- Join
diff --git a/docs/_source/_templates/sidebar/brand.html b/docs/_source/_templates/sidebar/brand.html
index 5826a4547d2..4b80782cb6d 100644
--- a/docs/_source/_templates/sidebar/brand.html
+++ b/docs/_source/_templates/sidebar/brand.html
@@ -30,7 +30,7 @@
{% endblock brand_content %}
- Join
\ No newline at end of file
diff --git a/docs/_source/community/contributing.md b/docs/_source/community/contributing.md
index 2924edc69c7..5e73f7afedd 100644
--- a/docs/_source/community/contributing.md
+++ b/docs/_source/community/contributing.md
@@ -1,4 +1,3 @@
-
# Contributor Documentation
Thank you for investing your time in contributing to the project! Any contribution you make will be reflected in the most recent version of [Argilla](https://github.com/argilla-io/argilla) ๐คฉ.
@@ -7,21 +6,19 @@ Thank you for investing your time in contributing to the project! Any contributi
If you're a new contributor, we recommend you start reading the [New Contributor Guide](#new-contributor-guide), if it's not your case, feel free to jump to the section you need.
-
## New Contributor Guide
If you're a new contributor, read the [README](https://github.com/argilla-io/argilla/blob/develop/README.md) to get an overview of the project. In addition, here are some resources to help you get started with open-source contributions:
-* **Slack**: You are welcome to join the [Argilla Slack community](https://join.slack.com/t/rubrixworkspace/shared_invite/zt-whigkyjn-a3IUJLD7gDbTZ0rKlvcJ5g), where you can keep in touch with other users, contributors and the Argilla team. In the following [section](#first-contact-in-slack), you can find more information on how to get started in Slack.
-* **Git**: This is a very useful tool to keep track of the changes in your files. Using the command-line interface (CLI), you can make your contributions easily. For that, you need to have it [installed and updated](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) on your computer.
-* **GitHub**: It is a platform and cloud-based service that uses git and allows developers to collaborate on projects. To contribute to Argilla, you'll need to create an account. Check the [Contributor Workflow with Git and Github](#contributor-workflow-with-git-and-github) for more info.
-* **Developer Documentation**: To collaborate, you'll need to set up an efficient environment. Check the [developer documentation](/community/developer_docs.md) to know how to do it.
-* **Schedule a meeting with our developer advocate**: If you have more questions, do not hesitate to contact to our developer advocate and [schedule a meeting](https://calendly.com/argilla-office-hours/30min).
-
+- **Slack**: You are welcome to join the [Argilla Slack community](http://hf.co/join/discord), where you can keep in touch with other users, contributors and the Argilla team. In the following [section](#first-contact-in-slack), you can find more information on how to get started in Slack.
+- **Git**: This is a very useful tool to keep track of the changes in your files. Using the command-line interface (CLI), you can make your contributions easily. For that, you need to have it [installed and updated](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) on your computer.
+- **GitHub**: It is a platform and cloud-based service that uses git and allows developers to collaborate on projects. To contribute to Argilla, you'll need to create an account. Check the [Contributor Workflow with Git and Github](#contributor-workflow-with-git-and-github) for more info.
+- **Developer Documentation**: To collaborate, you'll need to set up an efficient environment. Check the [developer documentation](/community/developer_docs.md) to know how to do it.
+- **Schedule a meeting with our developer advocate**: If you have more questions, do not hesitate to contact to our developer advocate and [schedule a meeting](https://calendly.com/argilla-office-hours/30min).
## First Contact in Slack
-Slack is a very useful tool for more casual conversations and to answer day-to-day questions. Click [here](https://join.slack.com/t/rubrixworkspace/shared_invite/zt-whigkyjn-a3IUJLD7gDbTZ0rKlvcJ5g) to join our Slack community effortlessly.
+Slack is a very useful tool for more casual conversations and to answer day-to-day questions. Click [here](http://hf.co/join/discord) to join our Slack community effortlessly.
The following screens will be displayed, choose how you wish to join and enter the code sent to you via email.
@@ -29,23 +26,23 @@ The following screens will be displayed, choose how you wish to join and enter t
Once you have joined the community, you'll be added to some channels by default, but below we show you all the community channels you can join:
-* **00-announcements**: ๐ฃ Stay up-to-date on official Argilla
-* **01-introductions**: ๐ Say hi! to the community Fun facts are appreciated.
-* **02-support-and-questions**: ๐โโ๏ธ Need help with Argilla or NLP? We are always here.
-* **03-discoveries-and-news**: ๐ Looking for resources and news related to everything NLP?
-* **04-contributors**: ๐๏ธ A channel for contributions and contributors.
-* **05-beta-testing**: ๐ง For access to the latest features and help us with testing the newest features.
-* **06-general**: ๐ This channel is for... well, everything else.
-* **07-events-and-job-offers**: ๐ Would you like to share info about events, job offers or meetups?
+- **00-announcements**: ๐ฃ Stay up-to-date on official Argilla
+- **01-introductions**: ๐ Say hi! to the community Fun facts are appreciated.
+- **02-support-and-questions**: ๐โโ๏ธ Need help with Argilla or NLP? We are always here.
+- **03-discoveries-and-news**: ๐ Looking for resources and news related to everything NLP?
+- **04-contributors**: ๐๏ธ A channel for contributions and contributors.
+- **05-beta-testing**: ๐ง For access to the latest features and help us with testing the newest features.
+- **06-general**: ๐ This channel is for... well, everything else.
+- **07-events-and-job-offers**: ๐ Would you like to share info about events, job offers or meetups?
So now there is only one thing left to do, introduce yourself and talk to the community. You'll be always welcome! ๐ค๐
-
## Contributor Workflow with Git and GitHub
If you're working with Argilla and suddenly a new idea comes to your mind or you find an issue that can be improved, it's time to actively participate and contribute to the project! The main steps will be the following:
+
1. [Report an issue](#report-an-issue)
2. [Work with a fork](#work-with-a-fork)
3. [Create a new branch](#create-a-new-branch)
@@ -54,7 +51,6 @@ If you're working with Argilla and suddenly a new idea comes to your mind or you
6. [Review your pull request](#review-your-pull-request)
7. [Your PR is merged!](#your-pr-is-merged)
-
### Report an issue
If you spot a problem, [search if an issue already exists](https://github.com/argilla-io/argilla/issues?q=is%3Aissue). You can use the `Label` filter. If that is the case, participate in the conversation. If it does not exist, create an issue by clicking on `New Issue`.
@@ -69,7 +65,6 @@ Below, you can see an example of the `Feature request` template. Once you choose
![issue-feature-template](../_static/images/community/contributing/issue-feature-template.PNG)
-
### Work with a fork
#### Fork the Argilla repository
@@ -84,7 +79,6 @@ Now, fill in the information. Remember to uncheck the `Copy develop branch only`
Now, you will be redirected to your fork. You can see that you are in your fork because the name of the repository will be your `username/argilla`, and it will indicate `forked from argilla-io/argilla`.
-
#### Clone your forked repository
In order to make the required adjustments, clone the forked repository to your local machine. Choose the destination folder and run the following command:
@@ -100,7 +94,6 @@ To keep your forkโs main/develop branch up to date with our repo, add it as an
git remote add upstream https://github.com/argilla-io/argilla.git
```
-
### Create a new branch
For each issue you're addressing, it's advisable to create a new branch. GitHub offers a straightforward method to streamline this process.
@@ -127,6 +120,7 @@ git checkout [branch-name]
### Use CHANGELOG.md
If you are working on a new feature, it is a good practice to make note of it for others to keep up with the changes. For that, we utilize the `CHANGELOG.md` file in the root directory. This file is used to list changes made in each version of the project and there are headers that we use to denote each type of change.
+
- **Added:** for new features.
- **Changed:** for changes in existing functionality.
- **Deprecated:** for soon-to-be removed features.
@@ -172,7 +166,6 @@ git push origin [branch-name]
When pushing, you will be asked to enter your GitHub login credentials. Once the push is complete, all local commits will be on your GitHub repository.
-
### Create a pull request
Come back to GitHub, navigate to the original repository where you created your fork, and click on `Compare & pull request`.
@@ -199,7 +192,6 @@ Below, we chose the feature template. Now, fill in it carefully and follow the g
![pr-feature-template](../_static/images/community/contributing/pull-request-feature.PNG)
-
### Review your pull request
Once you submit your PR, a team member will review your proposal. We may ask questions, request additional information or ask for changes to be made before a PR can be merged, either using [suggested changes](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/incorporating-feedback-in-your-pull-request) or pull request comments.
@@ -210,7 +202,6 @@ You can apply the changes directly through the UI (check the files changed and c
> If you run into any merge issues, check out this [git tutorial](https://github.com/skills/resolve-merge-conflicts) to help you resolve merge conflicts and other issues.
-
### Your PR is merged!
Congratulations ๐๐ We thank you ๐คฉ
@@ -221,12 +212,11 @@ Additionally, we will include your changes in the next release based on our [dev
We will probably contact you, but if you would like to send your personal information (LinkedIn, profile picture, GitHub) to [David](mailto:david@argilla.io), he can set everything up for receiving your JustDiggit bunds and a LinkedIn shoutout.
-
## Additional resources
Here are some helpful resources for your reference.
-* [Configuring Slack](https://slack.com/help/articles/218080037-Getting-started-for-new-Slack-users), a guide to learn how to configure Slack.
-* [Pro Git](https://git-scm.com/book/en/v2), a book to learn Git.
-* [Git in VSCode](https://code.visualstudio.com/docs/sourcecontrol/overview), a guide to learn how to easily use Git in VSCode.
-* [GitHub Skills](https://skills.github.com/), an interactive course to learn GitHub.
+- [Configuring Slack](https://slack.com/help/articles/218080037-Getting-started-for-new-Slack-users), a guide to learn how to configure Slack.
+- [Pro Git](https://git-scm.com/book/en/v2), a book to learn Git.
+- [Git in VSCode](https://code.visualstudio.com/docs/sourcecontrol/overview), a guide to learn how to easily use Git in VSCode.
+- [GitHub Skills](https://skills.github.com/), an interactive course to learn GitHub.
diff --git a/docs/_source/community/migration-rubrix.md b/docs/_source/community/migration-rubrix.md
index cd1b639a575..2e8068acd38 100644
--- a/docs/_source/community/migration-rubrix.md
+++ b/docs/_source/community/migration-rubrix.md
@@ -15,22 +15,22 @@ with the new module name
Equivalently, to launch the server:
-````bash
+```bash
argilla server start
-````
+```
instead of
-````bash
+```bash
python -m rubrix
-````
+```
## Environment variables
All the environment variables have changed from using the prefix `RUBRIX_` to using the prefix `ARGILLA_`.
.. warning::
- From version `1.13.0`, the support for non-prefixed environment variables has been removed. All environment variables must be prefixed with `ARGILLA_`.
+From version `1.13.0`, the support for non-prefixed environment variables has been removed. All environment variables must be prefixed with `ARGILLA_`.
The best way to configure a new Argilla Server from Rubrix is just to duplicate all ENV variables for
both, Rubrix and Argilla instances. This will simplify a version rollback if needed.
@@ -63,9 +63,9 @@ This will allow you to work with previous Rubrix datasets from your new Argilla
This migration switch can help you with a more gradual transition into Argilla.
->:warning: New datasets created from argilla won't be visible from the old rubrix instance.
+> :warning: New datasets created from argilla won't be visible from the old rubrix instance.
-> ๐ **We'd love to support you with this migration process. The easiest way is to contact us through the [Slack Community](https://join.slack.com/t/rubrixworkspace/shared_invite/zt-whigkyjn-a3IUJLD7gDbTZ0rKlvcJ5g) or to open a GitHub issue**
+> ๐ **We'd love to support you with this migration process. The easiest way is to contact us through the [Slack Community](http://hf.co/join/discord) or to open a GitHub issue**
## Old versions of Rubrix
diff --git a/docs/_source/getting_started/argilla.md b/docs/_source/getting_started/argilla.md
index 5d6718d5256..76c68b2f6bc 100644
--- a/docs/_source/getting_started/argilla.md
+++ b/docs/_source/getting_started/argilla.md
@@ -3,7 +3,7 @@
[Argilla](https://argilla.io) is an open-source data curation platform for LLMs. Using Argilla, everyone can build robust language models through faster data curation using both human and machine feedback. We provide support for each step in the MLOps cycle, from data labeling to model monitoring.
- Join
Follow on LinkedIn
@@ -23,10 +23,10 @@
| [๐ Quickstart](/getting_started/quickstart) | **Install** Argilla and end-to-end **toy examples** |
| [๐ผ Cheatsheet](/getting_started/cheatsheet) | Brief **code snippets** for our main functionalities |
| [๐ง Installation](/getting_started/installation/deployments/deployments) | **Everything deployment**: Docker, Kubernetes, Cloud and way more |
-| [โ๏ธ Configuration](/getting_started/installation/configurations/configurations) | User management and **deployment tweaking** |
+| [โ๏ธ Configuration](/getting_started/installation/configurations/configurations) | User management and **deployment tweaking** |
| [๐ฅ Concepts about LLMs](/conceptual_guides/llm/llm) | Generative AI, **ChatGPT and friends** |
| [๐ฆฎ Practical Guides](/practical_guides/practical_guides) | **Conceptual overview** of our main functionalities |
-| [๐งโโ๏ธ Tutorials](/tutorials_and_integrations/tutorials/tutorials) | Specific **applied end-to-end examples** |
+| [๐งโโ๏ธ Tutorials](/tutorials_and_integrations/tutorials/tutorials) | Specific **applied end-to-end examples** |
| [๐ท๏ธ References](/reference/python/index) | Itemized information and **API docs** |
| [๐๏ธ Community](/community/contributing) | Everything about for **developers and contributing** |
| [๐บ๏ธ Roadmap](https://github.com/orgs/argilla-io/projects/10/views/1) | Our **future plans** |
@@ -36,10 +36,10 @@
Argilla is built on 5 core components:
- **Python SDK**: A Python SDK which is installable with `pip install argilla`. To interact with the Argilla Server and the Argilla UI. It provides an API to manage the data, configuration, and annotation workflows.
-- **FastAPI Server**: The core of Argilla is a *Python FastAPI* server that manages the data, by pre-processing it and storing it in the vector database. Also, it stores application information in the relational database. It provides a REST API to interact with the data from the Python SDK and the Argilla UI. It also provides a web interface to visualize the data.
-- **Relational Database**: A relational database to store the metadata of the records and the annotations. *SQLite* is used as the default built-in option and is deployed separately with the Argilla Server but a separate *PostgreSQL* can be used too.
-- **Vector Database**: A vector database to store the records data and perform scalable vector similarity searches and basic document searches. We currently support *ElasticSearch* and *AWS OpenSearch* and they can be deployed as separate Docker images.
-- **Vue.js UI**: A web application to visualize and annotate your data, users, and teams. It is built with *Vue.js* and is directly deployed alongside the Argilla Server within our Argilla Docker image.
+- **FastAPI Server**: The core of Argilla is a _Python FastAPI_ server that manages the data, by pre-processing it and storing it in the vector database. Also, it stores application information in the relational database. It provides a REST API to interact with the data from the Python SDK and the Argilla UI. It also provides a web interface to visualize the data.
+- **Relational Database**: A relational database to store the metadata of the records and the annotations. _SQLite_ is used as the default built-in option and is deployed separately with the Argilla Server but a separate _PostgreSQL_ can be used too.
+- **Vector Database**: A vector database to store the records data and perform scalable vector similarity searches and basic document searches. We currently support _ElasticSearch_ and _AWS OpenSearch_ and they can be deployed as separate Docker images.
+- **Vue.js UI**: A web application to visualize and annotate your data, users, and teams. It is built with _Vue.js_ and is directly deployed alongside the Argilla Server within our Argilla Docker image.
## ๐ Principles
@@ -51,7 +51,6 @@ Argilla is built on 5 core components:
- **Beyond hand-labeling**: Classical hand-labeling workflows are costly and inefficient, but having humans in the loop is essential. Easily combine hand-labeling with active learning, bulk-labeling, zero-shot models, and weak supervision in **novel** data annotation workflows\*\*.
-
## โ FAQ
+ Slack
Github
community/developer_docs
community/contributing
diff --git a/docs/_source/reference/telemetry.md b/docs/_source/reference/telemetry.md
index cf38c76bd61..f730922e8d4 100644
--- a/docs/_source/reference/telemetry.md
+++ b/docs/_source/reference/telemetry.md
@@ -1,7 +1,9 @@
# Telemetry
+
Argilla uses telemetry to report anonymous usage and error information. As an open-source software, this type of information is important to improve and understand how the product is used.
## How to opt out
+
You can opt out of telemetry reporting using the `ENV` variable `ARGILLA_ENABLE_TELEMETRY` before launching the server. Setting this variable to `0` will completely disable telemetry reporting.
If you are a Linux/MacOs user, you should run:
@@ -19,45 +21,48 @@ set ARGILLA_ENABLE_TELEMETRY=0
To opt in again, you can set the variable to `1`.
## Why reporting telemetry
+
Anonymous telemetry information enables us to continuously improve the product and detect recurring problems to better serve all users. We collect aggregated information about general usage and errors. We do NOT collect any information on users' data records, datasets, or metadata information.
## Sensitive data
+
We do not collect any piece of information related to the source data you store in Argilla. We don't identify individual users. Your data does not leave your server at any time:
-* No dataset record is collected.
-* No dataset names or metadata are collected.
+- No dataset record is collected.
+- No dataset names or metadata are collected.
## Information reported
+
The following usage and error information is reported:
-* The code of the raised error and the entity type related to the error, if any (Dataset, Workspace,...)
-* The `user-agent` and `accept-language` http headers
-* Task name and number of records for bulk operations
-* An anonymous generated user uuid
-* The Argilla version running the server
-* The Python version, e.g. `3.8.13`
-* The system/OS name, such as `Linux`, `Darwin`, `Windows`
-* The systemโs release version, e.g. `Darwin Kernel Version 21.5.0: Tue Apr 26 21:08:22 PDT 2022; root:xnu-8020`
-* The machine type, e.g. `AMD64`
-* The underlying platform spec with as much useful information as possible. (eg. `macOS-10.16-x86_64-i386-64bit`)
-* The type of deployment: `quickstart` or `server`
-* The dockerized deployment flag: `True` or `False`
+- The code of the raised error and the entity type related to the error, if any (Dataset, Workspace,...)
+- The `user-agent` and `accept-language` http headers
+- Task name and number of records for bulk operations
+- An anonymous generated user uuid
+- The Argilla version running the server
+- The Python version, e.g. `3.8.13`
+- The system/OS name, such as `Linux`, `Darwin`, `Windows`
+- The systemโs release version, e.g. `Darwin Kernel Version 21.5.0: Tue Apr 26 21:08:22 PDT 2022; root:xnu-8020`
+- The machine type, e.g. `AMD64`
+- The underlying platform spec with as much useful information as possible. (eg. `macOS-10.16-x86_64-i386-64bit`)
+- The type of deployment: `quickstart` or `server`
+- The dockerized deployment flag: `True` or `False`
This is performed by registering information from the following API methods:
-* `GET /api/me`
-* `POST /api/dataset/{name}/{task}:bulk`
-* `POST /api/users`
-* Raised server API errors
+- `GET /api/me`
+- `POST /api/dataset/{name}/{task}:bulk`
+- `POST /api/users`
+- Raised server API errors
Additionally, we report the usage of integration for our Python library:
-* `ArgillaTrainer` framework usage and NLP task-type.
+- `ArgillaTrainer` framework usage and NLP task-type.
We also report the usage of our tutorials by `tutorial_running`:
-* The tutorial usage count and its name.
+- The tutorial usage count and its name.
For transparency, you can inspect the source code where this is performed [here](https://github.com/argilla-io/argilla/blob/main/src/argilla/utils/telemetry.py).
-If you have any doubts, don't hesitate to join our [Slack channel](https://join.slack.com/t/rubrixworkspace/shared_invite/zt-whigkyjn-a3IUJLD7gDbTZ0rKlvcJ5g) or open a GitHub issue. We'd be very happy to discuss how we can improve this.
