std(), female['Midterm #2'].std(), female['Final Exam'].std(), female['Final Grade'].std(),
male['Midterm #1'].std(), male['Midterm #2'].std(), male['Final Exam'].std(), male['Final Grade'].std()],
'Std. Err': [stem['Midterm #1'].sem(), stem['Midterm #2'].sem(), stem['Final Exam'].sem(), stem['Final Grade'].sem(),
nonstem['Midterm #1'].sem(), nonstem['Midterm #2'].sem(), nonstem['Final Exam'].sem(), nonstem['Final Grade'].sem(),
undec['Midterm #1'].sem(), undec['Midterm #2'].sem(), undec['Final Exam'].sem(), undec['Final Grade'].sem(),
female['Midterm #1'].sem(), female['Midterm #2'].sem(), female['Final Exam'].sem(), female['Final Grade'].sem(),
male['Midterm #1'].sem(), male['Midterm #2'].sem(), male['Final Exam'].sem(), male['Final Grade'].sem()]}).round(2)
sep_grades_df.to_csv(os.path.join(output_dir, "separated_grades_demographics.csv"))
clicker_q = pd.read_excel(os.path.join(working_dir, "ATOC1060_Fall2018_Clickers_IRBresearch.xlsx"), usecols="A,E:F")
clicker_q_df = clicker_q.reset_index().groupby("Lecture Date").mean()
clicker_q_df['avg%correct'] = clicker_q_df[['%correct', '%correct 2nd time']].mean(axis=1)
clicker_q_df.to_csv(os.path.join(output_dir,"clicker_questions_percent_correct.csv"))
print("Completed grades")
print(" ")
return sep_grades_df, clicker_q_df, grades
def plot_results(Fs, pref_dpi, EDA_data_df, EDA_data_df2, output_dir, separate_baseline, continuous_baseline, beri_exists, EDA_by_sensor, grades_exist):
#def plot_results(obs_EDA, phasic, tonic, Fs, pref_dpi, EDA_data_df, output_dir, separate_baseline, continuous_baseline, beri_exists, EDA_by_sensor, grades_exist):
"""
Input: for plotting an individual's data - skin conductance dataframe (EDA_data_df), phasic/tonic components
Sampling frequency per second (Fs), preferred figure resolution (pref_dpi)
For plotting average data, what type of baseline (separate, continuous, neither), whether the BERI beri_protocol
was used, and the functions that process skin conductance data.
Goal: To produce figures and save them to output directory
What it does: Plots line graphs of an individual's total, phasic, and tonic components of skin conductance
against minutes. Calculates percent difference in mean skin conductance between an activity and baseline, plots
bar graph for mean/median percent difference for each activity. Plots histogram of mean percent difference.
"""
# timing = pl.arange(1., len(obs_EDA) + 1.) / (60 * Fs) # minutes = divide by 240 = 60 seconds * 4 records/sec
#
# # plotting total conductance (phasic + tonic + noise)
# fig1, ax = pl.subplots( nrows=1, ncols=1 )
# pl.plot(timing, obs_EDA, color = 'r')
# pl.xlim(0, max(timing) + 1)
# pl.ylabel('Skin conductance - total (\u03bcS)')
# pl.xlabel('Time (min)')
# fig1.savefig(os.path.join(output_dir, 'total_conductance.png'), dpi = pref_dpi)
# pl.close(fig1)
#
# # plotting phasic component of skin conductance
# ylim_top = max(phasic)
# fig2, ax = pl.subplots( nrows=1, ncols=1 )
# pl.plot(timing, phasic, color = 'b')
# pl.xlim(0, max(timing) + 1)
# pl.ylabel('Skin conductance - phasic component (\u03bcS)')
# pl.xlabel('Time (min)')
# fig2.savefig(os.path.join(output_dir, 'phasic_component.png'), dpi = pref_dpi)
# pl.close(fig2)
#
# # plotting tonic component of skin conductance
# ylim_top = max(tonic)
# fig3, ax = pl.subplots( nrows=1, ncols=1 )
# pl.plot(timing, tonic, color = 'g')
# pl.xlim(-1, max(timing) + 1)
# pl.ylabel('Skin conductance - tonic component (\u03bcS)')
# pl.xlabel('Time (min)')
# fig3.savefig(os.path.join(output_dir, 'tonic_component.png'), dpi = pref_dpi)
# pl.close(fig3)
if grades_exist == True:
sep_grades_df, clicker_q_df, grades = get_grades(working_dir, grade_files, EDA_by_sensor, output_dir)
def outliers_to_nan(activity):
threshold = 3
percent_diffs = (activity["skin_conduct_means"] - activity["skin_conduct_baseline"]) / activity["skin_conduct_baseline"]
mean = percent_diffs.mean()