+If you have any doubts, don't hesitate to join our [Slack channel](http://hf.co/join/discord) or open a GitHub issue. We'd be very happy to discuss how we can improve this.
diff --git a/docs/_source/tutorials/notebooks/labelling-textclassification-gpt3-fewshot.ipynb b/docs/_source/tutorials/notebooks/labelling-textclassification-gpt3-fewshot.ipynb
index 3d0149a73b2..e6e3b537c80 100644
--- a/docs/_source/tutorials/notebooks/labelling-textclassification-gpt3-fewshot.ipynb
+++ b/docs/_source/tutorials/notebooks/labelling-textclassification-gpt3-fewshot.ipynb
@@ -1,5265 +1,5265 @@
{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "d018ede1-93e5-44f7-a8b8-ea8436d063c1",
- "metadata": {},
- "source": [
- "# ๐ก Build and evaluate a zero-shot sentiment classifier with GPT-3\n",
- "\n",
- "In this tutorial, we'll **build and evaluate a sentiment classifier for customer requests in the financial domain** using GPT-3 and Argilla. \n",
- "\n",
- "GPT-3 is a powerful [model and API](https://openai.com/api/) from OpenAI that performs a variety of natural language tasks. [Argilla](https://www.argilla.io/) empowers you to quickly build and iterate on data for NLP.\n",
- "\n",
- "In this tutorial, you'll learn to:\n",
- "\n",
- "- Set up and use a zero-shot sentiment classifier, which not only analyses the sentiment but also includes an explanation of its predictions!\n",
- "- Use Argilla to evaluate the quality of predictions and review an existing training set.\n",
- "\n",
- "This tutorial highlights the potential of building human-in-the-loop workflows involving large language models like GPT-3. \n",
- "\n",
- "Let's get started!\n",
- "\n",
- "![Screenshot of Argilla UI](../../_static/tutorials/labelling-textclassification-gpt3-fewshot/labelling-textclassification-gpt3-fewshot-1.png)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "dfcfb8a8",
- "metadata": {},
- "source": [
- "## Running Argilla\n",
- "\n",
- "For this tutorial, you will need to have an Argilla server running. There are two main options for deploying and running Argilla:\n",
- "\n",
- "\n",
- "**Deploy Argilla on Hugging Face Spaces**: If you want to run tutorials with external notebooks (e.g., Google Colab) and you have an account on Hugging Face, you can deploy Argilla on Spaces with a few clicks:\n",
- "\n",
- "[![deploy on spaces](https://huggingface.co/datasets/huggingface/badges/raw/main/deploy-to-spaces-lg.svg)](https://huggingface.co/new-space?template=argilla/argilla-template-space)\n",
- "\n",
- "For details about configuring your deployment, check the [official Hugging Face Hub guide](https://huggingface.co/docs/hub/spaces-sdks-docker-argilla).\n",
- "\n",
- "\n",
- "**Launch Argilla using Argilla's quickstart Docker image**: This is the recommended option if you want [Argilla running on your local machine](../../getting_started/quickstart.ipynb). Note that this option will only let you run the tutorial locally and not with an external notebook service.\n",
- "\n",
- "For more information on deployment options, please check the Deployment section of the documentation.\n",
- "\n",
- " "
]
- ],
- "sequentialminus": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ]
- },
- "colorway": [
- "#636efa",
- "#EF553B",
- "#00cc96",
- "#ab63fa",
- "#FFA15A",
- "#19d3f3",
- "#FF6692",
- "#B6E880",
- "#FF97FF",
- "#FECB52"
- ],
- "font": {
- "color": "#2a3f5f"
- },
- "geo": {
- "bgcolor": "white",
- "lakecolor": "white",
- "landcolor": "#E5ECF6",
- "showlakes": true,
- "showland": true,
- "subunitcolor": "white"
- },
- "hoverlabel": {
- "align": "left"
- },
- "hovermode": "closest",
- "mapbox": {
- "style": "light"
},
- "paper_bgcolor": "white",
- "plot_bgcolor": "#E5ECF6",
- "polar": {
- "angularaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "bgcolor": "#E5ECF6",
- "radialaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- }
- },
- "scene": {
- "xaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- },
- "yaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- },
- "zaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- }
- },
- "shapedefaults": {
- "line": {
- "color": "#2a3f5f"
- }
- },
- "ternary": {
- "aaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "baxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "bgcolor": "#E5ECF6",
- "caxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- }
- },
- "title": {
- "x": 0.05
- },
- "xaxis": {
- "automargin": true,
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": "",
- "title": {
- "standoff": 15
- },
- "zerolinecolor": "white",
- "zerolinewidth": 2
- },
- "yaxis": {
- "automargin": true,
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": "",
- "title": {
- "standoff": 15
- },
- "zerolinecolor": "white",
- "zerolinewidth": 2
- }
- }
- },
- "title": {
- "text": "F1 Metrics for single-label (averaged and per label)"
- },
- "xaxis": {
- "anchor": "y",
- "autorange": true,
- "domain": [
- 0,
- 0.2888888888888889
- ],
- "range": [
- -0.5,
- 2.5
- ],
- "type": "category"
- },
- "xaxis2": {
- "anchor": "y2",
- "autorange": true,
- "domain": [
- 0.35555555555555557,
- 0.6444444444444445
- ],
- "range": [
- -0.5,
- 2.5
- ],
- "type": "category"
- },
- "xaxis3": {
- "anchor": "y3",
- "autorange": true,
- "domain": [
- 0.7111111111111111,
- 1
- ],
- "range": [
- -0.5,
- 5.5
- ],
- "type": "category"
- },
- "yaxis": {
- "anchor": "x",
- "autorange": true,
- "domain": [
- 0,
- 1
- ],
- "range": [
- 0,
- 0.8114035087719298
- ],
- "type": "linear"
- },
- "yaxis2": {
- "anchor": "x2",
- "autorange": true,
- "domain": [
- 0,
- 1
- ],
- "range": [
- 0,
- 0.8187134502923976
- ],
- "type": "linear"
- },
- "yaxis3": {
- "anchor": "x3",
- "autorange": true,
- "domain": [
- 0,
- 1
- ],
- "range": [
- 0,
- 0.9090909090909091
- ],
- "type": "linear"
+ "metadata": {},
+ "output_type": "display_data"
}
- }
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAFoCAYAAAA4tTiaAAAgAElEQVR4XuydB5gUxdaGDxvJIDkrohhQMIN4EWQVJO+SRIKAxCVKzjnnnCQKgiCSk0gGSaKggqKggpJzDptvnVp7nLhdvTPM9Ox+9T/3+e+lazq8daq3366q02kSRCEUEAABEAABEAABEAABEAABEAABrxNIAyHzOnMcEARAAARAAARAAARAAARAAAQkAQgZAgEEQAAEQAAEQAAEQAAEQAAEfEQAQuYj8DgsCIAACIAACIAACIAACIAACEDIEAMgAAIgAAIgAAIgAAIgAAIg4CMCEDIfgcdhQQAEQAAEQAAEQAAEQAAEQABChhgAARAAARAAARAAARAAARAAAR8RgJD5CDwOCwIgAAIgAAIgAAIgAAIgAAIQMsQACIAACIAACIAACIAACIAACPiIAITMR+BxWBAAARAAARAAARAAARAAARCAkCEGQAAEQAAEQAAEQAAEQAAEQMBHBCBkPgKPw4IACIAACIAACIAACIAACIAAhAwxAAIgAAIgAAIgAAIgAAIgAAI+IgAh8xF4HBYEQAAEQAAEQAAEQAAEQAAEIGSIARAAARAAARAAARAAARAAARDwEQEImY/A47AgAAIgAAIgAAIgAAIgAAIgACFDDIAACIAACIAACIAACIAACICAjwhAyHwEHocFARAAARAAARAAARAAARAAAQgZYgAEQAAEQAAEQAAEQAAEQAAEfEQAQuYj8DgsCIAACIAACIAACIAACIAACEDIEAMgAAIgAAIgAAIgAAIgAAIg4CMCEDIfgcdhQQAEQAAEQAAEQAAEQAAEQABChhgAARAAARAAARAAARAAARAAAR8RgJD5CDwOCwIgAAIgAAIgAAIgAAIgAAIQMsQACIAACIAACIAACIAACIAACPiIAITMR+BxWBAAARAAARAAARAAARAAARCAkCEGQAAEQAAEQAAEQAAEQAAEQMBHBCBkPgKPw4IACIAACIAACIAACIAACIAAhAwxAAIgAAIgAAIgAAIgAAIgAAI+IgAh8xF4HBYEQAAEQAAEQAAEQAAEQAAEIGSIARAAARAAARAAARAAARAAARDwEQEImY/A47AgAAIgAAIgAAIgAAIgAAIgACFDDIAACIAACIAACIAACIAACICAjwhAyHwEHocFARAAARAAARAAARAAARAAAQgZYgAEQAAEQAAEQAAEQAAEQAAEfEQAQuYj8DgsCIAACIAACIAACIAACIAACKQaIYuNi6OEBKLgoEC/b/WY2Di6/+AhpQ0NodCQYK9dz/Wbd2jt5r3099mLFBwcTHWqlaWnCxfw2vGdHejBw2iKjomhDOnTUlDgo2vbPQeP0qEfj1PDWhUoV46sHr3mL1Zvo2vXb1O7jyMM7Tc6Ooamzl9FRZ8sSFXfe9PQb11VPn3mIq3cuJvKlX6JXnmxqPI+N20/SMdP/k0lX3me3nr9BeXfoSLRZ8s3E7dliwZVTYPjxF9naf2WfVSh3Ov0wjOFTXNeSZ2I2fvR4pVb6NKVG1Q5rBQ9+1Qhv2CKkwQBEAABEPAOAb8UsuJhH1NcXLxLQusXjqDChfJaticIEwur21n+7+3LJyiTnfvFRho/60tZf9GU3g4PqPwQVbJqG/kwxWKyev5Q5X1zRb6GAWPn09NPFqDGdSoq/3bxyq00fPLnVLtqWRrUtany79ypeOXaTarwYTd5rVoZ2LUJ1alazp3duv3bNr0m0K79P9H4gW2ponh4fFRlyISFtHTNdlo8rS+9VOwpjx6mUoPu9M+5y/TLzgWG9nvrzj0qXa0tvVbiGfpsUi9Dv3VVefu3h6l938nUtmkEtWlcQ2mffO58DTmyZZF94LEsmZR+h0qJBEpXb0v8YuHIN7NNg2T1199Sn5FzqHeHBtSg5numOa+kTsTs/eiHn0/QRx2GU95c2WjzF2MpMDDAL7jiJEEABEAABB49Ab8Wshefe9IpoUmD21PunI/RX/9coB+PnaSv1u+in379U/6bESGbvXg9TZz9lTzGGy8/S/Mn9LQ53pfrdtKgcYkP0UWeyE9rFwwz1GIsNy9XaCHfQC+bNUD5t5t3HhLntZxqVn7ba2/VR0/7Qr7JZwHr1LKOGCELovj4eMqYIZ3yeT+KimOmL6Xtew/TQCGmJV9+7lEcQu4TQuYabaP2w+nw0RO0afEoKpQ/9yNrg5S6YwiZZ1rW7ELGV7lk1TYaNmkRdWtTj5rUfd8zF469gAAIgAAI+D0BvxWyQDE9Te+N8tCJi4insWjFHSHjfaz9bDgVeTyfZX/l63Siq9dvyZEubwqZL6KuWZfRdOCHX2nDopH0RME8vjgFnx4TQuYc/5bd39Mn/adSvRrlqV+nj3zaRv56cAiZZ1rOH4QsPj6BKtTrQpfFjAN+OcijyiggAAIgAAIgkKKFjKfZXbtxW7Zyreb9kz1CxtMJeXTo/XfeoHED2sj98Zqi1j3GUZMP3qcFy752EDJeszZ13iq5DuPC5etyJOmt11+kAZ0bU5bMGejuvQdy+srvf56RU1eeKZK4poDXhfH0yIXieOu27BfHi6Q/Tp2jDdsO0NnzV6hNk3D5+2GTPqfGdStS1Xf/WzvEU9h4xOjAD7/IP/j8x75MyeLU7MMqYuQil5wWNXvxOrkOjLfz+rMnC+WjutXfoVpV3nbZG/qOmktrv9krxfP5ok/Iek8Xzk/De7WQ/33voWM0buYy+uP0OXEtgVRM1BnYpQk9JepoJanrKftmCZfHXiPOdf7STfT3uUuyDk/3qVjuDTkymD5dKPG6jNVf76VRfVuJa0mcptpj6Cy6eOU69WrfgEZMWUxHxCgpl/+98SKN6NVS8rMuvA8+BrdTiGDyTumX5To5Pq8OzWrJqq6E7Lc//iEW/19OnJbTOZlz51Z16b23X3N5TfYb7B8kWfL5Gk78dYa4TZk7t+UHop34unl0kos2ZZHXelUOK0mLvvpGnPclypY1EzWrX8XhDfyNW3fEdSyiA4d/oVu378l98rTXNo3DLdOnjE5Z5JcSvC5mz+op8rjWpdfw2XLd3TWx9pDZcB8I+98r9EmLOpZ1eAPHLpDsOM7tR9cWfPk1bdh6gHq0/VBOy+TC/WDWonV0+swFGWvPFClIQ7p/bLOWUWv/ueO70xdiROLb747Snbv3aZyY1rr92x9EzGwlvjfcfxAlz4lHqD9pUZvsR9w5HgaKKcXf/fibpW15evGFS9dp8tAOMha1onJeXPfw0ZNyhITjhvt9ieefEqP3f8hr0XvBpBoXfF2NO46gN156loqJa5u5aC39Kfom95cPhDh3Evytp8vFxMTS6OlfSLYcF9yOuXI8Js9RZcqixpv7Ct8Hjv1+Sl5PBdEHuG24T2lF777I9azPn+N4wbJNog//QVkyZaCpwzu67FfOhEwlBo32I5VrSKofrRf39R7DZuElhvIdEhVBAARAIOUTSNFCZt18xco1SbaQTREPXxPnrJAPNTtXTKSc2bNS/TZD5IPH14tH03v1utoIGa9Zq9tqEP0qHjT5wefNV4tZHup4lG7L0nF09/4Divi4r3yY5cL/ziV9urTEa+D6jZ4nkyvkz5ODzl28arkUnupSKF8uh3U+vJ+qH/WUDzP8oJ03d3Ype1qyAH7g1NZbyYfQZwuLB8tr8gGeH9QObZrlMtp5TRE/YFifJy9Knz6ik5ChxLUmXPih+aGQPubCZemM/paH3KSux9XUHW16DzMs/lwRIZRRdPLUWSko2kidM1F6V6wX5IdprfCDMwso/44li89bK4PGf0Zfrt0h2+m5px6nmNhYyY1LmZIv0sxRXeR/d3ac3Qd+osieiWsSec1iurShss25jO7XmqqIxfsqxf5BkgW8RtM+sl1YmFnAfj7+pzz/iEplaGiPZnK32oOkdgx+8H0sS0ZLTFk/TF++epOqNOoh44OFlK/1wOFf5U9rVHzLItdGhOy8iEuO/RLPF6El0/s5XCpPx40TLyaeEtN5M2VML9uOH/i5PTYtGSMT7GjTgj8SLz1YvLTCIwklq7SmKCFyB9ZPl/2C13Pyuk4uLKHnLl6xXOuWpWMpn+grXLT25+NYx8GqeUOlMLCgsTizdFy+ekOu3+P2X79wpPx3Lnxt74t1cZoMsyyyIPOLFC7Wo+Wq58VrHbkPcuF+nSVzRhFr/8hjcNvpCVly44KvLZe4Z2ksendoKNaFvSvPg+9V/LKKY57PoahYC3vtxi2ruvpryJz1N+1YpV97gWaP7Wo5lt59kc9Vi2uO/1jBRlu3qsfImZCpxKCRfqRyb+drSKof8Ysxjm1ea7lr5SSVWwTqgAAIgAAIpHACfitk/BCjSYx1G43t30Y8rD3t0GzuChlnNuw8cJpc4F63Wjn5wMwPkS0bVqX/1WhvI2TL1+8Ub9YXUIWyr9HIPq3kSBSfb/u+k2QCipG9W1K1CqXlg4arNWSawPAfd37zXF6MLKQTo2f8UPLTL384CJkmWyw3LG1c+KH2i9VbKSAggKq9V1o8BETKh/xv10y1ZGdkKWPx6dK6bpKh/oEQTBYtfmjU3njzg8XbEe3lQz4/7BYVowdcNu/8TrCaLkcvVs4dIv8tqevJ/lhmp8euIB72WUat983ZJecs2UD1I96V4pmUkH0YHiZGq+rIh3keEeHELtwOP2+bJx/AeQSAH0ZZUFbMHiwllguvPaz2Ua8khYzjoWzNDlIwVswZbMmapj008ygDjxqpFPsHSb5GFuXnnn7c8vObt+7SO2I0igWHz5+L9iDJ7cEjEdpoKYtWs86j5ejPvrXT5LXytEKeXsgP4/UjwihNmjR07/5DIVRd5DVsWz6e8uTMluSDpP21aHHep2MjuU/78qOIUxZ/Lfslx2PDdkPlek5eM8kjUzxqx/2H4/LghpkiVtPI3Wgj0JXKl6Sx/SPplGiTqqJNuM8v/3QQaTHDo4Ijpy6R186jpFw0QeA26NG2Pr0qXhSwzLMEcRZJ/v/Wax95JHvGwjVylEzLdNii61ja9/0xatWommWUlPfNAs4irgmZ6nnxqMo7tT4hzlQ6eUgHCivzijxX/ve3qrcTmUJjdYXMaFxwu/Mo8QfVy0uuO/f9SG17T5SxyjHLhV/6cN/kvvr5VH4JkFb+u5Y4SGWETOPdsmE1ivyourw/sJBVb9xL3hvWiRdMPHqtel+0FiSW/Ugxgvvc04VEnN6V91lXxZmQqcSgkX6keg16Lza0+GIhw7RFlbsk6oAACIBAyibg10LGD3H2hUc/XhdTdeyLu0JWTkxjkw/gnNnutWLygZH/mPJDj72Q1Wk5UI6U8EMbj2ZpZfveI/9K3bvywVhFyBZM7OlwPfZ/7PmhrkRYM/mQuXftVKfp3/nNPgsZn+/KOUNsphOqhLgzIdv//S/UvOsYORLEI0LWpXLDHlIq9gr5yypGbTQhc3Y9ro6v7YMftK2nZlrXdyVkPCKmiYtWX0s+sXXZOClfU+atpJkL18pppDxtUys82shT8ZIaIfv+p9/ltDAW5fH/TmPVfl+lUU8pkt9//akYNQuRozqXxBRK68IjB5xanourtS/8AH7st9N0/tJVKZQ87ZMf6LXpgUllWWTRZOHc/MUYypc7B71YvqmMj92rJlOAkDGtcLZOTk7D/YZHD/UeJK2vYfLcFXL64Nxx3anUq887bUYW4ON//C1j4YoYpftm1yEpZNYjiDz1l/vTzFGd5RRbLtoLBh5544fySWKE+tPP11HfTxpR7SplLce6LaYivh3RgR4vkJs2fj5K/rsmCNYvD+xPjsWMR+x4hOz4yX9o1aY9lpFCFkeN1/510y2SyPvoOngGcYp/TchUz+vo8b+oXuRgOR3QXtSNriFLblzw6E6JdxPvEyzqXLQ+ob0k0jgZybLIvJ31N06IxCOg/cXaQp4qqXpf1OKap0cv/3Sgq9uDw7+76kd6Majajwrkzal8DXr9iPsdS6/2YkL5IlERBEAABEAgRRLwWyFTWXNh3WLuChk/ePNao+GTF8vdauvJtDf81kk9WHy0qU3OoobXKPFaCBUhc/YH2/6PPT9csgSUEt+A4nUzror2Vpa383QunvbFD0qvFtf/3pQzIUsqY5j24Ko9UGtCZuQBhNftcXZHLvwQyefLqe2rV3jL8pBsRMg69JtM2/YctmQD1P639QgXH0tFyHiaI093TKpoWQfL1uwok79YFxZAFkEu9g+SLNgjRJxxmn1nRXurntSDZO8Rs0muvxOZQfOItuZjJFVYdHhEUe9B0nof/MkGzmC6SUzb1ab6WW/n0ZchYn2d9acStO2jxMix9u00XoPYsttYy3RS7eUBx+jWL8fLn2ht5eoarKfduhIE/i2P8rbtNdGhPXgbj1qzmGhp/J31J3shUz0vFj5ei2k95VS7FlUh80Rc8L2Js6NqU5T52DxCar8G0BNCxmvSug+ZKdawVpbrKlXvi8n9nIMzIVOJQdV+xJl2Va9Brx9p9zbtRUiSnRMbQQAEQAAEUjwBCFkSTaytb+E1ZCxkPEWPH2D4AZNT3LOEORMy7Ttp1mtirA/Dv+OP53pKyPiDvLVbDHBYH2V/afymeL5YIL9UZJ60XltjPd3LFQ5nQqZ9p83ZlDVeTM+JQLQRseQIGZ/Ljn1HaMrclZZ1Xfxvcg2SkABeW2VEyDoNmCpGaL63CJk2MmM/aqciZNq18ygaj3Y5K/xZAhZJHqniUQ3rwtMDtTVP9g+S/CkFHrXiqUxtRRKX5595Qk4n5OQJPB3RiJDx98n4HHjEjLnxNFtnheOR41LvQdL6t1qb8igcjx5YFy37Io/Itm5UXY7yFhTrs9Z9s09+SsJayHjkppT4nh+L2H6xXmzD1v0yUUq3SJEaXCTN4cJTMPnaeUqus6nKGdKLa/w3MY0rIWMpZjnmwmLEiVd47R/3YV4TqgkZrxWt3qSPTGBjP0JjL2Sq58WJf8bMWEo929WnRrUr2LBSFTJPxIW9kPG9ytnLLU8ImZa8Qpv2qXpf9JSQqcagipBxP+I1sqrXoNePtKm2ELIU/4yFCwQBEAABJQIQMgNCxlV5fdRFMaVN+5CzMyHTptp9t3EmZUifuCbDWdGEzHpNh1YvKYGx/2PPD/uvV2ot18Z8I5IbqBT+DcsJj/LweTjLkme9H2dCpp0Hr6vjtSbWpWG7YTK7IY9wsAgkV8i0ffLowPc//i7Od4EcwdA+BO2OkHG2Ox7la/dxhFj78t9HkFWETFuP44l07/ZCVia8vZya+O2aKTYfWW7VfZxMSKEiZBp/rsvrgl6v1EqOYrHIJlX0HiStf6tN1+NROB49sC4sj+uFWE0c3M4m4yRPuxwlRj2thYx/p+2L42jZ2p0ygc6+ddNkZj0u2hQv7eVIUtfgSsh4xJBHDvlbevxRc61o6/40IeN1T8yLZfLIN3NsMhLaC5nqeWnrKvm+0d0qeQmfg6qQeSIu7IVMm955WKwN5bWuWvGEkGltqk05Vr0vekrIVGMwqeNZ9yN+QaJ6DXr9iNc9spRZJz5SuW+jDgiAAAiAQMokACFLol3tR8icVXUmZJokWGev037LCSNuijfyPP2OC0+l5BGMgxtm2OzeiJDxD7X045wVkEdttMIjYZzCnbP1HfrpN4fMf7yuhde38IL+l19wTIai7ceZkHHmvndqfyITMmgP/lz/H5GivlKDHvK6OEMeJ5BIjpDxGgtOy279oDh9wWqaJv7DI0f8CQB3hEyTKhbGr0RSD17rxp9JGCUelni6VVJryLTRFvvsfHz9LI/8aQEeIVMp9kKmvYXX1t/xPljQ6rYcIEc29YRMG+GxXq+kHcPZerw9B38WCVkKJmYhFdk0Oatm26YRIh3+f5Lq7Dq0aZssNyw51qVpp5H03ZHfyFqgOBFK9yEz5IsAeyHjzxSE1eksY4mFiEek+bda0c6LXzpwkgjrmOAHav5GHk9n5eJKyDgZzIRPlzukG+dvFfKInCZkvA/twVtbX8jrynaK0dpeQuh4JE9bQ6Z6Xlqf4AQy276cINcWcuG2imjWTyntvbtxwcezFzItg6r1KDePpPN0VJ5mqZrUw34NGSeh4YQx3Jb8vS2OLdX7oqeETDUGXR3PWT9SvQa9fqSNzu/4aqLlExAq9wrUAQEQAAEQSJkEUrSQcdIJlhAunHyAs381/XcKVOXypXQTWyRXyDjRAE+N4pEnzl5WoezrMn334aMniJNBWD/shjftK5ML8DeyOHkBJz/gh2ajQqZlpeNrZYl5UnzA+pffTkmx4Mxx/LDK0xp5lOTdMq+JKWY5ZHIFHjXgaVvrRAISFidXxZmQcV0tbTxLTUMxFYu/acTJF/hBjDP/aVKSHCHjB1BOJc9TKjmDI7P5Qqyr4kyD28TIG39+wB0h4/OvKR6GtTT3mgxoDPTS3nNmPs7Qx1JWS8jX4wXyyNToO/f/KNfl/LJzgdJdw17IOFkIxwnLx7tlXpUjslv3fC8zRHKxFzI+fqV3SopvTj0h178tWvGNrMvZCTlLIRf+/lWj9sPkf+c1jLxu8MLla2Ia4HEpBYun9aWXij1lSMi0tVY8OsajZNZF6zvMtPK/6f/5IZXFkou9kPG/aQkm+L87G3XjaYUcsyw1nNiDU+n/LF4m7BK8OWOjlnrflZDx+jGOYy6c5bBAnpwik+Ivsv9xsRYy6/7E9w2OOY0/17VOe696Xtr1cV8p/79XZeZIzuTIRS+lO9cxGhc8xY6n2lkXeyGzZsKxklFM/eRpwtqaR1Uh4xcFPNLPyV2iomLENxT3JX5r0epzBqr3RU8JmWoMasdT6Ueq15CUkPHfhdfECKx1chWbRsL/AAEQAAEQSHUE/FbI+A15Ut/O4pbUpqQ5a1X7rGLO6mhv1JOaJsVvgt+q0U5+mHb1/KGW3fADSn+RTlp74NI28DqdviJNuDbFi9d/caIQljUu/FDA2QE5bT6nWOY1LNrHmLV9aH/s239ck1qLNNNa4TUT/GabZUAr/PA3tEdzKZ+dBkyzHEfbzuc9flBby0eVXfUATch+3DLH8mFirsujQZx4g0eztMLX0LNdA5tU6Eldj6tjWn+QWqvDD+NDuzeTIyhceGSDRzisp/64eiDnVPw8dcw6CQWLMo+a8FRAfuhm1iyRnGTCeoTT2XH4+JzUYtS0JVJAra+fJVL7cLbeXcVeyPhTBCxP1uv8OMHEFbEGiuWJMyVy2nd+OHxTrL1yJgxaZjvrY3OM8TfjWKSsC+97hEhmkStHVouQ2ceWq2vQptFx1j7rD25zXLQTKdZZbLTCgvmsSF/OiVWcjdRt3nlIZiF19ckAZsyZHZes2mojR3xcHjHlqbNckkrqwS8LeCqdVlgYeT0Zxy8nixnRO/Fj51x4hG/W52vlh9n53Ku8W0oKLPc/6ym+qufFo6+85kwTQD4GH5tjkr+3pfcdMqNx4UzIeHoki6X1iDyvV+T1aVph/vztRH6ZY0TI+HeacPM94ON6leUnA7RPGfD+Ve6LWlw7O/+k+pKz5DgqMWi0H6lcg6t7NJ8/Z+nkqa/84mxQ16Z6twdsBwEQAAEQSAUE/FLI/Kld+MGUH4D5YT+/eCPvLFU/Xw+LHU9/5Ac/7Ttfyb1O3g9PJ8wtPnzL0/CsC08bO3fhivwwNadD54coTxR+6/vn3+cpSHzsl6dH8gOZJwonfLgkUpNzyvQcYkSMr8n6Ac8Tx7DfhyYG/DDJCQlUCjPnVPc5s2WVYpPUaKPK/niK3J9/n5PfCisoPp3g6ltt2r444QzXDxTfnHtKSDZ/dNlVYYHgKXS8tixfnuxOP5Ogco5cR1sbZb8uS/s9f2CZpyPyR5jtE3+oHsO+HscEjxreuHlb9ilrEVTZJ/c1njrMIxT80Woj8ZSU7KmeF4sVj0BxO2lTF1XOm+sYjQvV/fKLCRbFrOJj1UbbyZoJX9cd8aKAR4uT4qp6X1Q9/6TqGYlBI/0oOdfAv+HvKzInbZTfE9eIfYAACIAACPg3AQiZf7cfzt5NAjztMEumjGJk7HGZQIK/ScWJQ3i6lbPsgW4eLkX+XJtKZ+STBmYHwcK2RIya8VTiQuIbZ/dEPCwWI3OcJVIlK6nZr8+T55eUpHryOClhX9o0Z87A6yrjaUq4TlwDCIAACICAMQIQMmO8UDuFEdA+Vmt/Wdp3uVLY5T6Sy+ERiPfEW38e/V09f5gc5fX3on342/46eIovf+tPb8TS36/fyPlDyNRoaWn4+SPm6xeONDQyq3YE1AIBEAABEPBXAhAyf205nLdHCPDUvUMinf4lMa0uTnwwt3DBvPKbWc6+deWRA6bQnfDHnXnKWzGxBo/5+XvhKXy8hoyTtNy6fVcmkHlaJJbh9XYotgT4e2O8Dqt+RBjQJEGAPyVwU8RS2VIlZCIlFBAAARAAARDQCEDIEAsgAAIgAAIgAAIgAAIgAAIg4CMCEDIfgcdhQQAEQAAEQAAEQAAEQAAEQABChhgAARAAARAAARAAARAAARAAAR8RgJD5CDwOCwIgAAIgAAIgAAIgAAIgAAIQMsQACIAACIAACIAACIAACIAACPiIAITMR+BxWBAAARAAARAAARAAARAAARCAkCEGQAAEQAAEQAAEQAAEQAAEQMBHBCBkPgKPw4IACIAACIAACIAACIAACIAAhAwxAAIgAAIgAAIgAAIgAAIgAAI+IgAh8xF4HBYEQAAEQAAEQAAEQAAEQAAEIGSIARAAARAAARAAARAAARAAARDwEQEImY/A47AgAAIgAAIgAAIgAAIgAAIgACFDDIAACIAACIAACIAACIAACICAjwhAyHwEHocFARAAARAAARAAARAAARAAAQgZYgAEQAAEQAAEQAAEQAAEQAAEfEQAQuYj8DgsCIAACIAACIAACIAACIAACEDIEAMgAAIgAAIgAAIgAAIgAAIg4CMCEDIfgcdhQQAEQAAEQAAEQAAEQAAEQABChhgAARAAARAAARAAARAAARAAAR8RgJD5CDwOCwIgAAIgAAIgAEPByiIAACAASURBVAIgAAIgAAIQMsQACIAACIAACIAACIAACIAACPiIAITMR+BxWBAAARAAARAAARAAARAAARCAkCEGQAAEQAAEQAAEQAAEQAAEQMBHBCBkPgKPw4IACIAACIAACIAACIAACIAAhAwxAAIgAAIgAAIgAAIgAAIgAAI+IgAh8xF4HBYEQAAEQAAEQAAEQAAEQAAEIGSIARAAARAAgSQJ3H/wkKKjYylL5gyUJk0a0AIBEAABrxI4fvJv2rjtINWpVo4K5c+lfOxjv5+izTsOUb3w8pQ/Tw7l37mqOGfJBsqcMT3Vrf6O2/vCDkDAmgCEDPEAAiAAAiCQJIEPWg0ifrDZumwc5c2dHbRAAARAwKsEvly7gwaN/4xmjupMZUoWVz724pVbafjkz2nO2G705mvFlH/nqmLJKpGUM3tWWr9whNv7wg5AAEKGGAABEAABEFAmMGTCQvrh5xM0d3x3yv5YZuXfoSIIgAAIeIIAhMwTFLEPMxPACJmZW8dH55aQkGCKaUmp7TxUr1e1no/CB4f1EwLO4sgXseWLYzprIm+dh+pxVOv5SbjhNFMgAZUYVamjgsbbQubqvDFCptJaqJMcAhCy5FDz099s23OYpsxbSa0/qk6rv95D+77/hQIDA6liuddpaI9mtHrTtzT3iw30z7nLlDFDOurcsg59UKO85WrHzlwm5nAfoKvXb1FcXLxcT1Kx3BvUSdTjOdVaiY2Lo+kLVtOm7Qfp3MWrcl9vvPQctW0aTk8XLkDNOo+W0574POaK+djHfj9NL7/wNPXu0IB4rcpg8TZ+x94jdPfeA8qd8zFqXPd9alynoi51Ph5f34XL18V6lxgKCQmmki8/S93afEhFHs8n/+3DNkPk/PMJg9rZ7O/w0ZM0WEyHaFjrPapdtazctvrrb2nWorWSB+/rFXGOg7o1pQJ5c8rtGs+hPZvRbyf/oa17vqcr127R6L6taJX4rQqr+w+iaPS0L2jTjoPyerNlzUTPF32CLl25YTMaERMbRxNnL6f1W/ZL/sz0/XfeoB5tP6T06dLqskGF1E3g4pXr1Lr7eKpR8S3ZJ9dt2SfjrcTzRWjSkPZ09sIVGjllCR3/428JqnqFt2hg1yYUJO4PXCbPXUHbvz1CK+YMFveMAPlv6Oee7+fct3la1oEffhH3wijKkS0LNa9fRd6XsHYvdfdhX1+9dg+pHFZS3kO27P6ebt2+R0WeyE9j+0dS0ScLWE5RJY4nzv6Kdu77kRZP60vzlm6kg4ePy3vK0hn9nV6qMyFTeSbRpizy38pdB34i/lsfJ47zvzdeFH+rW8u/pVpROW8Ima8jMeUeH0KWctvW4cq0GxNvYJl6tfgzdPzEaSkw6dOFygcAFqaCQlh27f9RStehTTMtD/w1m/Wj6JhYeqnYU/ImxlOYfhW/L/XK81IeuPBbpbpivQn/+zNFCtIrLxalP/8+R98d+Y1aNKhKn7SoTa9XakVRQo54/1x4X3zczyb1okoNusub/dulStBT4ka/7dsf6O+zl6hBzfeksCVVxsxYSms376XXhfyxyJ0RIrVj3xF5bbtWTpb/v1mX0eJh51daPX+oPKZW2vedLB44D8t54YUL5aVJc1bQp5+vk5z44fTkqbPyd3yuO1dMonRpQ0jjybKmCSDvj+eqD5u0SJdVfHwChX/cl/48fU4KX9V335SytffQUcnGer2OtoaH//iVFWz4Dwv/rvRrL9DssV1TURTjUpND4NQ/F6jqR73kT1moSr78PN25d5+OHv9Lxh7HLz/8lyhWhL7/6Xf5oGW9VqNDv8nyBcSPW+dScFAg+vkj6OfXb96hsLqdZVvwPfVp8YC7Yet+4n/v1qYeNREvplBAwFcErO8hfM94TTw//HLilLxX8D1l39pp8u+jahy36TVBPGf8ZHn24L/P/Fzw87Z5ykKm8kxi/9xT/Lkn5cto/hv7ovjvmgCqnjeEzFcRmPKPCyFL+W1suULtxsRyw2+L+CbKN0AWJC4LJvYSAvW0/O9rhNj0HjGbxg9sK0fQuPAoDT+MWZdazfvTb3/8I2+ivD8eVeozcg6VfbMETR/RyVKVb+aXr90UD4LPyeOx/LGc8bnwjZiL9gZMEzf+N75pRggRZPnQSyjg7Pz4Ldzsxetp4eTeQkCL0p6DR6l1j3FyFGxQ16byuLfu3KPS1drSC88UpmWzBtB5IYTv1esqhXLl3CGWa+DsShM+XU4DOjeWGZY0nix2I/u0pGefKmSpq8Jq5cbd1G/0PMlq0pAOFrYsc0tWbbNcL4+K9Rg2i5rWq0RdW39gOUbTTiOl6G5aPNpQ1qlUFPK41H8JaA9THOOfjukqXzRw0US/u7gfaKPQl6/epHdqf2LTR+yFDP08Eawn+3nP4Z/Sum/20dxx3anUq8/L/fOIweuVWlNIcBAd3DAD8QwCPiOg3UP4JSu/rMmQPi3xS8X+Y+bRqk17qHOrutTsw8qkGseakFUJK0V8/+EXQkkVZyNkKv1P+zvNzxUdmtWigIA0cnZAvcjBxNfEo/78t1v1vCFkPgvBFH9gCFmKb+L/LtBVtiEeleKRmUObZlkq/3HqHNVo2kc+pPHNkgvffDfv/I52H/hZjFpdlL/haQwsTfx2jB/yOg+cLutMFoIRVuYVp3RZyPLnySlHqayL9ttdKyfZ3Jy/XLeTBo1bQGP6RRJPl0iq8HSEr8X0v9//PCOmD96U/2H5GzegjZzixyN4b9VoJ2/I34vr5Td9C778msZMX2qpoz1s8uiT9mDEx7xw6Rp9sXob1Y8Ioz4dG1mEzFn2JhVWPYbOovXiDTiLK0uZVuyFrPuQmbRBTBVt8sH7YkrjfwkVdotRMh7NmDq8I71T+uVUFMm4VKMEtIcpjqFukfUsP+dkHUvXbBdSP0pIfW7Lv79coQUVzJeL1i4YJv/NXsjQzxNRebKflwlvL18OdWxe26Z5Fy7fbLk/ay+vjLY/6oOAuwRc3UMOHP5VLkPgv6/8d1Y1jjUhO7ZjvtJ0XGdCptL/XD33jJ/1pViisZGG9WxO4e//T/m8IWTuRhJ+74oAhCwVxYarG1P1Jn2EbFy1ETJeN8Wi1qh2BerZrr6UmqafjJSpr/mhgNc58QMbr3XgKY+akGkjZtZTHe0RuxIy7bdHt8+Xb7G0wuIR2XOCHFHjt1yuysipS2jRV9/IkbrnnnqcniiYRwojS4smZPxbnorIUxK1G/G7YpoQPwgdWD9D/lYbVePrDBZvpu1Lzcpvy5EqVzxVWWmjE/as7IWsTsuBcgqoNqphfz58HRCyVNSRk3Gprh6meP3iZ+KB317IuI/mzpnNktrZXsjQz0n5nqjSz/PkykYvvJM4Yu+qn29YNJIey5IpGa2Pn4CA+wRc3UNu3rorX3K+IdZrzxvfQzmO3RUy1b+zrv5Ob955SLxAnibXwPPInmr/g5C5H0vYg3MCELJUFBnuCJl286pUvqScnqct9u87aq6crqAJmXaTXTSlt1w/5qy4EjKWLpYvntPNc7u1wtN4eDrBkO4fE8uQs8Lz2EtXbys//PjlrIGUNUtGWY0/JNltyAwbIdP+gPCUxAFdmlB9keiDb8g85YILTxdkKbKerunsmHo3ej1W7XpPkmvclkzvJ5MraMVeyDSm+9dPt0mekopCF5fqJgGjQmb/0GEvZOjnJGYCJD7Qeaqf830xS6YMtPXL8W62Nn4OAp4n4Ooewok52vaeSBGVysjkYKpx7K6QqfY/V3+ntZkwo/u1Jp42qXreEDLPxxb2mEgAQpaKIsEdIdOG9+2nDfJ6LF6XpQkZZ1ecJv5jn4SD10Kcv3hNrnVyJWTabzn7YvuPa1paplX3cfTtd0ctc72dNdnBI8fp406jLH8UtDo8YsYjZ9YjZLxNe8BkKePpjTu+mki5cmSVP+NEBzy/3HrBr7Y/fivHo2l5xRttvakQeqx4bRuPxnHmOxbDUDF9khcW8/XyiJi2Zm7WonUyy13bJuHURvzHuvAIIGe4RKbFVNSRk3GpnhYy9HMi1Xuiaj9v1H64yAB3wrLe1bqZ/xJrXZ4UyYZQQMBXBFzdQ7SXstoLU9U4dlfIVPufq7/TjTuOkLNntNkBqucNIfNVBKb840LIUn4bW67QHSHjDGssMbzwllMwc1knkk1wsg0umpDdu/+QytXqKKfzNKj5rszkeOb8ZTmVkN+gaVkWna0h43VdZSI6yJS0vPiW0+h+veM7mWCE13LxYndXhUWG567zlEOeZplPpNX/9rtjcsSNi72Q8VqzRu0T18c4y1So/bHgxb4fhodJWTr621+0fP0uscajlsx45oqnKitO8V+2ZiIrXsvGU0A1nnxempA9eBgtsq91ktms+DMD5f/3Mt0TrA7xHxOR6n/VvKE2KYdTUUjjUhUJeFrI0M8TP3uhck9U7ecn/jpLESLrqnYP42xwZ85fkZnoeKr4kW9mK7Y2qoGA5wlo9xCeUttQJOPKKV5gfv/j73IdNL+g3PzFWBm7qnHsrpCp9j/t7zTP2KlZuYz8tM5nX26W2Zzfe/s1mjg48RM4qucNIfN8bGGPiQQgZKkoErSpeNZZvPjyw5v2FTenKzZryPi7RBU/7EYfiaQenJFRSs3ML+nzlVtkWmYunF2Qb8CcZXHfOpHUQ0y34fLn3+ep57BP5SiPVvj7WsN7taAyJYvLETKWD+sMhlo9Hq2K7DlefodLK5zwwv57Ic6ajRNf8JoYTjbChVPwlnzlOfngNH5gGykz1oXXjvH6N84699brL9hsYwmaKr5ptmjFN5b0/FyBR/iG9mguMza64mmEFWe0GzHlczkqlzFDesnnkhj14mv5buNMmcmKC4+EDRw7X45GWhf+I8N/ULI/9l+yD2ds8G+pm8DpMxepSqOeDpk6OZkNJ7Wxz9TJDx28hsxVUg/088R4Ur0nqvbzI8dOyuy2vIZXK3yP5U9i8P0TBQR8RUATMu0TOdp5aN8yzJk9cYYJF5U4Nixk/yb3mjmqi/g7+aJy/9P+TrNI8ktNrZT/3ys0Siy/sJ5donLe9vdGX7UHjpvyCEDIUl6bPtIr4jSzLFq5cjwm34olVXjkh8WOZcGoMPADzIXL1+S3yDQpUb0wFkROxsFTfNz9mCpnZbwo5JBHpPLlyW5oaqARVtbXxt9WOSUeoJ29Eeepn2fFW3Mu+cUHqu0/Q6DKCPVAwFME0M/V74mq/ZyZ8ksyfkmTW9xrrZMceardsB8QMELAepSdZ7DwS9Mc2TIn+TfRG3Fs5O8sv4DlbMlFHs/nMnkOM/HGeRthj7qpgwCELHW0M67SpAR4/j2PuvFHYNOI/+MpiDwFhKdJ9v2kkUnPGqcFAiBghAD6uRFaqGtGAq6mPZvxXHFOIOCPBCBk/thqOOcUQ6B8nU420zP5wngqxcjeLQ2PDKYYKLgQEEhhBNDPU1iDpsLLgZClwkbHJXuVAITMq7hxMBCwJcDr8U6cOkvXrt+W33crLKZZcuIUFBAAgZRDAP085bRlar0SjuFfxHKFvCJhVh6xvhQFBEDAswRSrZDx4s6Y2Fjlh1/OABglbkhG10J5trmwNxAAARAAARAAARAAARAAgZREINUJGYtV865jZFY7Lvwh4YXiI8au3vhwatQug6ZbMgYWEIkUONvVS8WeSklxgGsBgRRNwOj32njBeib5fbfQFM0FFwcCIAACIAACIOB7AqlOyMbOXEbLRfrUVXOHiDU66cQHgAfJaWLTR3Ry2hrNOo+mG7fu0NIZ/SlApB/u0HeyXPOzYs5g37cezgAEQCBJAn+cOkcfdRxuSXfMn1CYNLi9zMLprGzZ/T1xKvgr4tMJ/D28F54pTDNGdbZ80gG4QQAEQAAEQAAEQMDTBFKdkPHi6krlS1K3yHqS5YoNu6n/mHl0bMd8pynSKzXoLrLg5aZZo7vI+guXb6Yp4vtUhzbNkv/7/LUHnm4T7A8EUiyBjOmCKHP6YK9dH39CgF+8zBrdWX5kt07LAdSzXQOqHxHmcA6cPvmld5uJD5q/R73a1yf++HGFD7tS7SplqXOruhQVE0/Xbkd57dxxIBDwdwLZM4dSaHCAX17G7fsxdPdBrF+eO04aBHxBIF/2dL44bIo5ZqoTsuJhH9PALk3EF9vflo14+OhJatR+GH27Zgo9liWTQ8Ou37KfegybRfzxw/oR79Jw8RHflg2qUZMP3oeQpZhugAvxFgFvCtn1m3eoTHh7mjO2G735WjF5iZ0HTqfzl67KEW/7wgL2RuXW8kPo/EF0Lq26j5MfP+cRdAiZt6IEx0kpBCBkKaUlcR0goE8AQqbPKKkaqUrI+CO/L7zTlMb0i6TKYSUll+Mn/6baLQbQpsWj5feg7Aunem3Qbqj4kGB++unXP8TDWSAtntqHni/6hHvk8WsQSIUEomLixBvzQK9cuda3t3453vIR86nzVtHKTbtp+/IJTs+h3+h5tHLjbqpR8S168bknabSYvjh/Qg+5ZhRC5pVmw0FSEAEIWQpqTFwKCOgQgJC5FyKpSsgYFY+QDeralCIqlZHktBGyvWumUtYsGR1o8hTHd8u8Sr07NKRbd+7RJ/2n0A8/n6DD38ymICFnmLLoXgDi16mLgDdHyA788Cs16zLaZvR7zpINNGvRWsuUY3v62789TF0Gz6BnihSUiX+eLlyA5o7vLrOrRsfG0/2ouNTVYLhaEHCDQPrQQAoJwpRFNxDipyDgNwQgZO41VaoTMhasymGlqGvrDyS5r9bvogFj5ztdQ3b77n16s2ob+ZHeahVK/ytwJ8QUx+G0bNYAueAfQuZeAOLXqYuAN4VMGyHbtny8JYtqUiNk2hRHnp7IyT/+PH2OPhZJfXgN6SKRiTU6NoFixTozFBAAATUCQULGIGRqrFALBPydAITMvRZMdUI2ZsZSKWErOctiurT0YZvBNlkWJ87+ijbv/E5OYeRSskqkTI0/W6xDyZghHfUXU5r2fX+MdqyYiBEy92IPv06FBLwpZJpgzR3XnUq9+ryk3WnAVLpw+brTNWSbdx4Sa8ym0a6VkyzfJ+QEPrMXr6eft83DlMVUGK+4ZPcIYMqie/zwaxDwJwIQMvdaK9UJGX+HjFPZH/v9lCSXN1c2WjS1r2WNSa/hs2nDtv3yAYzLkWMnZRrsn379Uy7uf6ZIIbno/7USz8jtGCFzLwDx69RFwJtCxmTDm/aV3xObKVLXnzl/meq2GmiTZZFHu/nbgiN6t6DTZy5SlUY9qW71d0SdxCyLDdoOES9i0tPyTwdCyFJXqOJqPUAAQuYBiNgFCPgJAQiZew2V6oRMw8Vvz6NjYlx+ENoeK09fjImJlWtJrAuEzL0AxK9TFwFvC9nJU2epYbthxC9iuLxdqgRNHvLfd8jK1uxomZLI2/kzGHOWrCf+IDyX0iI7Y99PPpLShqQeqStWcbXuE4CQuc8QewABfyEAIXOvpVKtkLmH7b9fQ8jUSaahNOqV/ahmAiX40dn69lS9LWTa1bJg8UhZZvEflcLTGrNmzkjp0oZYqiclZCk1tvnikxPf4OEYZSmVSVLxASFTudugjjsEvNmvknMvdOfa/O23EDL3WgxC5h4/TFk0wG/T5gC6eMk/M24ldZlvvxVHRYpAylRCwVdCpnJuenWSErKAC6cpZOlUvV343fb4x3JRdN1IovSO32hM6mICbl2jkHkj/O56VU44umFnis+ZT6WqpU6ae3coZPl0SnPjiqHf+UPlmOpNKa5I4nf+7AuEzB9a0L/P8Ys7J2nlvb+8chF9HnuVXgrN4ZVj+eNBIGTutRqEzD1+EDID/OZ/Fkin/k55o2SNG0DIVMMgpQpZ4F+/UuiYjqoY/KZefO6C9LD7JONCduU8pe3f2G+u08iJPhz8WbKEjOMj4NIZI4fyi7pRXSdCyPyipVLmSY66eYQm3/zJKxe3IW9VCFkSpCFk7oUhhMw9fhAyA/wgZLawbt8m4v+ktJIuXRrKnt35iCGEzL9aG0Lm2F4QMlsmEDL/6tMp7WwhZOZpUQiZe20BIXOPn0shi4sniolOeaNBjCswKIGCg4yDg5DZMtu1J4C27Uh5UzhrhcdRieIQMuM9xHy/gJBByPSiEkKmRwjbHyUBCNmjpGts3xAyY7zsa0PI3OPnUsju3CFavDSQolKglH1QO5by5DYODkIGIcMImfF+48tfQMggZHrxByHTI4Ttj5IAhOxR0jW2bwiZMV4QMvd4OfzaVZZFFrKpM4LowUMPH9AEu2vTCkJm3QzJXUOGETITBLOBU0gqqQfWkNmCDMAaMhsgnNQDa8gMdDYTVL19P4buPog1wZngFJIiACEzT3xAyNxrC4yQuccvyREyCJktXIyQYYQMI2Ru3nC8/HOMkGGETC/kMEKmRwjbHyUBCNmjpGts3xAyY7wwQuYeL4yQCQIYIbMNA4yQ2fLAGjIP32R8uDsIGYRML/zMJmTx8Ql0/tJVyp0zm1jrHKh3+nL7P+cuy4+/BwT8t+4bI2RK6HxeCUJm2wSXYx/QL9HXvNIu+YMyUtGQrJZjQcjcw44RMvf4YYTMAD+MkNnCwpRFA8FjgqqYsqjeCJiyaMsKUxbVY8edmpu2H6Qew2ZRHGfVEqVTyzrUvH4Vl7ucMm8lfb5iC0XHJE5NrBJWiob2aCb/O4TMnZbw3m8hZLas1947RZFXdnmlARbmCqOw9AUhZB6iDSFzEyTWkKkDhJBByDBlUb2/mKEmRsgcWwFp722ZmGWE7L5YsF2qahspYJGNw2nD1v3UZ+QcWr9wBBUulNehIQ8fPUGN2g+n6SM6Udk3S9Bvf/xDtZr3p3kTelDJl5+DkJnhBqRwDhAyCJlCmPhFFQiZm80EIVMHCCGDkEHI1PuLGWpCyCBkenFoFiHbuO0gdRsygw5/M5tCQ4LlaZeu3pYa1nyP2jQJd7iMnft+pLa9J9Ka+cPoqcL55faXK7SgbpH1qH5EGIRMr+FNsh1CBiEzSSi6fRoQMjcRQsjUAULIIGQQMvX+YoaaEDIImV4cmkXI5izZQPOWbqR9a6dZTrle5GB66on8lmmI1tcSFR1DER/3pbMXrlCLBlXpzt0HtHnnd1LQsmbJCCHTa3iTbIeQQchMEopunwaEzE2EEDJ1gBAyCBmETL2/mKEmhAxCpheHZhGysTOX0cZtB2j78gmWU27aaSRlzJCepgzt4HAZCQkJNHbGMlr7zV45onbh8nWKqFSGBnRpIpOB8JrRoMD/knzoccB27xPgBC49/jlAE2785JWDby1Uncplz+eVYyX3IPMu/EYtL+5M7s8N/e6LfO9RndxFLL8JtEqKY2hHqCwJQMjcDAQImTpACBmEDEKm3l/MUBNCBiHTi0OzCJnREbKvd3xHXQZNp71rpsoRsW17DlOngVOpXdMIatmwGt15EEP3H8bpXT62+5KAkOoRN47QpJveEbKN+arSK2lz+vKKdY+96s5fXkvqsSj3u/Rehv+SeuR+LK3u+aGCawIQMjejA0KmDhBCBiGDkKn3FzPUhJBByPTi0CxC5mwNWckqkdS4TkWna8gGjJ1P2789THtWT7Fc4getBokRtXQ0d3x3TFnUa3iTbDfLlMU/Y27RDw8ve4VKsdBsVCwku9NjIcuiV5rgkRwEQuYmVgiZOkAIGYQMQqbeX8xQE0IGIdOLQ7MIGWdZfL1Sazm61aZxDVq3ZR/1Gz3PkmXx5q27VKNpH2orRsDqVitHX67bSYPGLaAx/SKpUvk36M/T5+V2/n3H5rUgZHoNb5LtZhGyRXd+p57X9nuFyvI8Fal0WsfMoXxwCJlXmuCRHARC5iZWCJk6QAgZhAxCpt5fzFATQgYh04tDswgZn+d6keq+x9BZllNmsWLB4nLtxm16O6IDdWhWi1o1qka8/mjk1CW0ZvO39OBhlFxHViXsTerTsSEFBwdByPQa3iTbIWS2DQEhM0lgJuM0IGTJgGb9EwiZOkAIGYQMQqbeX8xQE0IGIdOLQzMJGZ8rfxT6zPnLlC93dgr5N/293jX8c+4SFcibiwKskhLgw9B61MyxHUIGITNHJLp/FhAyNxlCyNQBQsggZBAy9f5ihpoQMgiZXhyaTcj0zld1O4RMlZRv60HIIGS+jUDPHR1C5iZLCJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIWx/lAQgZBCyRxlf3tw3hMxN2hAydYAQMggZhEy9v5ihJoQMQqYXhxAyPULY/igJQMggZI8yvry5bwiZm7QhZOoAIWQQMgiZen8xQ00IGYRMLw4hZHqEsP1REoCQQcgeZXx5c98QMjdpQ8jUAULIIGQQMvX+YoaaEDIImV4cQsj0CHlue5z4EPIv0dfoXnyM53aaxJ6KheagzAHBXjlWcg8CIYOQJTd2zPY7CJmbLQIhUwcIIYOQQcjU+4sZakLIIGR6cQgh0yPkue3RCXFU6+ImOhx11XM7dbGnQEpDewvUooJBGR/5sdw5AIQMQuZO/JjptxAyN1sDQqYOEEIGIYOQqfcXM9SEkEHI9OIQQqZHyHPbIWSOLCFkEDLP9TDf7glC5iZ/CJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIc9th5BByJjA8jwVqXTavE4DCx+G9lx/8/aeIGRuEoeQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6RHy3HYIGYQMQua5/mS2PUHI3GwRCJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIc9th5BByCBknutPZtsThMzNFoGQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6RHy3HYIGYQMQua5/mS2PUHI3GwRCJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIc9th5BByCBknutPZtsThMzNFoGQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6RHy3HYIGYQMQua5/mS2PUHI3GwRCJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIc9th5BByCBknutPZttTNOqjdgAAIABJREFUqhWyW7fvUUxsLOXIlkW5TaKjY+j8pWuUN3d2Cg1J/Ho9hEwZH0HIIGQQMvX+YoaaEDIImV4cQsj0CHluO4QMQgYh81x/MtueUp2Q3b33gJp3HUNHj/8l2yJ/nhy0cEpvypMzm8u2OfHXWfqk/xT6++wlWadj81rUsmE1CJnBaIaQQch8JWQXr1ynzBnTU/p0aZWj9vbd+3Tz1l0qkDcnBQSkoaiYeLp2O8rp7wP/+pVCx3RU3re/VISQQcj0YhVCpkfIc9vNJGT3EmIpwXOXluSeQimAgtMEOK2DD0PbYsF3yLwUlI/gMKlOyMbOXEbL1+2kVXOHUIb06ahe5CAqXCgvTR/RySnecxevUoV6XemNl5+l5vWr0ssvPEX3H0RZRtYwQqYelRAyCJm3heyPU+foo47DiUfEuZR9swRNGtyegoODXAbupu0HacjEhZbfLJs1gF54pjCETL2rU8CV85S2f2MDv/Cfqg8Hf0bxOfMZOuE09+5IYQ+4dMbQ7/yhMoTMe61kJiEbcv0Q7Xh43isXPzNHWSoakhVC9i8BfBjaK2Hn9YOkOiErX6cTVSpfkrpF1pOwV2zYTf3HzKNjO+ZTmjRpHBqg5/BPafPOQ3Ro00wKCgx02A4hU49ZCBmEzNtCVrNZP/niZdboznTm/BWq03IA9WzXgOpHhDkN3A3bDlD3ITOpdtWy1KDme5QtayYxqhYqR9YwQqbe1yFktqwgZOqxY5aat+/H0N0HsWY5HXkeZhKyNpd30pr7p73CZ0e+cAiZFWkImVfCzusHSXVCVjzsYxrYpQnVrPy2hH346Elq1H4YfbtmCj2WJZNDA5QJby/Xi+XK8RhdvnqDnn3qcere9kMqlD+XrAshU49ZCBmEzJtCdv3mHeL+O2dsN3rztWISfueB08U60Ku0dEZ/h8BNSEigcrU+oaJPFqTZY7s6bIeQqfd1CBmEjAlkzxxKocHOp5qpR5NvakLI0tDeArWoYFBGpw0AIbPFsujO79Tz2n6vBCuEzCuYvX6QVCVk/MD1wjtNaUy/SKocVlLCPn7yb6rdYgBtWjzaIlnWrVCsXBMq8kR++jC8PIUEB9OMz1bT/YdRtPOriRQiRO3eQ+dv0K5ci6NxkwPowUOvt+kjP2DHNvH05OOOo4VJHTguLoGmzEqgU387jkI+8hN+xAf4+KN4KlHMGI94Mfl+wzfxtHV7yuNRp2Y8/a+kcx68FitdiDFWyW0+rW9v/XI85c2VuEZ06rxVtHLTbtq+fILDbq9cuymF7MXnniRO4PMwKppKv/YCdW5VV46SQcjUWwJCBiGDkKn3F9WaGCFzJIU1ZLZMsIZMtTeZr16qEjLGzyNkg7o2pYhKZWRraCNke9dMpaxZHN8EsZAN79WCalR8S9Y/eeoshTftK9+w84PbrXsxTlv12o14mjAlZQpZh8h4erygsbee8cJAps+mFClkTRvF0wvPGeMh3g3Q11uFkO0w9jvz3UIcz6hORDyVet35dQUFpqEMaV2v3/Lk9R344Vdq1mW0zej3nCUbaNaitWIK8iyHQ/34yx/UoO1QCivzCpV/6xW6efsujZ/1pVh39hJNGdqBomPj6UFUnNNTjPntKAWN6uDJ0zfFvjipR0LfqRSUMbOh84k5f5aC+jQy9Bt/qRw7bCEF5yto6HRjb9+mNMPbpcg1ZLHdJ1Hwc8Wd8kgXGkghQf55j8MIGUbI7IN6Q96q9FJoDqexjhEyonzZ0xm6L6KyLYFUJ2S8hqxyWCnq2voDSeKr9btowNj5LteQcf3qFd6iT1rUlvV/PXFarEMZSJ9N6kWvlXgGUxYN9ChMWbSFtWtPAG1LgUJWKzyOShR3nn/Lm1MWtRGybcvHW7KoJjVCpgnZzhUTKWf2xAXkny3fTONEIqCfts6lGDHKGyOkzFl5+OvPFDgyZQpZQL9pFJzZmJA9PHuGAnunTCGLG76I0hYwJmQxt25R/NCUKWRxPSZR2mIlnPaLYCFjEDIDfyR1qmKEzBEQRshsmWCEzHP9zdt7SnVCNmbGUilhKznLolio/2GbwTZZFifO/kok8fhOTmHkwv+bH8pWzBlMWTJloAFj5tPe74/RXrHmjBf6Yw2ZeshCyCBk3hQybQ3Z3HHdqdSrz0v4nQZMpQuXrztdQ8Yp7t+q0Y7mT+gps6pymb14vbwHcNKf6NgEpL1X7O6YsmgLCkk9FAPHRNUwQoYRMvtwxAiZLZGFucIoLP1/L6cwQubeDSzVCRl/h6xZ59F07PdTkhyvLVk0ta9ljUmv4bNpw7b99PO2eXJ7lFhL0rrHOPruyG/yf/NakmnDO1ke2CBk6gEIIYOQeVPImDZPL84kvj82cxRnWbxMdVsNtMmy2Kj9cPmdsRG9W8jGqdW8P/Fa0wViBPzylRuy7+fNnYMWiW8VYg2Zel+HkEHImACSeqj3GZWaGCFzpIQRMlsmGCFT6UnmrJPqhExrBn57Hh0Tk+QHoa2bjN+e84diC+bLaZMeH0KmHtgQMgiZt4WM13w2bDeM+EUMl7dLlaDJQ/77DlnZmh1FMp/cUri4nPrnglx3dknIGBdO6PPpmC7yPgEhU+/rEDIIGYRMvb+o1oSQQciYALIsqvYY/6qXaoXMU80EIVMnCSGDkHlbyDTi/IF3HinLLP6jUi5cukZBQYGWtWT8GwiZCrnEOhAyCFlKErLohHi6FHefYhOcJ/VR7xn6NYMogPIEZaDgNI7JUCBkEDIImX4f8tcaEDI3Ww5Cpg4QQgYh85WQqUep65oQMnWKEDIIWUoSsuvxUVT5/Do6E3tXvRMks2aewHS0OV91yiH+v32BkEHIIGTJ7Fh+8DMImZuNBCFTBwghg5BByNT7ixlqctr7hyKtOaXPZOh0IGQQMgiZoS5jqQwhc+S2I184FQ1JzHxrX7CGzJYI1pAlr9+Z4VcQMjdbAUKmDhBCBiGDkKn3FzPUhJA5tsLDwZ9RfM58hpoHWRYN4XKrMn/z8vylq5RbrPsMFtOOVcvlqzdl1Vw5Eh/8rbMsYoTMkWKbyztpzf3Tqnjdqgchs8WHNWRuhZNpfwwhc7NpIGTqACFkEDIImXp/MUNNCBmETC8Oo7pOpLgixZxW83aWxU3bD1KPYbMoLi7xe4GdWtah5vWruLwEljf+zuCS1dsoWmRUDgwMsGRYhpAh7b194CDtvS0RpL3Xuzsa2w4hM8bLoTaETB0ghAxCBiFT7y9mqAkhg5DpxaFZhOz+g4dUqmobKWCRjcNpw9b91GfkHFq/cIT81qiz0nfUXPGZmwPUokFVqlO1rPzMDX8GgwuEDEIGIUu690PI9O6OxrZDyIzxgpAJAm1axVKe3MbBQcggZBAy4/3Gl7+AkEHI9OLPLEK2cdtB6jZkBh3+ZjaFhgTL0y5dvS01rPketWkS7nAZnEn13Q+6UPe2H1LjOhUdtkPIIGQQMgiZ3v3Pk9shZG7SxAiZOkAIGYQMQqbeX8xQE0IGIdOLQ7MI2ZwlG2je0o20b+00yynXixxMT4lvCQ7t0czhMtZs3ku9R8ym995+jU78dYZCgoOpTrWy1EAIHBcIGYQMQgYh07v/eXI7hMxNmhAydYAQMggZhEy9v5ihJoQMQqYXh2YRsrFiLdhGMf1w+/IJllNu2mkkZcyQnqYM7eBwGdM/W0PT5q+iRrUr0AvPFKZjv5+iRV99Q/07fUQf1ChP9x7Gym8Pcrkc84AqnFnrtbT3WwuFU95gx28mPoiLo+pn19PhqKt6zeL29kBKQwcer0NPhjpmWBVL76j5+W205t5pt4+jsoPdBSKoWPpsjlUTEmjIlR9o4s2fVHbjdp1N+avSGxmcTw+ac+049bi2z+1jqOxgRd73qVym/E6rLr/5B7W+vEtlN27X+TzPu1Qp8+OW/WTLFOL2PlPzDiBkbrY+hEwdIIQMQgYhU+8vZqgJIYOQ6cWhWYTM6AgZC9kXq7bSntVTLJfYoutYevAwij6f2oceRv/3EejzD+5TudOrvSZku5+MoIJpMzqgvxcTSxVOrfWakH1fuC49mzGLw3nECiNreHqL14Rs7+M16ZXMORzOg5Oy9Dn/HU284R0h+6ZgNSqT1fl6xCkXj1H3K94RslX5K9H72Qo67ZqLLp+glpd26nVbj2xfkvc9ishR2LKvtCHqWU09cgIpbCcQMjcbFEKmDhBCBiGDkKn3FzPUhJBByPTi0CxC5mwNWckqkXJ9mLM1ZJyRsevgGfTjljkUHBwkL7NxxxH08GE0LZs1AFMWxQjZ3gK1qGCQoxgyK6S9t+0Zi+78Tj2v7dfrLh7ZjrT3HsFoup1AyNxsEgiZOkAIGYQMQqbeX8xQE0IGIdOLQ7MIGWdZfL1Sa2rZsBq1aVyD1m3ZR/1Gz7NkWbx56y7VaNqH2jaNoLrVytGt2/eoTER7qlX5berzSSM6ePg4tew2ljo0q0WtGlWDkEHIHEIfae9tkSDLot7d0dh2CJkxXg61IWTqACFkEDIImXp/MUNNCBmETC8OzSJkfJ7rRar7HkNnWU65Y/NaUtC4XLtxm96O6GARLv63bXsOU6eBUy3fLatY7g0a3a8VBQUGQsggZBAync4PIdO7OxrbDiEzxgtCJggg7b1tGDRuEEdFiohVzgbLrj0BtG1HgMFfmb96rfA4KlHcOQ8Imfnbz/oMIWQQMr2INZOQ8bnyR6HPnL9M+XJnp5B/098ndQ2xIlHG2fNXKEe2LCIBSDpLVWRZxJRF+7jBCJktEQiZ3t3R2HYImTFeEDIImUMMQMhskUDI3LypmOjnEDIImV44mk3I9M5XdTuEDEIGIUu6t0DIVO8mavUgZGqcXNbClEV1gJiyaMsKI2TqsWOGmpwC+9rtKKenEvjXrxQ6pqMZTtOj5wAhg5DpBRSETI+Qse15AtPR5nzVKYf4//YlOiGOal3c5LUsi0jqYdsCGCGz5QEhM9a39WpDyPQI6WyHkKkDhJBByDBlUb2/mKEmhAxCpheHEDI9Qsa2Q8gcee3IF05FQ7I6BTnq5hGa7KXvkEHIIGTGerOx2hAyY7wcakPI1AFCyCBkEDL1/mKGmhAyCJleHELI9AgZ2w4hg5DpRQzS3usR8s/tEDI32w1Cpg4QQgYhg5Cp9xcz1ISQQcj04hBCpkfI2HYIGYRML2IgZHqE/HM7hMzNdoOQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6REyth1CBiHTixgImR4h/9wOIXOz3SBk6gAhZBAyCJl6fzFDTQgZhEwvDiFkeoSMbYeQQcj0IgZCpkfIP7dDyNxsNwiZOkAIGYQMQqbeX8xQE0IGIdOLQwiZHiFj2yFkEDK9iIGQ6RHyz+0QMjfbDUKmDhBCBiGDkKn3FzPUhJBByPTiEEKmR8jYdggZhEwvYiBkeoT8czuEzM12g5CpA4SQQcggZOr9xQw1IWQQMr04hJDpETK2HUIGIdOLGAiZHiH/3A4hc7PdIGTqACFkEDIImXp/MUNNCBmETC8OIWR6hIxth5BByPQiBkKmR8g/t0PI3Gw3CJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIWPbIWQQMr2IgZDpEfLP7RAyN9sNQqYOEEIGIYOQqfcXM9SEkEHI9OIQQqZHyNh2CBmETC9iIGR6hPxzO4TMzXaDkKkDhJBByCBk6v3FDDUhZBAyvTiEkOkRMrYdQgYh04sYCJkeIf/cDiFzs90gZOoAIWQQMgiZen8xQ00IGYRMLw4hZHqEjG2HkEHI9CIGQqZHyD+3Q8jcbDcImTpACBmEDEKm3l/MUBNCBiHTi0MImR4hY9shZBAyvYiBkOkR8s/tEDI32w1Cpg4QQgYhg5Cp9xcz1ISQQcj04hBCpkfI2HYIGYRML2IgZHqE/HM7hMzNdoOQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6REyth1CBiHTixgImR4h/9wOIXOz3SBk6gAhZBAyCJl6fzFDTQgZhEwvDiFkeoSMbYeQQcj0IgZCpkfIP7enWiG7dfsexcTGUo5sWdxqOQiZOj4IGYQMQqbeX8xQE0IGIdOLQwiZHiFj2yFkEDK9iIGQ6RHyz+2pTsju3ntAzbuOoaPH/5Itlj9PDlo4pTflyZlNtwX7jZ5HKzfupr1rplLWLBllfQiZLjZLBQgZhMxXQnbxynXKnDE9pU+XVj1g7WpGxcTTtdtRTn8f+NevFDqmY7L3bdYfQsggZHqxCSHTI2RsO4QMQqYXMRAyPUL+uT3VCdnYmcto+bqdtGruEMqQPh3VixxEhQvlpekjOiXZgguXb6ZR076QdSBksZQnt/GAh5BByLwtZH+cOkcfdRxOPCLOpeybJWjS4PYUHByUZABHRcdQxMd96WFUNG1fPkHWhZCp9/mAK+cpbf/G6j/wo5oPB39G8TnzGTrjNPfuSGEPuHTG0O/8oTKEzLOtBCGDkOlFFIRMj5B/bk91Qla+TieqVL4kdYusJ1tsxYbd1H/MPDq2Yz6lSZPGaSvuPvATteszifp1+ogGjl0AIWsFIbMOlMYN4qhIkQTDd4BdewJo244Aw78z+w9qhcdRieLOeXhbyGo26ydfvMwa3ZnOnL9CdVoOoJ7tGlD9iDCXGBMSEiiy53jac/Ao5c75GISs+ySi9JkMhR2EzBYXhMxQ+Jii8u37MXT3Qaw8l+vxUVT5/Do6E3v3kZ8bhAxCphdkEDI9Qv65PdUJWfGwj2lglyZUs/LbssUOHz1JjdoPo2/XTKHHsjg+dJw8dZZqNe9P4wa0kdMb67QcCCGDkNn0dgiZ7c3PLEJ2/eYdKhPenuaM7UZvvlZMnmTngdPp/KWrtHRGf5d37DHTl9L6rfupeoW3aMO2/RAyCJlNrGCEzLbrYITMsw9/EDIImV5EQcj0CPnn9lQlZPzm+4V3mtKYfpFUOaykbLHjJ/+m2i0G0KbFo6lQ/lw2rXjtxm2q3LAHfVyvMrVqVI1+PXHaQchcrSm5cTOBJk0LpAcP/TMwkjrr9q3jqEB+56OJrn6XEE80a14aOvW3sd/5A70mjeLouaLGrovHj7ZuF/9JgSNktSPi6PVXnPMIDQ4kHiXzRtH69tYvx1PeXIlrRKfOW0UrN+22SJb9efAa0SETF9G6z4bTpu0H6YvV2yBkEDIIWRIdFkLm2bsZhAxCphdREDI9Qv65PVUJGTcRj5AN6tqUIiqVkS2mjZBZrwvTmvKr9btowNj5VPXdN+U/Xb1xiw788CuFlXmFmn5QiV5+4Wm5rsRZuXQ1lsZMTJMiheyTtgn0dGFjD9WxsfE0cUZ8ihSyZo3j6ZUXgw3dAeKFka3dFEtbthsTOUMH8VHlujXjqWxp5zz4pUjakECvnBn31WZdRtuMfs9ZsoFmLVpLhzbNcjiHQz/+JuvPn9CTXi1elGYvXm8jZNEihh9Gxzk99+jjRyloVAevXJc3D8JJPajvVArKlNnQYaPPnaWgPo0M/cZfKscOW0gh+QUXAyX29m2iYe1S5BqyWCHsIc8Xd0qD+3pIkH9Oy8aUxTS0t0AtKhiUmMDMvrS5vJPW3D9toBckv+qOfOFUNCSr0x2MunmEJt/8Kfk7N/DLDXmr0kuhOZz+YtGd36nntf0G9pb8qhCy5LMz8y9TnZDxGrLKYaWoa+sPZLto0uVsDRm/YeepS1q5cvWmmMJ0gOrVKE+1q5al555+HFkWDUQ3knrYwsIaMgPBk4yq2gjZtuXjLVlUkxoh6zRgKh08cpzKvJH4cPmLGBH/59wlqvROSerdoSGlE2vRol28gHl4/GcKGpkyhSxN32kUnNmYkEWdO0OBvVOmkMUNW0ShBYwJWcytW5SQUoWsxyRK+3wJpz00JDgAQmbw3oURMkdgEDJbJhAyg53KT6qnOiEbM2OplLCVnGVRpMD+sM1gmyyLE2d/RZt3fienMNoXZ1MWkfZePdIhZBAybyb10NaQzR3XnUq9+ryEz9J14fJ1p2vINu88RD8f/9PSSN//+DudEGtIOQFI5Ec1KDgkFGnvFbs7knrYgkJSD8XAMVE1jJBhhMw+HDFCZktkYa4wCkv/38upfNnTmagH+9+ppDoh4++QNes8mo79fkq2Fq8tWTS1r2WNSa/hs+VC/p+3zYOQuYjnNkjqYUMGST1sA8UsST34rMKb9qVM4vtjM0dxlsXLVLfVQJssi43aD6cCeXPSiN4tHKLdfsoi0t6r/4GDkEHImED2zKEUKkbJ/LFAyCBkELKkey6EzLN3tlQnZBo+fnseHROj9EHopJBjhEw9IDFCZssKUxbVYye5NTlLasN2w4hfxHB5u1QJmjzkv++Qla3ZUSTzyU2LxMfh7QuEjAgfhnaMPGRZtGVitqQe8WKBLmdSzZ0zGwUHJX+9KoQMQgYhg5Al99kjOb9LtUKWHFjOfgMhUycJIYOQeXPKojXtcxevypGyzOI/yS0YIVMnhxEyW1aYsqgeO+7U5MyoPYbNori4xGRbnVrWoeb1q+ju8vSZi1S9SW/5qYuhPZrJ+hAyCBmEDEKme/PwYAUImZswIWTqACFkEDJfCZl6lLquCSFTpwghg5AxAW9OWbwvvjFTqmobKWCRjcNpg0jI1WfkHFq/cIRcJ+6q3Lp9j6p+1JN41gxnX4aQJZIKJAgZhAxCpv5Xz/2aEDI3GULI1AFCyCBkEDL1/mKGmpiy6NgKmLJoy8QsUxY3bjtI3YbMoMPfzKbQkMTPbpSu3pYa1nyP2jQJd9qdYmLjqF7rQZQvTw66feceFcyXC0L2LykImWPIIKmHLROsIfPsX2kImZs8IWTqACFkEDIImXp/MUNNCBmETC8OzSJk/I3BeUs30r610yynXC9yMD31RH6LZNlfS5dB0+nkqXO0YvYgat51DITMChCEDEKm1/chZHqEjG2HkBnj5VAbQqYOEEIGIYOQqfcXM9SEkEHI9OLQLEI2duYy2ii+E7p9+QTLKTftNJIyZkhPU4Y6fiNwxsI1tGDZ1/ITN9myZqLGHUfYCJn1R+DPP7hP5U6vpjOxd/VwuL2dv0O2+8kIKpjW8YPM92JiqcKptXQ46qrbx9HbAQvZ94Xr0rMZszhUjRWJUxqe3kJr7p3W241Htu99vCa9ktnxg8ycwKXP+e9o4g3vfBj6m4LVqExW59Nfp1w8Rt2v7PPI9ertZFX+SvR+NuffQlx0+QS1vLRTbxce2b4k73sUkaOwZV/8IXiU5BOAkCWfnfwlhEwdIIQMQgYhU+8vZqgJIYOQ6cWhWYTM6AhZySqRlF9MVXy6cAF5iTv3/0hpQ0OoSlgp6t72Q7r7MNbyIfjLMQ+owpm1XhOyrYXCKW+wYwKiB