std = percent_diffs.std()
z_score = ((percent_diffs - mean)/std).abs()
activity['outlier'] = z_score > threshold
return activity
def calculate_percent_diff(row):
return ((row['skin_conduct_means'] - row['skin_conduct_baseline'])/row['skin_conduct_baseline'])*100
# get timing and EDA for each activity
if beri_exists == True:
activity_mean, activity_mean_beri, activity_stddev, activity_stderr, total_time, total_time_seconds, EDA_data_df, baseline_activities_beri = get_activity_timing(working_dir, timing_xcel, sheetname, EDA_data_df, EDA_data_df2, beri_exists)
activity_mean_beri = activity_mean_beri.reset_index()
activity_mean_beri = activity_mean_beri.rename(columns={'level_0': 'file_name'})
print("activity_mean_beri:")
print(activity_mean_beri)
beri_df, beri_data = get_beri_protocol(working_dir, beri_files, beri_exists)
beri_data.to_csv("beri_obs_total.csv")
else:
activity_mean, activity_stddev, activity_stderr, total_time, total_time_seconds, EDA_data_df, baseline_activities = get_activity_timing(working_dir, timing_xcel, sheetname, EDA_data_df, EDA_data_df2, beri_exists)
activity_mean = activity_mean.reset_index().rename(columns={'level_0': 'file_name'})
# changes to calibration directory if user input was "true" for separate baselines
if separate_baseline == True :
calibration_dir = os.path.join(working_dir, 'calibration')
os.chdir(calibration_dir)
zip_list = []
baseline_df = pd.DataFrame()
for dirpath, dirnames, filenames in os.walk(calibration_dir):
for filename in filenames:
if '.zip' in filename:
# is string.zip in string filename?
path_to_zip_file = os.path.join(dirpath, filename)
zip_list.append(path_to_zip_file)
zip_ref = zipfile.ZipFile(path_to_zip_file, 'r')
zipfile_name = os.path.splitext(os.path.basename(path_to_zip_file))[0]
if not os.path.exists(zipfile_name):
os.mkdir(zipfile_name)
zip_ref.extractall(os.path.join(calibration_dir, zipfile_name))
zip_ref.close()
sensorNum = path_to_zip_file[-21:-4]
sensorNum_no_ts = path_to_zip_file[-10:-4]
calibration_sub_dir = os.path.join(calibration_dir, sensorNum)
baseline_filepath = os.path.join(calibration_sub_dir, 'EDA.csv')
if os.path.isfile(baseline_filepath): # check if an EDA.csv file exists in the folder
baseline_filename = os.path.join(calibration_dir, str(sensorNum) + '_EDA.csv')
# reads in baseline data records from each student
temp_df = pd.read_csv(baseline_filepath, header=2, names=['skin_conduct_baseline'])
temp_df = temp_df[1200:-1200]
os.rename(baseline_filepath, baseline_filename)
temp_df['file_name_no_ts'] = str(sensorNum_no_ts)
baseline_df = baseline_df.append(temp_df)
shutil.rmtree(calibration_sub_dir)
# finds mean baseline for each student, puts all baselines in a dataframe and sorts by sensor number
baselines = baseline_df.groupby(['file_name_no_ts'])['skin_conduct_baseline'].mean().reset_index()
for i in range(0,len(baselines)):
if (baseline_df.groupby(['file_name_no_ts'])['skin_conduct_baseline'].max().reset_index())['skin_conduct_baseline'][i] > 2.5*(baseline_df.groupby(['file_name_no_ts'])['skin_conduct_baseline'].min().reset_index())['skin_conduct_baseline'][i]:
baselines['skin_conduct_baseline'][i] = np.nan
"""
remove baseline from dataframe, if it existed as part of the continuous data record; rename columns;
convert the sensor ID to a string; split the sensor ID string at the underscore to separate timestamp
from actual sensor ID number; merge the dataframe containing sensor ID, activity mean skin conductance,
and baselines for each student
"""
activity_mean_no_bl = activity_mean[activity_mean['activity'] != "Baseline"].rename(columns = {"skin_conduct":"skin_conduct_means"})
activity_mean_no_bl["file_name_no_ts"] = activity_mean_no_bl['file_name'].astype(str)
activity_mean_no_bl["file_name_no_ts"] = activity_mean_no_bl["file_name_no_ts"].str.split('_').str[1]
activity_mean_merged = activity_mean_no_bl.merge(baselines, on = ["file_name_no_ts"])