3FxVP3seq8J2YHH69CToZkcQkB4EDU/v81rQra7QAQVS5/NMRQTEmjIlR9o4k3vCNmm/FXpjQy5nXaJOdeOU49r3hGyFXnfp3KZ8js9j+U3/6DWl3fpdVuPbP88z7tUKfPjln1lyxTikf2m1p1AyNxseQiZOkAIGYQMQqbeX8xQE0IGIdOLQ7MImbM1ZCxdjetUdLqGjAXuxq07lstbu3mvGE1LR7WqlJWJQZBlEUk97GMfa8hsiWDKot7d0dh2CJkxXg61IWTqACFkEDIImXp/MUNNCBmETC8OzSJknGXx9UqtqWXDatSmcQ1at2Uf9Rs9z5Jl8eatu1SjaR9q2zSC6lYr53BZ9lMWIWQQMghZ0r0fQqZ3dzS2HUJmjBeETBBo0yqW8jgftU+SJoQMQgYhc/OG4+WfQ8ggZHohZxYh4/NcL1Ld9xg6y3LKHZvXkoLG5dqN2/R2RAfq0KwWtWqU+G/WBUJmywNJPRwjHyNktkwgZHp3R2PbIWTGeEHIIGSOf8gbxFGRImJSvcGya08AbdsRYPBX5q9eKzyOShR3zgNCZv72sz5DCBmETC9izSRkfK78Uegz5y9TvtzZKeTf9Pd61+BsO0bIMEJmHxcQMghZcu4lqr+BkKmSclEPUxbVAWKEzJYVhEw9dsxQEx+GVm8FfBjallWae3codExHCrh0Rh2in9Q0m5B5ChuEDEIGIUu6N2GEzFN3m8T9QMjc5AkhUwcIIYOQYYRMvb+YoSZGyBxbAR+GtmUCIfNsT+W095vzVacc4v/bl+iEOKp1cZPXsizuLVCLCgY5pt/n82pzeSetuX/asxfvYm878oVT0ZCsTreOunmEJnspyyJGyGybAELm2fCHkLnJE0KmDhBCBiGDkKn3FzPUhJBByPTiEEKmR8jYdgiZIy8ImS2T5XkqUum0zr+HtvbeKYq84p209xAyY31brzaETI+QznYImTpACBmEDEKm3l/MUBNCBiHTi0MImR4hY9shZBAyvYiBkOkR8s/tEDI32w1Cpg4QQgYhg5Cp9xcz1ISQQcj04hBCpkfI2HYIGYRML2IgZHqE/HM7hMzNdoOQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6REyth1CBiHTixgImR4h/9wOIXOz3SBk6gAhZBAyCJl6fzFDTQgZhEwvDiFkeoSMbYeQQcj0IgZCpkfIP7dDyNxsNwiZOkAIGYQMQqbeX8xQE0IGIdOLQwiZHiFj2yFkEDK9iIGQ6RHyz+0QMjfbDUKmDhBCBiGDkKn3FzPUhJBByPTiEEKmR8jYdggZhEwvYiBkeoT8czuEzM12g5CpA4SQQcggZOr9xQw1IWQQMr04hJDpETK2HUIGIdOLGAiZHiH/3A4hc7PdIGTqACFkEDIImXp/MUNNCBmETC8OIWR6hIxth5BByPQiBkKmR8g/t0PI3Gw3CJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIWPbIWQQMr2IgZDpEfLP7RAyN9sNQqYOEEIGIYOQqfcXM9SEkEHI9OIQQqZHyNh2CBmETC9iIGR6hPxzO4TMzXaDkKkDhJBByCBk6v3FDDUhZBAyvTiEkOkRMrYdQgYh04sYCJkeIf/cDiFzs90gZOoAIWQQMgiZen99fwmmAAAgAElEQVQxQ00IGYRMLw4hZHqEjG2HkEHI9CIGQqZHyD+3Q8jcbDcImTpACBmEDEKm3l/MUBNCBiHTi0MImR4hY9shZBAyvYiBkOkR8s/tEDI32w1Cpg4QQgYhg5Cp9xcz1ISQQcj04hBCpkfI2HYIGYRML2IgZHqE/HM7hMzNdoOQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6REyth1CBiHTixgImR4h/9wOIXOz3SBk6gAhZBAyCJl6fzFDTQgZhEwvDiFkeoSMbYeQQcj0IgZCpkfIP7dDyNxsNwiZOkAIGYQMQqbeX8xQE0IGIdOLQwiZHiFj2yFkEDK9iIGQ6RHyz+0QMjfbDUKmDhBCBiGDkKn3FzPUhJBByPTiEEKmR8jYdggZhEwvYiBkeoT8czuEzM12g5CpA4SQQcggZOr9xQw1IWQQMr04hJDpETK2HUIGIdOLGAiZHiH/3A4hc7PdIGTqACFkEDIImXp/MUNNCBmETC8OIWR6hIxth5BByPQiBkKmR8g/t0PI3Gw3CJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIWPbIWQQMr2IgZDpEfLP7alWyG7dvkcxsbGUI1sW3ZaLiY2jC5euUc7sWSld2hCb+hAyXXyWChAyCJmvhOzileuUOWN6Sp8urW7A3n/wkK5ev0UF8uaigIA0lvpRMfF07XaU098H/vUrhY7pqLtvf6sAIYOQ6cUshEyPkLHtEDIImV7EQMj0CPnn9lQnZHfvPaDmXcfQ0eN/yRbLnycHLZzSm/LkzOa0BcfMWEoLln1t2fbKi0Vp4uB2lP2xzPLfIGTqgQ8hg5B5W8j+OHWOPuo4nPgFDJeyb5agSYPbU3BwkNPArRc52HJvCAkJpiphpWhoj2ayLoRMva8HXDlPafs3Vv+BH9V8OPgzis+Zz9AZp7l3Rwp7wKUzhn7nD5UhZJ5tJQgZhEwvoiBkeoT8c3uqE7KxM5fR8nU7adXcIZQhfTqqFzmIChfKS9NHdHLagnO/2EhPPp6XSr78HP31zwVq1H44Na5TkT5pURtCZjDmIWQQMm8LWc1m/WQ/nzW6M505f4XqtBxAPds1oPoRYU6jd8iEhRRRuQw9WSgf7dh3hLoPmUkLJvak1196FkJmoL9DyGxhQcgMBI9Jqt6+H0N3H8TKs7keH0WVz6+jM7F3H/nZQcggZHpBBiHTI+Sf21OdkJWv04kqlS9J3SLryRZbsWE39R8zj47tmE9p0vw3PclVc7bpNYHOXrhKaxcMg5AZjHkIGYTMm0J2/eYdKhPenuaM7UZvvlZMwu88cDqdv3SVls7orxS9r1dqRXWqlqPubT+EkCkRS6wEIYOQMYHsmUMpNDjAQOSYpyqELA3tLVCLCgZldNoobS7vpDX3T3ulwXbkC6eiIVmdHmvUzSM0+eZPXjmPDXmr0kuhOZwea9Gd36nntf1eOQ8ImVcwe/0gqU7Iiod9TAO7NKGald+WsA8fPSlGvYbRt2um0GNZMiXZADExsVS6eluqWO4NyzQmTFlUj1kIGYTMm0J2/OTfVLvFANr65XjKmytxSvLUeato5abdtH35BN3APXnqLIU37Utj+kVS5bCSEDJdYv9VgJBByCBkBjqMVVWMkDlyg5DZMoGQJa9vmf1XqUrIEhIS6IV3mloesLhxtIe2TYtHU6H8uVy2F/+2be+J9O13R2nzF2MtD3hx8QlOf3P+ciyNFs98Ij9Aiiud2yXQM0WCDV1XjEiIMG5aHJ36W38U0tCOTVC5eeMEMaXNGA8Om5XrY2jL9pTHo26teAr7n23yG62ZYuMSvPbG/MAPv1KzLqNtXrbMWbKBZi1aS4c2zUoycm7duUfVG/emTCIRyJr5wygwMICiY+OllDkrUcd/pqCRHUwQjZ49BU7qQX2nUXDmxDWzqiXq3BkK6t1Itbpf1YsdtohCCwguBkrMrVtEw9qlyDVksT0mUejzJZzS4NGxkCDvjpDFi5srj4LnFuvCg4MCdVvpxq079OBBFOUT68mtC0bIMEJmHzwYIbMlsjBXGIWl/+9emC97Ot3+hgquCaQqIWMMPEI2qGtTiqhURlLRRsj2rplKWbM4H5rnery2ZPn6nTR/Qk96tXhRC9FLN50b163bCTRlWlCKFLK2reMoX16D3UoIyJz5ASlSyBo3jKOiTxvjwRq/Y2ca2rbDuw8rxs4yebVrR8TRyy85/2360EDKlM6YvCbvLP572bJt+XhL0h6VETLOstiw3TC6cu0mrZo31JKJVQpZdJzT04k6fpSCRqVUIZtKwZmMCtlZCuqTUoVsIYXmNyhkt2+nXCHrzkJW3LmQhQR6Vcg2bT9IPYbNori4xBcnnVrWoeb1qzg9N868ymtMtYQ/2bJmosjG4Zb1pRAyCBmELOm/vhCy5D6dOP9dqhMyXkNWWWRO69r6A0nkq/W7aMDY+S7XkPGNvfeI2bRpx0H6bFIvevkF2ydvTFlUD0hMWbRltWtPQIoUslrhcVSiuPORY29OWdTWkM0d151Kvfp84gPagKl04fJ1l2vI+G15g7ZDKTo6hpbNGmjJpsq/RZZF9b6OKYu2rJDUQz12kluTX6SUqtpGChiL1Yat+6nP/9u7Digpqi14ARUEJUgOYgAFRECQICA555wl5yXDktOSYVlyzkkQJOeckSAKgkgQEAWRjIAiGf+tx591E/TM7szszFLvnH8+0j3dt+u9brr63ls1dLqsmTvECHeFHLCymbdkk9SuXFTejBNbxs9aJotWbZf9ayYaewwSMhIyEjISsvA+j8Lzu5eOkEHGHiRsGVQW9aFby6d/MJXF0dOWyMYd3wpKGDFadB0huw/8KCP9fCTte6kCMU6dIomRziYhs3/ZkZCRkLmTkAFt9ICh7HDyMKgsXpXqzf2CqSxCNTVV8sQypEdTgSVG8Vq+ZpImDe0ob8R5Vn6BsqfUKZOSkNl/q1PUIwRWJGQOLJ5w7rpu6wHpPGCSHNo0TWKqZQUGer6/qFxMfBpUtDzqOVVRLluvu0wd7it5c3xMQiYkZCRkJGSWDw4n7vDSETK8dDXu6C/HTp0zMKLZf974XoE9Yd0HT5O1W/fJ0a0zzfZcZVqaF7WQY8WsgfKBEjQSMvtXIwkZCZm7CRmEOVB+aLuH83+WRcYO+M+HrEDldoZszVMvwouXr0vxms8IWdABP7LD+pLHDJn99zozZMGxIiGzf+2Ed0/0h85cuE72rpoQeAj4CqZ9N2WgCNeLjj1n8Ubxn/CV7Fg6WhInjC9/3Xsk/9x/VqJ8/cl9KXXRfbL3m1JVkCQxQvfjPHj6RCpdWieHHlwPL0x2/y6GErK9b1eVd14N3cqB+ocWl7e7TWVxR8qKkj5mgtCxa2//kD8Pyxg3qSyuS1FWssVKHCaGc26flK5uUllckqyEfB47bC/E5X/9Ii2v7bR7niOy47ykRaVYnP/Kt5MmiBWRw730v33pCJltxlHO9PDRo+caQtu7MkjI7EVKhISMhMzdhMyGOMgWMmVx9X/hHSRk9iNHQkZCBgTcKXsPj9F1W/cHU1Bt2GGoZrpjy7iBL+7vxAfa2j4DpHq5QtKr/bPeR9zvr8R4Jrp04Z+7kv/scrf5kO1JU0XejROaCP2lpdRFzqx0GyE7lKaGZIwbWm7+kYoz1Ty7UVbe/dX+h0IE9tz3bmXJkSC06BoEXLqe3y+j/nSP7P2W1OWlYMKwidCo349K52t7I3CV9v90ZapSUibxO2H+YOalk9Ls8g77DxaBPb9KUUyqJU0TeIQY0aOeSFkE4HH4py8tIXMYqef8gITMfiRJyEjIIouQ2b9Kn78nCZn9KJKQkZC5m5CFN0OGUsXKTfpI9szpTGkzFFUx2EPGksWQTzyqLAZHhKIe9v+baM+eJGT2oPSCfUjI7AeQhIyEjITM/vvFE/aE7P19VdGT2C/2aAwZKwkZCZm7CVlYPWRoOahfrcRze8iQGUMfab5cmWSUX+tAMkZCJoKSRRpDB7+PSchIyFz57zIJWQTRJSGzH0ASMhIyEjL77xdP2JOELPQs3O8/R54mDrts6Xlzxh4y169mqCzmKNVCmn1RTnzqV5DVm/dKb/+ZgSqLt27/LRUa9pRWDStpaWJB+fHEL4Ies5xZ00uvdlqmGO1ZuRUUF5Mkis8MGQlZqEVLQkZC5sonGQlZBNElIbMfQBIyEjISMvvvF0/Yk4SMhMxqHT7wHS1P0mQMczd39pAhgDUqdd914H+m7+2aVDEEDePGn3ckf6W20rZxFWlet5zxFfULmB0q7jzZP5ZpAb4kZCRkJGQWNz9LFq2ejo5tJyFzDK9Qe5OQ2Q8gCRkJGQmZ/feLJ+xJQkZCZrUOPYmQIVZ4h8LiIkXShAKF1PAO9pCxZDHk2mGGLDgiJGThfbqE/TsSsgjiSUJmP4AkZCRkJGT23y+esCcJGQmZ1Tr0NEJmFa+920nISMhIyF58t5CQ2fs0sW8/EjL7cHruXiRk9gNIQkZCRkJm//3iCXuSkJGQWa1DEjIrhBzbnkz9xzamKC+JwvAhe/jvE6lyeb3bZO8p6hF87pghY4bMsbvZsb1JyBzDK9TeJGT2A0hCRkJGQmb//eIJe5KQkZBZrUMSMiuEHNtOQhYar+0pKsqHr4X2Q8Oew24dlrFuMoYmISMhc+xudmxvEjLH8CIhUwR8mj+WZEkdB46EjISMhMzx+yYyf0FCRkJmtf5IyKwQcmw7CRkJmdWKWZyshOSJlTzM3VbdPSctr+20OoRTtrNk0SkwBh6EhCyCeDJDZj+AJGQkZCRk9t8vnrAnCRkJmdU6JCGzQsix7SRkJGRWK4aEzAoh79xOQhbBeSMhsx9AEjISMhIy++8XT9iThIyEzGodkpBZIeTYdhIyEjKrFUNCZoWQd24nIYvgvJGQ2Q8gCRkJGQmZ/feLJ+xJQkZCZrUOScisEHJsOwkZCZnViiEhs0LIO7eTkEVw3kjI7AeQhIyEjITM/vvFE/YkISMhs1qHJGRWCDm2nYSMhMxqxZCQWSHkndtJyCI4byRk9gNIQkZCRkJm//3iCXuSkJGQWa1DEjIrhBzbTkJGQma1YkjIrBDyzu0kZBGcNxIy+wEkISMhIyGz/37xhD1JyEjIrNYhCZkVQo5tJyEjIbNaMSRkVgh553YSsgjOGwmZ/QCSkJGQkZDZf794wp4kZCRkVuuQhMwKIce2k5CRkFmtGBIyK4S8czsJWQTnjYTMfgBJyEjISMjsv188YU8SMhIyq3VIQmaFkGPbSchIyKxWDAmZFULeuZ2ELILzRkJmP4AkZCRkJGT23y+esCcJGQmZ1TokIbNCyLHtJGQkZFYrhoTMCiHv3E5CFsF5IyGzH0ASMhIyEjL77xdP2JOEjITMah2SkFkh5Nh2EjISMqsVQ0JmhZB3bichi+C8kZDZDyAJGQkZCZn994sn7ElCRkJmtQ5JyKwQcmw7CRkJmdWKISGzQsg7t5OQRXDeSMjsB5CEjISMhMz++8UT9iQhIyGzWockZFYIObadhIyEzGrFkJBZIeSd20nIIjhvJGT2A0hCRkJGQmb//eIJe5KQkZBZrUMSMiuEHNtOQkZCZrViSMisEPLO7SRkEZw3EjL7ASQhIyEjIbP/fvGEPUnISMis1iEJmRVCjm0nISMhs1oxJGRWCHnndhKyCM4bCZn9AJKQkZCRkNl/v3jCniRkJGRW65CEzAohx7aTkJGQWa0YEjIrhLxzOwlZBOeNhMx+AEnISMhIyOy/XzxhTxIyEjKrdUhCZoWQY9tJyEjIrFYMCZkVQt65nYQsgvNGQmY/gCRkJGQkZPbfL56wJwkZCZnVOiQhs0LIse0kZCRkViuGhMwKIe/cTkIWwXkjIbMfQBIyEjISMvvvF0/Yk4SMhMxqHZKQWSHk2HYSMhIyqxVDQmaFkHduJyGL4LyRkNkPIAkZCRkJmf33iyfsSUJGQma1DknIrBBybDsJGQmZ1YohIbNCyDu3k5BFcN5IyOwHkISMhIyEzP77xRP2JCEjIbNahyRkVgg5tp2EjITMasWQkFkh5J3bScgiOG8kZPYDSEJGQkZCZv/94gl7kpCRkFmtQxIyK4Qc205CRkJmtWJIyKwQ8s7tJGQRnDcSMvsBJCEjISMhs/9+8YQ9SchIyKzWIQmZFUKObSchIyGzWjEkZFYIeed2ErIIzhsJmf0AkpCRkJGQ2X+/eMKeJGQkZFbrkITMCiHHtpOQkZBZrRgSMiuEvHM7CVkE542EzH4ASchIyEjI7L9fPGFPEjISMqt1SEJmhZBj20nISMisVgwJmRVC3rmdhMzOebt95648evxYEr0VL9gvSMjsBFB3IyEjIfMWQnb52k2J+0Zsif16rMBJe/Doqdy48yDMBR/jl+MSc3g7+28GL9mThIyEzGqpejshe/r0X/njynVJmvgtefWVGIGXe+efR/L3vcfmv28+fSCl/1gtFx7/bQVHhLeTkJGQWS0iEjIrhLxzOwmZxbz9ffeeNPEdLj+e+MXsmTJZIpk7rock04c3BgmZ/QufhIyEzNMJ2ZlzF6Veu8GCDzAYBXJnkTH928irr74iJGT23+vRr/0hsfrUt/8HXrTn/f5z5GniFA5FHO3uX4awR79ywaHfecPO3kzI1m87IF0HTZEnT54aqDs0qyZNapcxfyYhiybfpKoib7/yRpjL0OfqDln5z69uWaLbU1SUD1+LH+a5ht06LGNvHXFLHGuTl5VPYiYK81zz/jol3W7sc0scJGRugdntJyEhs4A8YPIiWbx6hyyfMUDixH5darbsJ++lTi4Th3QgIXNwuZKQkZB5OiGr3Li3uc+n+HeUC39ck2rN+kq31nWkdqUiJGQO3O8kZMHBIiFzYPG4add/7t2Xz8r6GALWsn5FWbtln/QcOl3WzB1i/o0nISMhC7kUSciCIzI3SREpEvvtwL9MkfB1N929UfM0JGQW81q4WgcpVTiXdG5Z0+y5dO0u6TN8phzbPkuiRYvGDJkD9wUJGQmZJxOym7f+knwV28j0gM6SO3tGM1kd/SaacqaFk/qQkDlwr5OQkZABgYRxY0rMV6M7sHLct+u6rQek84BJcmjTNIn52qvmxHnKt5IvKhcTnwYVSciEhIyE7MX3IwmZc59XJGQWeGYu0kj8OjWQyqXzmz0P/Xha6rYZJHtWjpME8d4kIXNgPZKQkZB5MiE7cfo3qdq0r2z5eqQkT/KsJHn8zOWybP0u2bZ4FAmZA/c6CRkJmacTsukL1srMhetk76oJgZNVs2V/SftuShnYtTEJGQlZqCceM2TBISEhc+AfRTt2JSF7AUj//vuvfFyooQzv3VJKF8ll9rS9tK2f7y+pUyZ57q8vXnkk8xc/lUePotkxDd61S+VyIhnSvuZQ0A9VEGHe4kdy+UrUw6NoQZFcWR3DQ/vIZdPOB/L94aiHR85P/5Vi+WOGuT7Qh+WpX8z3f39cGnfyD/zYggvAS9uUeavk4PopKurzVJv+w/7af+PEKYk2f4xD94Q37PxvgiTyeqP2EjtB2P0bz7uGPy/8If9OGegNl+hwjDEad5F4773r0O/+uXlL7s0cJdFuXXPod96wc/QqTSR+1mxhhvqieyayrw3tCOu27