activity_mean_merged = activity_mean_merged.rename(columns = {'file_name_no_ts':'sensor_ids'})
if beri_exists == True:
activity_mean_no_bl_beri = activity_mean_beri[activity_mean_beri['activity'] != "Baseline"]
activity_mean_no_bl_beri = activity_mean_no_bl_beri.rename(columns = {"skin_conduct":"skin_conduct_means"})
activity_mean_no_bl_beri["file_name_no_ts"] = activity_mean_no_bl_beri['file_name'].astype(str)
activity_mean_no_bl_beri["file_name_no_ts"] = activity_mean_no_bl_beri["file_name_no_ts"].str.split('_').str[1]
activity_mean_merged_beri = activity_mean_no_bl_beri.merge(baselines, on = ["file_name_no_ts"])
activity_mean_merged_beri = activity_mean_merged_beri.rename(columns = {"file_name_no_ts":"sensor_ids"})
print("activity_mean_merged_beri:")
print(activity_mean_merged_beri)
print(" ")
print("Separate baseline")
print(" ")
# If baseline method = continous (part of class/study):
elif continuous_baseline == True :
print("Continuous baseline")
print(" ")
if beri_exists == False:
print("activity_mean:")
print(activity_mean)
print(" ")
baselines = activity_mean[activity_mean['activity'] == "Baseline"][["file_name", "skin_conduct"]]
baselines = baselines.rename(columns = {"skin_conduct":"skin_conduct_baseline"})
print("baselines:")
print(baselines)
print(" ")
activity_mean_no_bl = activity_mean[activity_mean['activity'] != "Baseline"]
activity_mean_no_bl["file_name_no_ts"] = activity_mean_no_bl['file_name'].astype(str)
activity_mean_no_bl["file_name_no_ts"] = activity_mean_no_bl["file_name_no_ts"].str.split('_').str[1]
activity_mean_no_bl = activity_mean_no_bl.rename(columns = {"skin_conduct":"skin_conduct_means"})
activity_mean_merged = activity_mean_no_bl.merge(baselines, on = ["file_name"])
activity_mean_merged = activity_mean_merged.rename(columns = {"file_name_no_ts":"sensor_ids"})
new_column = activity_mean_merged.groupby(['sensor_ids']).apply(calculate_percent_diff)
activity_mean_merged['% diff'] = new_column.reset_index(level=0, drop=True).rename(columns = {"file_name_no_ts":"sensor_ids"})
activity_mean_merged = activity_mean_merged.groupby(['activity']).apply(outliers_to_nan)
activity_mean_merged = activity_mean_merged[~activity_mean_merged['outlier']]
percent_diff_means_no_outliers = activity_mean_merged[~activity_mean_merged['outlier']].groupby(['activity']).mean()
percent_diff_means_no_outliers = percent_diff_means_no_outliers['% diff']
# mean/median percent difference between baseline and activity
activity_mean_merged = activity_mean_merged.drop(['file_name', 'outlier'], axis=1)
percent_diff_stderr_no_outliers = activity_mean_merged.groupby(['activity']).sem()
percent_diff_stderr_no_outliers = percent_diff_stderr_no_outliers['% diff']
percent_diff_stddev_no_outliers = activity_mean_merged.groupby(['activity']).std()
percent_diff_stddev_no_outliers = percent_diff_stddev_no_outliers['% diff']
percent_diff_medians_no_outliers = activity_mean_merged.groupby(['activity']).median()
percent_diff_medians_no_outliers = percent_diff_medians_no_outliers['% diff']
total_percent_diff = activity_mean_merged.groupby(['sensor_ids']).mean()
total_percent_diff = total_percent_diff['% diff']
if grades_exist == True:
grades_merged = grades.merge(total_percent_diff, left_on='sensor_ids', right_on='sensor_ids').replace([np.inf, -np.inf], np.nan).dropna()
if beri_exists == True:
baselines = activity_mean_beri[activity_mean_beri['activity'] == "Baseline"][["file_name", "skin_conduct"]]
baselines = baselines.rename(columns = {"skin_conduct":"skin_conduct_baseline"})
print("baselines:")
print(baselines)
print(" ")
activity_mean_no_bl_beri = activity_mean_beri[activity_mean_beri['activity'] != "Baseline"]
activity_mean_no_bl_beri["file_name_no_ts"] = activity_mean_no_bl_beri['file_name'].astype(str)
activity_mean_no_bl_beri["file_name_no_ts"] = activity_mean_no_bl_beri["file_name_no_ts"].str.split('_').str[1]
activity_mean_no_bl_beri = activity_mean_no_bl_beri.rename(columns = {"skin_conduct":"skin_conduct_means"})