jcfW2yjYYeh8kac2DJuYFvzAcb2rDp/9660ubBbrj295/Kw34oWU8alzifvxXkz1LnuPHgkrX/bLWce33Z5HNH136jJqQrKx/EShDrXoyf/Ss9fD8ieB5dcHgdOMCpZXsn1Vuj3LQiyjP79R1ny91m3xDEwSU4pnChlmOea+/vPMvnOT26Jo1vCrFI+adjPoGWXzknAnz+4JY62CTJJzeRp3XKul+EkJGQWs4wMWT/fhlKpVD6zpy1D9s3K8RI/XtjNri/DwuE1EoGohoDtY8vWxSMDRXuCZsii2vXyeojAy4yAVYbsZcaG104EiID7ESAhs8AcPWSli3wmvi1qmD2XrNkpfQNmBfaQuX/KeEYiQARcgYCth2zGiC7y2acfmVN06DteLl29aXrIOIgAEYg6CITVQ5arTEupX62E6SHjIAJEgAi4EwESMgu0h09aaEjYMqgsqidRLZ/+wVQW3TlZPBcRIAKuRaBiw17ypvqPTR4GlcWrUr25X6DKomvPzKMTASLgTgSgspijVAtp9kU58alfQVZv3iu9/WcGqiy6MxaeiwgQASJAQmaxBuBD1rijvxw7dc7siWb/eeN7BTb9e8oS+ufeA3klRnR57f9qUWHFBa+V+w8eqqz3f2a3nhJ/ZMWBrMjWPd9L1TIFjGrm7gM/SsIEb8pHH74bWSE55byPHj2WHft+kKvX/5QKJT7XvohncrSPnzyR6NGiS/ToUa93zRnAnT73u3zRepDgvsfI/1kWGTvgmQ+ZJ427/9yXmDFf1Xv+PyPbkPFhDTx6/ETNrcPu5/Ok63FXLKfOXpBLV25IwTyfSMh7310xuOI88M3bvOs7eUWNjSuW/DzwFJj/oGbHrji3Nx9zjUrddx04JfAS2jWpYggaBxEgAkTA3QiQkNmJOP7xfvjoUWBviZ0/c9tupep0kSwZ08rQHs2ee85tew5Jm15jZeeyMZLorXhui82TT3Tox59VNXOwHNk6w7zc1mjeT7Jl/lC6tqrlyWG/MDa8hOUp5yOxYr4mKZMnFv9ezVWAJqngi3CJWp1NOU6tikW89vrcEfjFy9dNpiyu/s/Thu3L/rCezaVssdzPDW/AqLmyZff35n7neIbAuJnLlLh8L6tmD9J+4OD3vrdihI+FeG7BOythgrgyZ0x3cylnf/tDytfvIevnDzP3P0fYCOBDJbLhKZImfOEHTeJHBIgAEXAlAiRkrkTXjcfGl9/XY8V8ofLj7b/uytlfL0rmj9K88Mu6G8OO9FNFRUK2a/8Rad1zjBzeNF1iaNYUo8eQabJy4zfmz73a1yUhi/SVF/4AoCz2w0+n5f3UKV4oLPSHkkrc8xk+eCf8J4tiv4yKhGzw2PlG/XfeuB6Bs1W8pq/gowIGCVkUW8S8HCJABKIkAiRkLp7WLgMmmzOcUSIE0gSp/PGD20uad1LI8Z9/lbaasRrQpbFMnLNSrqs0MuT0dx84Kv1GzJarN25J7k8zStM6ZSV7lnTmOOcvXpWeQ6ebEkqUKKKkakRfH+k2eKqkT5taGlQvKb+cvyTdB02VE2d+0xfyGJLt4w9k4tAOck7/vnWP0bLxqwDzon7yzHnpouUaIGlvxX9TOjavHqgmibhR/nL6HOI+LzmypJee+iL/vn6FddfAS0VbLSHZtPOgnDx9XsaqFDHw8wuYLZv1y//rsV4zJp4NapTUsqxYApuC2Ys2yOyvN8ift/+SVJod6tOhvqR9L6XU9hkgl6/dNKHja/GQ7k0lU4b3Q30l9/YM2fmLV6RKkz6aDXtgymo/Tv++jO7fWtfWbVOuWqlRLzPPzJC5ZhVjzebNmUmQjQbmebJ/bPBHmfCC5Vvl4A8nzL0Mg/l0aVLL4O5NjLT+rEXr5d79h1K2aG5pXrecWbsY3xw8JoPGzJPfL10zvocNa5Yy9zgy4oN1DWfVexvnGjz2S/O8QGlqpZL5pLNPTVm0cpvsUyl/nB8D5VnDxi8wpXrvpEoq/r1byMfp3jPbEHeRfJ/Kxh3fmrgRB4g77it3jOc9C7Ge8YzCdhDQetWKB3pCPu9ZCGXMOYs3mHsAJdxVy+SXHm2/MCXJUY2Qrd60V3oOw4eXGJJQn+F1VZACohQg479fui6QcSchc8cK5jmIABEgAhFDgIQsYvhZ/rpaMz9DxtA0/Fb8uDJ62mLJmO5dFQ3opC9nJ6VB+6GmxwN1/8hwVdD/R5lJ41qlpWShnLJs3W7NbOyRb9dNVk+zx1KwantznDaNKsvTp0/NC8a6L4cFK7Wr3Li3+Qe6T4d6hpjMW7JZRvj5yBntj7GV5z18+FgKVG4rH7yXSlrWryi79v9gXhi/HN/TvOQhbhCxFvUqSEbtpxowao4qz2U0hpnuGhkLNjCnKqMql6lSJFaM8glEVk4pkcQLFkaPodOkdcPKUrtSERM/Xl7r6QtJ4bxZZds3hyXem3GkRoVCisEmQ27xgjZ2+lI5d+GS8Z+JahkylLMNGDVPdup8oqQtftw3DPG0DaiItW9alYTMRYsYaxZEuFXDSuYDwCT90NK5ZU2pW7W43vtLZNr8NeajQrH82Q3pwkeEQUqmerWvJx++n0r8J3xlsl4Th3TQ+/WiVGjYUwrlySp1Khc1z5EDh07oB512gvPgGfKpltfmKNVcqpcrKNXLF5Kff/lddu47IiP1fg9KPkBocE9XK1tQihXILlO/XC1HT/wie1aMM2QRx8NHGXwAAQnrrh94sH5KFX7mv+jqEdazEM+4AlXaSSb9qNBSn5/o78PHmLXzhprysuc9C5ev3619U6/Iu6mTya/nL0vXQVMkoE9Lcy1RjZBBAbR5lxGm77VRzdKGaNvKE5EhA9EmIXP16n3x8YN+LI3MSDwljmXrdplSajzjInMwjuDo4+MXniVfTexDS6dIWpgkZC4GHi9BObOmNy9lGHgIDBg9Tw5tnCrfHTllCNm+NRMDe1VAKNaqWeUEzaJhPFQS1qjDMJk/oZfcuHlH2vYeKytmDTREKugImtnB13N8TR+uLyEpkyUK3C0o+diuZKV9n/GaLRse+DU+X8U25us++tBCxo2s06yF693aj4KXxJF+raREwRzmGmy9M3jZzf1/WXKQzctXb8iCib3Ny8c7qZLJtADfULOK3x44fEJO6wsrcIB4x087Zkc5QoYLxzzNX7ZZtnw9MhQOJGSuveGxZqcHdJbc2TOaE3X0myh//f2PWZMgZDCi3bBgeKCoCu5VvEQ3r1ve7H/k+FkZOeVr+X7jNJP1WrFhj3lWILsTdNgIWeaP3td+wVaG8KE3MGjPW1DygYz7um0H5MDaSeYwV6/fkkL6ccfWhxYybhhkJ0mYQIb0aILxnhAAACAASURBVOpawP5/dBshC/os3L73sGb0x8gkze6jnw+jc/9JUlkFeNK9//Zzn4XYDwT08LHT+mz4U77Ue6GhZtHbNq4S5QgZrhWiUyn0OT+gS6Ngc0VC5pal+8KT2Pr7UJGCvu2SBXOa7HXI+9nVkXpKHPh3uEDldiZ7jQ9AWTN9IP19G7mdADCO0Cuufrsh5p0U8/J2iiTSvU2dYB9zXb1GeXwREjIXr4KQxMb2YNy8MMDU+IOQHds+K/AB3dQ3QL47ekrFQxIEi8y3RU3TeDxy6tdydOvMUFEHJWQoeezoN8E89JB9w8tek9plgpGPL5XIjJmxVPuMpgUeCy8/6DlBL0LIuFFi5T/xq8AXOhfDZg4f8iURX/9RcocMRFDVuySJEphGdph4d2xW3ZQwBh14OaujynkocUS52IMHj2TPtyRk7pjDl+0cIdcsMlEzvlpn7hsQsh17fzAfVGwja/Gm8poqOOIfwaBj9ujuJvuLAV+0kMNGyPLlyiST564yRAMDH2BQaohS5qCEDAQL6ppBP1Ygs9akdllTIhkWkXz85LEqTLZ1yxTaCFnQZyE+Ag2fuDBUXyyyi6gSeN6zsFO/ibJh+7eSRXtl39fScJRh1tHSZmSGo1qGDJNDQuaWJRquk5Rv0FOS6r9PQ3s2kx81I41sLcrFsRbdOTwljmFaAYCP0qtmDzYKwAP14zTGwsl93EpSGUfw1YcP1C26jjDvfni2ovVj7dZ9poWGAnDuu1NJyFyMdUhiYyurO6RE6Kh+DQ9JyHoNm2GyOIum9A0VGTJn6O1CqV3SEIQtZO8TlKNQ4gMhh7mLN8rymQNVyvufwJJFvLBA7nfX8rFGmQsDGSb0HKHcyRMJGcovP6/Qxjw0smX6MBQ++PKW45P0pjwp6ABmJ7V/b7l6yeFLJTJlyDoyQ+bixf8SHj4ksfHpPsr0fa6ZOyRMQgbj+Uql8pkS5JADQiywLti7asILCRk2ov8ML3yT5q5QwY+z8t36KdqXuiJQUbD74Gmy97tjgRnuO5q1y13WR/p3biRVtMfKEwkZjHu7DZ4i32+YGsp24HnPQlvmD+VQBXJnMbihpzJfrswkZC/h/RiZl4x/e3EP4+MrMpgYyHqf0zLasKo4XBWrp8SBPlio/A5T1V/0qGJAgKqdVuoE/TDsKhxsx2UcwRHGuyL+HUK/s60i4sHDR5JNPxbivRGl9BzuQYCEzMU4g9gkThhPe6+aGCWs3v4zTDoYGZ2wvgqjib9Z5wDtkapj+j1uKglZsX6PfvHOLMgE4cYpkPsTNautbcjFhFkrTKlKUEKGWnE0/qdL87Yp20HfGEoe0XNm6yG7dftvc6zyxfMakQc8GCEWYuu18ERChqmCcS/sB/DChT4SvHziRRNfHFHuuUQzeYMU66L5smkf1RGBX9NPKoCyaed3WhvdW/CgGTZhwUtXsmjzpEKZGkrbsLaQMXR36YyLb7dIPzyIDdZi9XKFjC9Uf+29BNmCME9YGTJkgOYt3aQvaJ1NPxh6nmYuXGcEO2wleyi1Qw8ZavzRe4H/tmXI3kmVRL5cutlkuvBhZYpm5CbPXWkIGf5sk3i3WV74+TbQe+NTgfDFQhX92Lp4pLHy8ERCBvGRgtpDVjRfdunbsb7Wc4js3n9UvdUeG4IV1rPQt0UNyVO+lSkRR1/unoM/mpdi9Fe9TBkyEPSL+gKMHsSl0/sbSfyYL/CojPQbJ4oFAPzzV2pj+jpt7QqwI/m8Qmvjc4YecVSwLF27U2Lpcxh9oq7IRNgTB6DHxw9krPLpewYEx1wxUP1zTYWHglYI4IMVKlZmjHxWBcA4guNx6MfTWkZ4Uv9tSCefqK2RTTXZmfODSgSUycMeBa0uGEgcDB0/X45smWHeEdwRhzOvyVuPRULm4pmziWPgKwRGmndTytThncxLEOp1UbcbtEwH+9huENtv4sWNI3PH9DBqgXixQtkDHuYY6D+BqEfNlv2NmmIX9c/Cn/G1HAMlizUqFBa8qOCmqttmUKDn1nrtKcGxbOfBPx7mxUcH4s6VLYP5HQbKDJDmt/WguBg2c3i8JKJc67P/94vh71Dmid43lCHaBgQN+nZqYHrMUKqJ9DsGHl6DuzU1Mv8N2g+RK9f+NH8PNUooTD7LkAXHJCiO7rhGV5wD5QZf6kt+0B4yW3140PPx65fz0ceahXDMQyX+GCW0ZwRfhGHOO0bFZHZqxmuZZmptAx8I+vjPNAqItoGXZ2TUMMZqWfGUeav/W+v/v0dxnqnDfU1JXpUmvQXGwBjInOMFEAIWIF2blBTCcwtjqCosQtzGdm/gw0W54nnMf4e819D7hg84NoVG5yMV/IjPexbuV5XIzgMmGWVIW9xQpa1QIu9zn4V4uUCZKAZKQdGHaysTC4pJyHvf1dfoquOjHBUCMf18GwaeAuXbtuc6/hJr0p1ZCFddq7ccF8qpU+at0pfcsYHG7LiPJ5u/GyP4INpIFTDjquhUkkTx9aPiT0ZtGevamcMqDnhvosT3yPEzJkOyVd8vIKLlbPEufIyu2rSvLJ7qJx+pSBgG+mWhfjx3bA9jzcE4/sMDH+dQio4qh1KFcsn+Q8cNWYLoGpR0nTXwoTanCn211Y+GUPDFwHtUXq1EsvXduiMOZ12Ptx+HhMzFM2jLNPmokiEWPxTU7BlQX7uiX6zwVdP21SLo71Cagy9rzzOuBWG7pdk1W6nE885pM8XEPwrukri25/qt9sH1oYQRWUO87AYdeMm9+ecdsy3oFyVkGBImiGdU5TiIgCsQsGWaPtTsNFRT8UHEnvH4yRPzwSCBPh9C3oe4R6+oYmNCFQV4XpYDL3g4htVXdtw3ONbbqvSIlzFvGbjXoQyL51TIrG5Yz0KUZAITKFpyEAF3I4B7EaXKNpsYWEkgo9tVP5jiAynKhR/rfb1wUh9TyYKyQlTPHFg72VQuOGu8KA70VaJvCB8wkZEHGYRlTkXNqs4a1c1k7J050ANuK3/D+005VZNGtRBEexhHcDwgygV/QZSz42Mz3h3L1+8u5XWOUCHhzAEDeXzYt/17gLJarMfd2s6yeM0Ot8XhzGvy1mORkLl45kKW/rn4dDw8ESACkYhAyNK/SAyFpyYCRMBDEEAfM9R9Ny0cIVA4hloyqk/GqhgPMlKVS+c31StBe7phAB89enB11YheTtA47qiAV14toYSoD9Rc8QFzkNraoEoEJMDW5+WKOHA+tEigiuP1mK95TRyoPvlAe6ry5vg4olMR7PdB8YBoGfr5YVcDIv+LEiZkTxet2m5sbNDnhdaWn7Uv3pbVclYw+IgA5V9b60pkxeGs6/G245CQuXjG0EeC8sSgXlAuPiUPTwSIQCQhgC+b6HkKKboTSeHwtESACHgAAiiRR7YKRuxf64s11FdBRpDJHTn5a5OJwDMDgl3w0UN58d9375n3Bv9eLZyW6Q0ah+3lG20IyObj2TVKlWBRbr1j6WijROyqOG5oBcuRn85I4c+zmUwiSMDz4vjjyg3ji/jb71eMwnLfTg21hzSTU2bVkTjQj4c4h/duKaWLONefMWgcuDDY06BsFIqyyGD2UvN3kDMQJfhIFqnW0fTROru0FJk4CCah/zYy43DK5HrhQUjIvHDSGDIRIAJEgAgQASLgfQjYDN/RD5RV+74xUDaGF260GaB/s6aWNUL9FOIK+KjbtnFl7YMs6tSMGV6+P1fvUQjeIEuGgV5UCOG8ov3XnhAHTOHL1utmfFcHdWsi+7TXbtS0xVK/WklpUqeMxNMePGeNF+GBLCbsJVA6HbQHGOS5cN5sgj5/DMxXae3ftbc15Xmxt+w2yvRyzRzZ1bRdgMxD3A0ljFDNBga7tD/Rdh6QthTJEgYKskS1OJw1x55+HBIyT58hxkcEiAARIAJEgAhEGQRQ+gYfvdL6ol8ozyeSOUMaSabZH5QQwkNwaI9mgdcK2wYQgc1a7uhslT0oPTfrMkIV/NJIuWJ5jOAGeto8IQ6Ib4EUHlXBkbUqXGbrn7WJ9mxSOwH4LjpzhIUH4gARbOI7XJZM62cESDB+0AxfnVYDjQ1PquRJ5Hv1j/VV43qomuI3ERnoJ67TaoCx+6hRvrCZk9zZM5q+2PyV2wbzW4WSNIh1YyXWEGaLinFEBEtv+i0JmTfNFmMlAkSACBABIkAEvB6BY2rHAmIGW5Z543qajEipOl2NBylKGzFQYghCBkVV9C19e/ikqjCvV1ubUpIza3qnYICXfyg7QwG2i08tVW5N7hFxFFSiCvN6WIbAKgADZYOwwqhapoB09qlpMnrt+45TQZLPpWyx3E4RKgqJB+JAzx/G2AFtzf9DlKRM3W7y7tvJjAXPJLUagYIrMnnIoDmj9w/X+vXq7bJm8z7JrUrTsCdCuevo6UtMr2FQEQ6o9O5YMlpmqGVKVI3DKYvdww9CQubhE8TwiAARIAJEgAgQgaiNAIgAlBhtZu24WpAxCDnYfLrgK7pUvTZXbfpGZeozyqh+bZyqyohzekociCWfZn5yfJJBRvr5mMkfof12C1duDbQTuKT9ZV+t2Kr+ozsltvbBzVR1SFcoq8LbsH3TauovWdDEARug3mpXYvNxRBlhwORFkiRhfLN9/OD2Ec6ShbXaIcpy/+HDQGII5WiQ+BF9faRkoZymnPFliiOqPRFIyKLajPJ6iAARIAJEgAgQAa9DAJLj85dtkSL5shn7i9Wb9sr6+f6GZJw+97vxlkM5HEoYq6mvV1EVfejWura5TpCTfiNnK3lpFWELG0+JY+OOg8ZbNIt6iaLfDpk89JJBdALE8Y8r1+Vj7TNT72LpMmCK/PzLhUAPR6hDtu45Wjo0q2YyVxEZE+eslGnz10iLuuVNBhFm87ANgNk8snT51AS8jXp5Na5VRgnjNhUryWpUEHNl+8iphuwoqWzQfqjpMcyZNYPMVL9F9JehTNLT48B8JU+S0FiXcISNAAkZVwYRIAJEgAgQASJABCIJgdGqbgiBCsiYH//5V9m1/6iMU0n8OpWLSo+2X5jM0EwtR7P5GjasUUpOnj0v9+49lGkBvsZYftHK7Yao2Uzlw3MpnhIHSjNnLVovYwe2lRt/3patu7+XsTOWSWLNQOH6du0/IhC+AB7wHUUv3ntvJzfG2zBAh+k7BDdWbtwj27WUL2GCuOGBI9hvoIT5zbfHVHL+Ry1JjG7KBtHXhkzZjr2HZbsqU9rKCOG5VqlRL527OqqUmMOpJAQm0cvX7ZajJ84ahUpbz5onx4E5yl+prcnqgiCnTpk0wvMRFQ9AQhYVZ5XXRASIABEgAkSACHgFAlBS7NRvonyeM5OWxRWSOYs3GJn3NXOHGtKRtXhT6d6mjimZQ+/Z4DFfypHjZ8W/dwvjY9a6xxjZrqQAmbWhPZqb30BKvWGHYTJSy9nSvpfSLhxcEQdOXL/dEJPVKaUKhPaMc2pQXaf1QENSWzWsJCd+/k3mLd0ky6YPMNfS1DdAXn/9NVO6d1mN7qfMW236q2BuDZNrlDEOHD3PyOSjPy950oTmtI7GEVasOHait+IZSXoMzI1/r+aB/42/q9G8n5ps/2Hiv3T1pmTL9KER/3Dm+O7IKflWM2Y+9St4fBxjZyyV6QvWqvhJYrOu34r/pgqk9Kc9TIgFQULmzDuExyICRIAIEAEiQASIgIMIXLx8XeYv3SxbNBv0Tqpk2kvW0BAJlN59WrKZCnmUlHZNqpij+nQfZbIjq+cMVoEJkZK1O5t9Id2O0sYti0aaUraASYukW5vaDsnDOzuON+K8brJ9IJvZs6SzGxWInEC+fZ36Yj3WUs0+HeoF/h4S9PfuP5C5SnKQlcJ+Q8fPNz5uIEt+AbNl657vpUDuT0y/3bSAzpI9c7pwxfGigEEG4Qm2avYgSfPuM9ILUtu+z3iTyXsvdXIzT8igPXr8RC7onxvVKu30PjdPjgOlisVqdpLeOn/VyhYUqEKi/POzbBll7pINThWosXtxeeiOJGQeOjEMiwgQASJABIgAESAC3xw8piV6