activity_mean_merged_beri = activity_mean_no_bl_beri.merge(baselines, on = ["file_name"])
activity_mean_merged_beri = activity_mean_merged_beri.rename(columns = {"file_name_no_ts":"sensor_ids"})
new_column = activity_mean_merged_beri.groupby(['sensor_ids']).apply(calculate_percent_diff)
activity_mean_merged_beri['% diff'] = new_column.reset_index(level=0, drop=True).rename(columns = {"file_name_no_ts":"sensor_ids"})
activity_mean_merged_beri = activity_mean_merged_beri.groupby(['activity']).apply(outliers_to_nan)
activity_mean_merged_beri = activity_mean_merged_beri[~activity_mean_merged_beri['outlier']]
percent_diff_means_no_outliers_beri = activity_mean_merged_beri[~activity_mean_merged_beri['outlier']].groupby(['activity']).mean()
percent_diff_means_no_outliers_beri = percent_diff_means_no_outliers_beri['% diff']
activity_mean_merged_beri = activity_mean_merged_beri.drop(['file_name', 'outlier'], axis=1)
percent_diff_stderr_no_outliers_beri = activity_mean_merged_beri.groupby(['activity']).sem()
percent_diff_stderr_no_outliers_beri = percent_diff_stderr_no_outliers_beri['% diff']
percent_diff_stddev_no_outliers_beri = activity_mean_merged_beri.groupby(['activity']).std()
percent_diff_stddev_no_outliers_beri = percent_diff_stddev_no_outliers_beri['% diff']
percent_diff_medians_no_outliers_beri = activity_mean_merged_beri.groupby(['activity']).median()
percent_diff_medians_no_outliers_beri = percent_diff_medians_no_outliers_beri['% diff']
total_percent_diff = activity_mean_merged_beri.groupby(['sensor_ids']).mean()
total_percent_diff = total_percent_diff['% diff']
if grades_exist == True:
grades_merged_beri = grades.merge(total_percent_diff, left_on='sensor_ids', right_on='sensor_ids').replace([np.inf, -np.inf], np.nan).dropna()
# If baseline method = entire record (averaged over entire semester, day, etc):
else:
print("Entire semester baseline")
print(" ")
if beri_exists == False:
baselines = baseline_activities['skin_conduct']
activity_mean_no_bl = activity_mean[activity_mean['activity'] != "Baseline"].rename(columns = {"skin_conduct":"skin_conduct_means"})
activity_mean_no_bl["file_name_no_ts"] = activity_mean_no_bl['file_name'].astype(str)
activity_mean_no_bl["file_name_no_ts"] = activity_mean_no_bl["file_name_no_ts"].str.split('_').str[1]
activity_mean_merged = activity_mean_no_bl.rename(columns = {"file_name_no_ts":"sensor_ids"})
activity_mean_merged = activity_mean_merged.merge(baselines.to_frame(), on = ['sensor_ids']).rename(columns = {"skin_conduct" : "skin_conduct_baseline"})
new_column = activity_mean_merged.groupby(['sensor_ids']).apply(calculate_percent_diff)
activity_mean_merged['% diff'] = new_column.reset_index(level=0, drop=True).rename(columns = {"file_name_no_ts":"sensor_ids"})
activity_mean_merged = activity_mean_merged.groupby(['activity']).apply(outliers_to_nan)
activity_mean_merged = activity_mean_merged[~activity_mean_merged['outlier']]
percent_diff_means_no_outliers = activity_mean_merged[~activity_mean_merged['outlier']].groupby(['activity']).mean()
percent_diff_means_no_outliers = percent_diff_means_no_outliers['% diff']
# mean/median percent difference between baseline and activity
activity_mean_merged = activity_mean_merged.drop(['file_name', 'outlier'], axis=1)
percent_diff_stderr_no_outliers = activity_mean_merged.groupby(['activity']).sem()
percent_diff_stderr_no_outliers = percent_diff_stderr_no_outliers['% diff']
percent_diff_stddev_no_outliers = activity_mean_merged.groupby(['activity']).std()
percent_diff_stddev_no_outliers = percent_diff_stddev_no_outliers['% diff']
percent_diff_medians_no_outliers = activity_mean_merged.groupby(['activity']).median()
percent_diff_medians_no_outliers = percent_diff_medians_no_outliers['% diff']
total_percent_diff = activity_mean_merged.groupby(['sensor_ids']).mean()
total_percent_diff = total_percent_diff['% diff']
if grades_exist == True:
grades_merged = grades.merge(total_percent_diff, left_on='sensor_ids', right_on='sensor_ids').replace([np.inf, -np.inf], np.nan).dropna()
if beri_exists == True:
baselines = baseline_activities_beri['skin_conduct']
activity_mean_no_bl_beri = activity_mean_beri[activity_mean_beri['activity'] != "Baseline"]
activity_mean_no_bl_beri = activity_mean_no_bl_beri.rename(columns = {"skin_conduct":"skin_conduct_means"})
activity_mean_no_bl_beri["file_name_no_ts"] = activity_mean_no_bl_beri['file_name'].astype(str)
activity_mean_no_bl_beri["file_name_no_ts"] = activity_mean_no_bl_beri["file_name_no_ts"].str.split('_').str[1]
activity_mean_merged_beri = activity_mean_no_bl_beri.rename(columns = {"file_name_no_ts":"sensor_ids"})
activity_mean_merged_beri = activity_mean_merged_beri.merge(baselines.to_frame(), on = ['sensor_ids']).rename(columns = {"skin_conduct" : "skin_conduct_baseline"})
print("activity_mean_merged_beri:")
print(activity_mean_merged_beri)
print(" ")
new_column = activity_mean_merged_beri.groupby(['sensor_ids']).apply(calculate_percent_diff)
activity_mean_merged_beri['% diff'] = new_column.reset_index(level=0, drop=True).rename(columns = {"file_name_no_ts":"sensor_ids"})
activity_mean_merged_beri = activity_mean_merged_beri.groupby(['activity']).apply(outliers_to_nan)
activity_mean_merged_beri = activity_mean_merged_beri[~activity_mean_merged_beri['outlier']]
percent_diff_means_no_outliers_beri = activity_mean_merged_beri[~activity_mean_merged_beri['outlier']].groupby(['activity']).mean()
percent_diff_means_no_outliers_beri = percent_diff_means_no_outliers_beri['% diff']
activity_mean_merged_beri = activity_mean_merged_beri.drop(['file_name', 'outlier'], axis=1)
percent_diff_stderr_no_outliers_beri = activity_mean_merged_beri.groupby(['activity']).sem()
percent_diff_stderr_no_outliers_beri = percent_diff_stderr_no_outliers_beri['% diff']
percent_diff_stddev_no_outliers_beri = activity_mean_merged_beri.groupby(['activity']).std()
percent_diff_stddev_no_outliers_beri = percent_diff_stddev_no_outliers_beri['% diff']
percent_diff_medians_no_outliers_beri = activity_mean_merged_beri.groupby(['activity']).median()
percent_diff_medians_no_outliers_beri = percent_diff_medians_no_outliers_beri['% diff']
total_percent_diff = activity_mean_merged_beri.groupby(['sensor_ids']).mean()
total_percent_diff = total_percent_diff['% diff']
if grades_exist == True:
grades_merged_beri = grades.merge(total_percent_diff, left_on='sensor_ids', right_on='sensor_ids').replace([np.inf, -np.inf], np.nan).dropna()
if grades_exist == True:
fig1, ax = pl.subplots( nrows=1, ncols=1 )
if beri_exists == True:
pl.scatter(grades_merged_beri['Final Grade'], grades_merged_beri['% diff'], c = 'k', marker='o', s=13)
else:
pl.scatter(grades_merged['Final Grade'], grades_merged['% diff'], c = 'k', marker='o', s=13)
pl.yticks(fontsize=10, fontweight='bold')
pl.xticks(fontsize=10, fontweight='bold')
pl.xlim(60,102)
if beri_exists == True:
pl.ylim(min(grades_merged_beri['% diff']-15), max(grades_merged_beri['% diff']+15))
else:
pl.ylim(min(grades_merged['% diff']-15), max(grades_merged['% diff']+15))
pl.ylabel('Engagement relative to baseline (%)', fontweight='bold')
pl.xlabel('Final Course Grade', fontweight='bold')
pl.margins(0.01,0)
pl.subplots_adjust(bottom=0.2)
pl.tight_layout()
if separate_baseline == True:
fig1.savefig(os.path.join(output_dir,'final_grades_vs_conductance_separate_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
elif continuous_baseline == True:
fig1.savefig(os.path.join(output_dir,'final_grades_vs_conductance_continuous_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
else:
fig1.savefig(os.path.join(output_dir,'final_grades_vs_conductance_entire_semester_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
pl.close(fig1)
fig2, ax = pl.subplots( nrows=1, ncols=1 )
if beri_exists == True:
pl.scatter(grades_merged_beri['Midterm #1'], grades_merged_beri['% diff'], c = 'r', marker='o', s=12)
else:
pl.scatter(grades_merged['Midterm #1'], grades_merged['% diff'], c = 'r', marker='o', s=12)
pl.yticks(fontsize=9, fontweight='bold')
pl.xticks(fontsize=9, fontweight='bold')
pl.xlim(60,102)
if beri_exists == True:
pl.ylim(min(grades_merged_beri['% diff']-15), max(grades_merged_beri['% diff']+15))
else:
pl.ylim(min(grades_merged['% diff']-15), max(grades_merged['% diff']+15))
pl.ylabel('Engagement relative to baseline (%)', fontweight='bold')
pl.xlabel('Midterm #1 Grade', fontweight='bold')
pl.margins(0.01,0)
pl.subplots_adjust(bottom=0.2)
pl.tight_layout()
if separate_baseline == True:
fig2.savefig(os.path.join(output_dir,'midterm1_vs_conductance_separate_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
elif continuous_baseline == True:
fig2.savefig(os.path.join(output_dir,'midterm1_vs_conductance_continuous_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
else:
fig2.savefig(os.path.join(output_dir,'midterm1_vs_conductance_entire_semester_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
pl.close(fig2)
fig3, ax = pl.subplots( nrows=1, ncols=1 )
if beri_exists == True:
pl.scatter(grades_merged_beri['Midterm #2'], grades_merged_beri['% diff'], c = 'g', marker='o', s=12)
else:
pl.scatter(grades_merged['Midterm #2'], grades_merged['% diff'], c = 'g', marker='o', s=12)
pl.yticks(fontsize=9, fontweight='bold')
pl.xticks(fontsize=9, fontweight='bold')
pl.xlim(60,102)
if beri_exists == True:
pl.ylim(min(grades_merged_beri['% diff']-15), max(grades_merged_beri['% diff']+15))
else:
pl.ylim(min(grades_merged['% diff']-15), max(grades_merged['% diff']+15))
pl.ylabel('Engagement relative to baseline (%)', fontweight='bold')
pl.xlabel('Midterm #2 Grade', fontweight='bold')
pl.margins(0.01,0)
pl.subplots_adjust(bottom=0.2)
pl.tight_layout()
if separate_baseline == True:
fig3.savefig(os.path.join(output_dir,'midterm2_vs_conductance_separate_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
elif continuous_baseline == True:
fig3.savefig(os.path.join(output_dir,'midterm2_vs_conductance_continuous_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
else:
fig3.savefig(os.path.join(output_dir,'midterm2_vs_conductance_entire_semester_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
pl.close(fig3)
fig4, ax = pl.subplots( nrows=1, ncols=1 )
if beri_exists == True:
pl.scatter(grades_merged_beri['Final Exam'], grades_merged_beri['% diff'], c = 'b', marker='o', s=13)
else:
pl.scatter(grades_merged['Final Exam'], grades_merged['% diff'], c = 'b', marker='o', s=13)
pl.yticks(fontsize=10, fontweight='bold')
pl.xticks(fontsize=10, fontweight='bold')
pl.xlim(60,102)
if beri_exists == True:
pl.ylim(min(grades_merged_beri['% diff']-15), max(grades_merged_beri['% diff']+15))
else:
pl.ylim(min(grades_merged['% diff']-15), max(grades_merged['% diff']+15))
pl.ylabel('Engagement relative to baseline (%)', fontweight='bold')
pl.xlabel('Final Exam Grade', fontweight='bold')
pl.margins(0.01,0)
pl.subplots_adjust(bottom=0.2)
pl.tight_layout()
if separate_baseline == True:
fig4.savefig(os.path.join(output_dir,'final_exam_vs_conductance_separate_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
elif continuous_baseline == True:
fig4.savefig(os.path.join(output_dir,'final_exam_vs_conductance_continuous_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
else:
fig4.savefig(os.path.join(output_dir,'final_exam_vs_conductance_entire_semester_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
pl.close(fig4)
if beri_exists == False:
statistics_output = percent_diff_means_no_outliers, percent_diff_stddev_no_outliers, percent_diff_stderr_no_outliers, \
percent_diff_medians_no_outliers, total_time, total_time_seconds
percent_diff_means_idx = list(percent_diff_means_no_outliers.index)
y_pos = {key: percent_diff_means_idx[key-1] for key in range(1, (len(percent_diff_means_idx)+1), 1)}
keywords = y_pos.values()
# mean percent difference, no outliers
fig7, ax = pl.subplots( nrows=1, ncols=1 )
print("percent_diff_means_no_outliers:")
print(percent_diff_means_no_outliers)
pl.bar(list(y_pos.keys()), percent_diff_means_no_outliers, yerr=percent_diff_stderr_no_outliers, error_kw=dict(lw=0.65, capsize=2, capthick=0.55), align='center', color=[0.62,0.07,0.41], alpha=1)
pl.xticks(list(y_pos.keys()), list(y_pos.values()), rotation=90, fontsize=6)
pl.ylim(min((percent_diff_means_no_outliers-percent_diff_stderr_no_outliers-10)), max(percent_diff_means_no_outliers+percent_diff_stderr_no_outliers+15))
pl.margins(0.01,0)
pl.subplots_adjust(bottom=0.22, left=0.12)
pl.tight_layout()
pl.ylabel('Mean skin conductance % difference w/o outliers\n(activity - baseline)', fontsize=6)
pl.yticks(fontsize=6)
if separate_baseline == True :
fig7.savefig(os.path.join(output_dir, 'activity_means_no_outliers_separate_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
elif continuous_baseline == True :
fig7.savefig(os.path.join(output_dir, 'activity_means_no_outliers_continuous_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
else:
fig7.savefig(os.path.join(output_dir, 'activity_means_no_outliers_entire_semester_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
pl.close(fig7)
# median percent difference, no outliers
fig8, ax = pl.subplots( nrows=1, ncols=1 )
pl.bar(list(y_pos.keys()), percent_diff_medians_no_outliers, align='center', color=[0.89,0.07,0.41], alpha=1)
pl.xticks(list(y_pos.keys()), list(y_pos.values()), rotation=90, fontsize=6)
pl.ylim(min(percent_diff_medians_no_outliers-5), max(percent_diff_medians_no_outliers+15))
pl.margins(0.01,0)
pl.subplots_adjust(bottom=0.22, left=0.12)
pl.tight_layout()
pl.ylabel('Median skin conductance % difference w/o outliers\n(activity - baseline)', fontsize=6)
pl.yticks(fontsize=6)
if separate_baseline == True :
fig8.savefig(os.path.join(output_dir, 'activity_medians_no_outliers_separate_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
elif continuous_baseline == True :
fig8.savefig(os.path.join(output_dir, 'activity_medians_no_outliers_continuous_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
else:
fig8.savefig(os.path.join(output_dir, 'activity_medians_no_outliers_entire_semester_BL.pdf'), dpi = pref_dpi, bbox_inches='tight')
pl.close(fig8)
# histogram
fig10, ax = pl.subplots( nrows=1, ncols=1 )
pl.hist(percent_diff_means_no_outliers[np.isfinite(percent_diff_means_no_outliers)].values, bins=26, color=[0.85,0.33,0], align='mid', rwidth=0.92)
pl.ylabel('Counts')
pl.xlabel("Mean skin conductance % difference from baseline, no outliers")
pl.margins(0.01,0)
pl.subplots_adjust(bottom=0.22, left=0.12)
pl.tight_layout()
if separate_baseline == True :
fig10.savefig(os.path.join(output_dir, 'activity_means_no_outliers_separate_BL_hist.pdf'), dpi = pref_dpi, bbox_inches='tight')
elif continuous_baseline == True :
fig10.savefig(os.path.join(output_dir, 'activity_means_no_outliers_continuous_BL_hist.pdf'), dpi = pref_dpi, bbox_inches='tight')
else:
fig10.savefig(os.path.join(output_dir, 'activity_means_no_outliers_entire_semester_BL_hist.pdf'), dpi = pref_dpi, bbox_inches='tight')
pl.close(fig10)
activity_stats = activity_mean_merged
return statistics_output, keywords, activity_stats, None
# for BERI protocol analysis:
if beri_exists == True:
statistics_output = percent_diff_means_no_outliers_beri, \
percent_diff_stddev_no_outliers_beri, percent_diff_stderr_no_outliers_beri, percent_diff_medians_no_outliers_beri, \
total_time, total_time_seconds
percent_diff_means_idx = list(percent_diff_means_no_outliers_beri.index)
y_pos = {key: percent_diff_means_idx[key-1] for key in range(1, (len(percent_diff_means_idx)+1), 1)}
keywords = y_pos.values()
fig11, ax = pl.subplots( nrows=1, ncols=1 )
pl.scatter(range(0,len(beri_data['class_subject_code'])), beri_data['total_eng'], c = 'k', marker='o', s=3, label='# students engaged')
pl.scatter(range(0,len(beri_data['class_subject_code'])), beri_data['total_diseng'], c = 'r', marker='v', s=3, label="# students disengaged")
pl.yticks(fontsize=8)
pl.legend(loc='upper left')
pl.ylabel('# students')
pl.xlabel('Observation')
pl.ylim(0,20)
pl.yticks([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])
#pl.xlim(0, len(beri_data.index))
pl.margins(0.01,0)
pl.subplots_adjust(bottom=0.2)
pl.tight_layout()
fig11.savefig(os.path.join(output_dir, 'number_engaged_students.pdf'), dpi = pref_dpi)
pl.close(fig11)
fig12, ax = pl.subplots( nrows=1, ncols=1 )
pl.bar(list(y_pos.keys()), percent_diff_means_no_outliers_beri, yerr=percent_diff_stderr_no_outliers_beri, error_kw=dict(lw=0.65, capsize=2, capthick=0.55), align='center', color=[0.17,0.74,0.89], alpha=1)
pl.xticks(list(y_pos.keys()), list(y_pos.values()), rotation=90, fontsize=6)
pl.ylim(min((percent_diff_means_no_outliers_beri-percent_diff_stderr_no_outliers_beri-10)), max(percent_diff_means_no_outliers_beri+percent_diff_stderr_no_outliers_beri+15))
pl.margins(0.01,0)
pl.subplots_adjust(bottom=0.22, left=0.12)
pl.tight_layout()
pl.ylabel('Mean skin conductance % difference w/o outliers\n(activity - baseline), only engaged behaviors', fontsize=6)
pl.yticks(fontsize=6)
if separate_baseline == True :
fig12.savefig(os.path.join(output_dir, 'activity_means_no_outliers_separate_BL_beri.pdf'), dpi = pref_dpi, bbox_inches='tight')
elif continuous_baseline == True :
fig12.savefig(os.path.join(output_dir, 'activity_means_no_outliers_continuous_BL_beri.pdf'), dpi = pref_dpi, bbox_inches='tight')
else:
fig12.savefig(os.path.join(output_dir, 'activity_means_no_outliers_entire_semester_BL_beri.pdf'), dpi = pref_dpi, bbox_inches='tight')
pl.close(fig12)
# histogram
fig13, ax = pl.subplots( nrows=1, ncols=1 )
pl.hist(percent_diff_means_no_outliers_beri[np.isfinite(percent_diff_means_no_outliers_beri)].values, bins=26, color=[0.85,0.33,0], align='mid', rwidth=0.92)
pl.ylabel('Counts')
pl.xlabel("Mean skin conductance % difference from baseline, no outliers")
pl.margins(0.01,0)
pl.subplots_adjust(bottom=0.22, left=0.12)
pl.tight_layout()
if separate_baseline == True :
fig13.savefig(os.path.join(output_dir, 'activity_means_no_outliers_separate_BL_hist_beri.pdf'), dpi = pref_dpi, bbox_inches='tight')
elif continuous_baseline == True :
fig13.savefig(os.path.join(output_dir, 'activity_means_no_outliers_continuous_BL_hist_beri.pdf'), dpi = pref_dpi, bbox_inches='tight')
else:
fig13.savefig(os.path.join(output_dir, 'activity_means_no_outliers_entire_semester_BL_hist_beri.pdf'), dpi = pref_dpi, bbox_inches='tight')
pl.close(fig13)
fig14, ax = pl.subplots( nrows=1, ncols=1 )
pl.bar(list(y_pos.keys()), percent_diff_medians_no_outliers_beri, align='center', color=[0.12,0.35,1], alpha=1)
pl.xticks(list(y_pos.keys()), list(y_pos.values()), rotation=90, fontsize=6)
pl.ylim(min((percent_diff_medians_no_outliers_beri-10)), max(percent_diff_medians_no_outliers_beri+15))
pl.margins(0.01,0)
pl.subplots_adjust(bottom=0.25, left=0.15)
pl.tight_layout()
pl.yticks(fontsize=6)
pl.ylabel('Median skin conductance % difference w/o outliers\n(activity - baseline), only engaged behaviors', fontsize=6)
pl.yticks(fontsize=6)
if separate_baseline == True :
fig14.savefig(os.path.join(output_dir, 'activity_medians_no_outliers_separate_BL_beri.pdf'), dpi = pref_dpi, bbox_inches='tight')
elif continuous_baseline == True :
fig14.savefig(os.path.join(output_dir, 'activity_medians_no_outliers_continuous_BL_beri.pdf'), dpi = pref_dpi, bbox_inches='tight')
else:
fig14.savefig(os.path.join(output_dir, 'activity_medians_no_outliers_entire_semester_BL_beri.pdf'), dpi = pref_dpi, bbox_inches='tight')
pl.close(fig14)
activity_stats = activity_mean_merged_beri
return statistics_output, keywords, activity_stats, beri_df
def save_output_csv(statistics_output, output_dir, keywords, activity_stats, beri_exists):