IyVBvDeNsh+yIwsm9ja9VYu0Z2mQ9p5tVaNplPQhgxb3jTjSvEuAzJ/Q22QjnDUcjQP9btWb+ZnsXo5PnKMKiWu5ev2WVGzU06guQrL/+6M/S6sGlYyfGjzdytfvIeO03BHG0/B9S6qZsvptBzs9DsQyfNJCmbdkkzk21B8LqApkqUK5DAEJOmC4vFrJITzDkPWzZbawD0r6Rk1dLK3170FgwzM8MY5aFYtIm15jdQ5+l3VqXRANzX7/H1YCNejbg1DJ+0pqX5ZBQvayzDSvkwgQASJABIgAEfBKBJAxOnnmgnToO16yKAlBud5DfZHPVdZHmtYuIz4NKgZeV1ATY5AokDhneXY5EseshesDTYx/0t44Z8YBgZMTZ36TyXNWyaFjPxvlxVdfiaFlmkMNUVs4qU8gHkHjuKl9djfUhNuZBBHkAmqYG3Z8K1O/XCO7tb/MRqyQGUNfIBQYkcUEYa7tM0AmqBJjvlyZTYxjpi+VL7Ukc+eyMRESZPG0OG7d+Vu+aD3IlI1my/TMBB3DSqDGJl6COcyU4X2vvF/DEzQJWXhQ42+IABEgAkSACBABIuBmBNAbhkwDMl/IlDXtHCD710wMVPMLaWKM8jkYSkMa3ZnDKg4IjBSo3C7QxNhVcaBM89LVG0YoAuTnk6KNg3m5hYwD4hzIRu1dNcGZcJhjTZ67ymQpq5TJb/4bZaN1fAYa4oiRLPFbJjsGc2uULtavVsL0wKHsMajdQUQD85Q4IL6yc9+RYNlCK4EalOiiBBfqmTa7g4ji4S2/JyHzlplinESACBABIkAEiAAR+D8C2/YcUmPk8drDNNhkn5A1Qr9OjizpZZgKTWCUb9DTCH+gnM9VI2QcOA+k4ZGdg1cX+rzcEcd1zXyBBOJFvkTBnOZyQ8bhP+Er+fEkzLidK7IRFrbIBFVs2MtYF0DQAn1t/UfOkZu3/pItWmIK0REIskAAZO28ocFK+pw5V54SB67JSqAGoilDxv3XD+hMHDz9WCRknj5DjI8IEAEiQASIABEgAmEgACNglOTNGNHFlIKhlyio1DtegAN6tzQKjMg+YPsBlU7/SsvBINvurBE0jgSavavcuLdMHtYxsCzPXXFs3X1IOviNl0Y1SxtVx5BxtOg6QksHE0nfjvXNpW/Y/q0hADNHdgkU5nAWJidO/yZV1S9u5qiukkt9w1BiWrBqeylbNLexM4A8f902g+TL8T2Nz5qrhqfEYSVQA8GPfCqP37RO2WA9dq7CxdOOS0LmaTPCeIgAESACRIAIEAEiYCcCyLigZylXmZbmRRYvtBh4wc1ZuoVR/EMpHby70MM0ZVgnNRZ2nsiGLUzEkSDeG9LEd7g81vLBOWO6R0ocEMl4ouWCEJQIGgeCKV7TV+qrYmXtSkWMCiXMpru0qmXKB10xxs9cLpPmrjRk7+nTpwIVy29WjpPXY8WU0l90VRn/VEaAxNXDU+J4kTAMrArWbdsvO5eOkVdffcXVkHjc8UnIPG5KGBARIAJEgAgQASJABBxDAAqD6KWCuAUGxCSqqcrh8pkDpXHHYZIgflyZrhLwSRLFlxUb9kg/LZ97TV98oWbXVUlJ7NdjOXbC5+x96/bfRjkwaeIEHhUHgslcpJGM8mutkusbDT5T/H2N4AT+3LrnGEHZIwyMu7aqbWTrnTFwTGSpWnQdKX07NTB+ckvW7JS+AbOMVL8NJ2ec60XH8JQ4whKGgfdc2XrdZXT/1sE83V50PVDbXL15r+TKlkE+Tveeq+Fz+fFJyFwOMU9ABIgAESACRIAIEAH3IrBmyz7pOnCKEfWoVCqfEVdAP9fQ8QtkkRopjx/UTpJpH1OXAZNNYEun93dJgJ4SB4RI8mtJ3Gtaqgk59Sn+nYxv2cYdB6Wj3wTp7FPTSNZPUsn1Zet3ye4V4xzycLMC7+yvF+X9d1IYD7W8FdoE85az+q0zt3tKHEGFYeq2GSz3HzyUxVP9LC8Vv/v90jVppoI2CRPENX+uUjq/IbvePEjIvHn2GDsRIAJEgAgQASJABMJAAAp3EP3w0xfVCiXymj3w8lqiVmfNhsVUo+X0xnD5X3WXLqalfCAgzvQts4XkKXFA0bCCipyUL55HurWuY4gqrj1vhdbGVBvkbFC3ptrPldb8Xc92dY0girMH5qDfiDkyfnA7u/r4oB5ZTXvRQKg/zfyh08LxlDhwfSDEbRpVlg/fT2V5fdMXrDVKmRBF2fDVcEFG9tTZC5I3x8eWv/XkHUjIPHl2GBsRIAJEgAgQASJABMKJAIQUokf/z5AXKnYTZ68wKn9T5q2SWYs2qOBEemNYfHD9FEPUXDE8NY7zF69IqTpdTengwSMnZcCouYb0gERCKOWzTz9yBRwOHXPa/DUyetoSk9lLpmWgDbQHrkaFwg4dwxk72+KAIfnbKZJI9fKFnEoQ7Y0R1gV+AbMNIcNYOn2AxIr1mpaB7pBCebJqH9oBJd15TWmuNw0SMm+aLcZKBIgAESACRIAIEIFwIrBu6wHtXZope1dPNL1mV679KQPHzJPXY74m/r1bhPOojv/MU+KwlTGizw7ZGfS+oWRx3db9slGzL/B8c8X48cQv8sNPZ1RcpKjJ1D1vQCilYJV20qFpNalY6nNZtHK7jJu5zKFeqxfFD+GXCbOWSwsVg4n7RmzLOGpWKKKm2ulM79YxtQ8AkXXGsDcO9J+h3LNhjZLSumFlYyVQLH92gd+cb/9Jsv/74yYcm62AM2Jz1zFIyNyFNM9DBIgAESACRIAIEIFIRADlYUWrd5QMH6SWAV0aG/VFDJTuuYp8hHW5nhIHYuvUb6IcPnZaJgxur7i84xAeIHDwEvvu6CkprsSge5s6El+VJq3G7b/uyqgpalD93THp59tQcquQSFgDPYDI3G1eOCKQuEEpMl+uzKaE0aYoGV5BFnjXzV+2WWZ8tU6afVFWalUsGiyjaosprDhu3bkr61UVEdYB6I2rrH2KmTK8b3XpYW63N47BY+fLyo17ZPfysSZjGHT8ffee5CnfylgetG9aNVxxROaPSMgiE32emwgQASJABIgAESACbkTAZBP6aTZB/chQ9jWqX2u7XqTRg3VNle3C+9Id8hLDGwfKH3fsPSyFP8/mFNRABuDPNm/JJokXN460alBJ6lQuanlsmExv1zgwICiBzBp6zlDKZ++AMmbvYTOMDD6OkTplksCf2vzDoIxpI2z/3HsgOUo1D5TqN75z3xyWdV8Os/eUYe53W8kVjvW9EkvE8Vm2/0o1w4oDB+noN9Fcv2+LGnLtxi1BSeOIvj5GtTO840VxnL94VctLu0hAn5bGYy7kgGw+Mnc7VDb/dS1h9LZBQuZtM8Z4iQARIAJEgAgQASIQQQQuXb0pJ1Tu3V5iAx8zkDhkgXJ+kl7efTtZBCN49nNH40BGB5mSuWN7SLo0bxsPNmeMO3//I4fVrPmTjGkNMbMa6DdbuHKbkccf2rOZZPzwXfOT8GQat+05pNf0pRTVLFvbxpWNBQFMrSFWsWrOYEmjGShkMXsOnS5QrYQAy13NCEGMBQPZIki/9+lYTz5Qb7PwjjPnLkov/xnyZpzY4ufbQFImSyQNOwyV6NGiyww1z7YN9BzCZBsiMP69WhjCOPXL1bJ8/W5ZP98/vKcP/F1YcbTtPVYuXroephrorxcuS5m63WRYz+ZStljuCJ8/Mg5AQhYZqPOcRIAIEAEiQASIABGIZARAQl7UO2QL77sjp6R+uyFGPv/i5Wvy7eGTRhWvRb3yTrkCe+PAfgUqtzMxP3r8WJBRQQyIxRnjoZYg/qsHihmiHC7ksVEqCAn9skVzS0JVZ9z33U8yb1wPzdz9IFt2fy8Z072rfWgHZPqIzpbHsh0bZZyzF6035CrxW/Gl84BJUk8Nq0FAIVKBfj+UONqyUM27jDBkFlLxICTI2LVuVElVIj+IMBRbdx8y/VmDuzc1KobA2lbeioOjzBMlgjU0Gwg/tQ/ff1uSJ02oPVw/mf4tZ42QcdzVHjKQxJADaxNrYcWsgc46tduPQ0Lmdsh5QiJABIgAESACRIAIRD4CyGqAOAzs1vi55rooESxZu7N8pBkgGPdiBExeJLMWrpfDm6aF6uUJz1XZEweOC3U9EIVtS0YbURJkap4+fSoFcmcJz2lD/QZEE0QInmQgW88bUD0EUdq5bEwwQ21byR0yRVBohFKjowMllPkqtdHz55EebesYsgffuOjRoxsxC5SMIk5krhZN6Rts3lxp+B30OlCuCPyH9WquZO2JzNQetAmzl0uzOuUMKfx69Q4ZMm6+Ic4lCuYwPV3h7XN7Hn6rN+2VC2ohkE7JILJnIbFwFPfI3p+ELLJngOcnAkSACBABIkAEiEAkIXDk+Fnp7T9T0r6b0hAA+HEFHYu0LG+QltNt1cyHLUuCF3+Uzx3ZOsOYTQ+fuFCqlSsYoTJGqzjQb1W+fg8ZN7BtsDLL41p22brnGLl+87bk0dK5rq1qmzLC8A6b8uRFfdkf2LWxIaJBB3rpilTrqKIojaSyGhKHHCBjvbQvDCqNqZInDlcYUGCE6mNYJAYEuXjNTpL5o7Qy0s8n8PjuNPwGEW7VY5TMHt1NsmV65o0G/GGbMGTcAlm2bpfpRXsnVVIZpkbkMMNeMWuQ3dlCe0CDwXVPxRmKlSCpCyf1sednHrsPCZnHTg0DIwJEgAgQASJABIiA6xFAfxJIFjI/tSoWkca1Ssurr74ikCP/vGIbqVa2oCFrtlG3zWC5/+ChKZdD/1ObXmOlpnpjZVaPqiIqthHevq7nxYHz1vYZIE81zqAv3ht3HDSmwsholSqUywhrLFu/y/RYxXvTug/sRchCeRFE9SNVXuzaurYkTBDX7O7TfZQpEVw7b2iofjHIsqOkskqZAmo+XdslE3fyzHmp22aQ6dWykefIMPyev2yL6XtDHx+82zo0q6ak7I4R3gjay4UyMn7QRAAAEOZJREFU0NJfdJWFk/saf7e076UUeJk5a6CssffwGaZ3bs6Y7s46rNuPQ0Lmdsh5QiJABIgAESACRIAIeB4CIBTjZy6XDTu+lcnDOsni1dtlydpdmgWLruWKbYz6HrI/qzZ9Y3qmMmVII4WrtpcUSRMZyfhNuw5KDC2tAyGKyAgZx3sqINJR+5baN6kiaTSThwHylrdCa3n06LEhJoO6NdX+qbTm73q2q2sUDyM6cI6lev3w/urcsqaU1mO26zPOEFaIf4Qc6OOCcXHIUsaIxhHy94+fPDGZSduwx/AbmT/gGpHsYcg4kBVbs3mf6TFrWqeszF28UYYpBrbMqW1/nBfxtlKLgAOHj0uGtO+Y8lf0ndkGVDd//+NauFQ8sQaOaqYMxNBbBwmZt84c4yYCRIAIEAEiQASIgAsQuHj5uhFJqNasrymLQ+Zj2IQFgv4miE6gXA89VlPmrZbJ81YZAvJMaOOJGgb/InE1O4XM2fupUxgFPpSyhWcgjvhx35A4sWOF+vn5i1c0G9PVmBPDqwuqh3ghRxYGvVvo4Tr0489y5KezkiNreqOCGB4FRJwYhAImzWGVIKKEMHr0aCp2cl1LCX2lf+dGmiELXcoYnuu39zdWRtuQpEf2EybUkNiH95lNnn7X/iMqWb9Wpvh3Cvc82eJcsmanKW/do4Q8rDnDfhAD6a1KjgcOn5Dt2gtoE1DpNniq9sadcJrZtL3Yecp+JGSeMhOMgwgQASJABIgAESACHoIAPKYWrthmXtQxUHp2Tkv1UqdManyekB0pXK2D9mzVUt+uYoFR20rZILRx7cZtLe+7pNm0npI+bWqnXtmNP+8YpcPlMweafisoH6Jkcd3W/aacb9S0xUZ4JHuWdII+M8Q9c1TXCJcyhrwIKPy9nSKJXPjjqvHjCquU0akXHsbBXmS07a/9fchcQZ0RAhtrt+yXroOmmAxovlyZBD5jEOHo27F+hMOET1ohzZhirmE8nuituEoCYxiJfAiRwGetYsl8Rq0T+y2d3t/sizLMKk36yNThvpI3x8fy8y+/K7H+wWTdXpZBQvayzDSvkwgQASJABIgAESACTkLAt/8k+UH7rDYtHGEyRBinz/0uFRv2MmWFc8Z0kwTx3pSuA6eYniuo4Dl7QH4dvV4TBrc3JZMYKDOEyTNK50b6tTIkBEQBfVco14OxsC2r5Yx4QEzhi7ZRyzwh8uGnYhbIRLl7hGW0/aH2d8FIGrYAQckNylJLFMqhRPU3Wb9tvyFnzhrAo9ew6UYBE4Io1coWkCEq7DFX+7uQHZv+1VqVxz9uMq3frpts1BpBxuK+GVtmjepmwqjWzM9k67y5J8xRPEnIHEWM+xMBIkAEiAARIAJE4CVHACbRsWK+FqyXqt/IOXLwh5OSK2sGFdfYLW2VCERXcgJZdJQ1OnughHL4pIWGgMHMuVWDSpqtKypFq3fU8sV0RpbdNs5fvKpeXjflLRXnqNSolxQv8EyOPbxKiCGvBWp/UP2DYAVKOiNrBDXahlpjnVYDZaUqHEJMI+gASS1Qua3UUDEW3xY1nB4u5uah9nZN0ZLWNZv3yvoFww35gq9Zfj1vx2bVpYHK+K/fdkBA7pHVRAbNJtSCTKOzzMedfnEuOCAJmQtA5SGJABEgAkSACBABIvCyIQA/qLfixRU/3wZy7vwl6TN8lunjQokaJORRijZyyiKJr5kzqCIG9Q8DkYNKo5Upc1iYwjD68I+nDTkEMctavKn0UmGPsHq5UHp5WInKV8u3yrZvDsn4Qe0k/2f/+Zit2bJP3owTO9zeZug3c7bnVnjXEbJVUH0c1K2Jlgp+Huww8JKDpcHOZWO1X/BvGTB6rpGnr1Dic/1f3mD9drf/uhvuUk9k7krW7iJvxX9TyqnB9QEl8siYbl08Up4az7W25nw92n5hBFoKVGknpQt/Jr3a1w3vZXvl70jIvHLaGDQRIAJEgAgQASJABDwLAZglj52xTDYs8DflihgQ2fhAszMHj5ySHkOmSZF82eTdVMlk3tLNSspyyuDuTQWqgXnLtzbZrbaNq0T4or5oPUhA0pbN6B9MjRDiF+hp++zTjEaRcfqCtTJr0XrZu2qCOSeIR8Eq7cWnfgVT4hcRIhLhi3DSASbNXWl663zqVzS9dp9qT91dLR0spgIkwB5kqHEnf/lDRUmQLYNJN1QQJ2vvIDJaZ85dlAoNe8r8Cb3CVJa0J0xkxdZu3Sf7D6loh4q9TB7WUfvXMhv1ypna5/fNynGGxE6cvUKm6Zy8SBTEnvN54z4kZN44a4yZCBABIkAEiAARIAIehgDK1Nr0GmPKFvFyn+3jDwz5gSx6nnKtDOFCJgQD3lnwp0Kp2i+/XVJxh7dVme/1CCv92Y6NUj0Qinya/SpfPI/2u50RZIUK5ckqR46f0b636CYjB2W/A2snmZj6BswyhGGbqv89evTIZJcgTmFTJPQwuO0OB0qKc77eKHc1ezd/fC9j6vzHlZuyavYgc4yaLfubrOC0AF9TUliufneTVUPmEOIp+77/yWQ0I9obB5K8VjOQ8Lq7ev2WFK3RUTNh9aS6mopDEKWIlpr21PWBtfOyDRKyl23Geb1EgAgQASJABIgAEXAhAugD+lo9zB6rDP7s0d3Uy2yn+AXMloPrJwcr5zt19oLxOCvfoKdMGtohWOlgRMOD6iL6k44cP6seYjWkeZeR8nH694wqJMbKjd+YjB0EL1rUKy9nf71o4hg3sK0UVnProSpEsVz74HYtHxuuMsqIxu+q39sUDWGwDfEVKGZiHqo39zM+a0M0a/bb71dM/xak6Rt1GGZ85VBy6MwBvzaoYNpUKTv0HS8/nfpVs6vDA0VinHk+Tz8WCZmnzxDjIwJEgAgQASJABIiAFyNgK2Xcv2ZiKC8wZGeiR4smCyb2NuqHx0//qp5mcYzAgzMHDK0hpT5dPcrSqfrgYPXLQr/YzqVj5NVXXzFZIlscEAApVaeL+Pdu4RSDaWdehzOOBQIGDIBJ5gzvS/XyheTYqXNS22eAMcCuW7W4mYviNTtJFu3Lg2S+Kwbk+pHFhCAK8IeqImwKXsZBQvYyzjqvmQgQASJABIgAESACbkIAyn9QPkRfFpQNbQPlgW16jZVVcwZLmndSSFPfANn73TFTGgfJ9LED2kqSRPHN7hu2f2v+vlj+7OGKGoIRnQdMNkIeGCivtMnih4yjcUd/gRjFshkDwnUub/nR0rW7VHhlplGFhOAGsmGJE8Y3ZuDwk4MZOIy348d7w2SzkHH84L1U8kWVYpJJiZyzxu4DR2Xr7kNGDOZlHSRkL+vM87qJABEgAkSACBABIuAmBCCT36bnGNO7lS3ThzIWpYFqDlzk80/Ni/i9+w8le8lmhoTlUXPgziqFfujYz7JZfc7ixI4lw9Xg+I8r12VUv9YRjnj21xtkvQp8wBsNWZqgcez77idp4jtclkzrF+htFuETevABYAA+RH3ULqqoBwgvSkzTKulC/1yLuuWled1yAvVM+Ip1bFbNGGCDrMFkG/YGHM5BgITMOTjyKESACBABIkAEiAARIAIvQABqihDXiPtmHNmhRGDS3FWyY+noQEl1lK3BH+srLV+ExxlK6iAusWzdLkmaOIFR5nPWQCyvxIhhVAVtcbyhoiLFtEwvR5b0wTzMnHVOTz4ORDViKuZx34gt/UbMlo07DxpJ/P0q6NGi60hBz5ktKwZDbkjqv0zGza6eOxIyVyPM4xMBIkAEiAARIAJEgAgEQ2DKvNWSQIUioLAH8YzyWjKHMsGaLfqZnq7Vc4cYwoQX/8LVOqgYR22j0ujsETQOGEzDaHq7qiwmVAPpl3HYMoZ+nRoai4L2fcbLL+opZ1NkBCbdB09TIZDzpqQT+1dr2ld6d6inZtwfvoyQOeWaScicAiMPQgSIABEgAkSACBABIuAoAhCPyFWmhVQtW9AoIN689Zd6gbULJGAd/SbKUZWp36Sli9GjRzPy6Gd/+8OIUTjTgBnEImfpFoEeZI5eR1Ta3ya2gWtCX1/ihPGMZxkGjK8LVe2g81XACIBMm79GRk9bYuwK0H/W7ItyoUyooxI2rroWEjJXIcvjEgEiQASIABEgAkSACFgiAJW9Rh2HGcGIT1TVb87ijcY8GBm0Gs37BfYr4e/9J3wl8eLGkdt37pqX/3ZNIm4kbQsQRC91yqRG+Y/jGQJfr95hShihggmDb5hun7twWXv7Akw/IMgzrAOQ4dyy+3sjBDJ1uK98lu0jQugAAiRkDoDFXYkAESACRIAIEAEiQAScj8Dtv+4K/Mv2fHtU6lUtYeTPKzbsZbIuMCy2iW2gp6xiyc/l8LHThhzg5T+vioBwuA4BZMBmLlxnlCnhRzZ+cHvJoqbaXQdOkYNHThrhFZtpdNl63U32rEH1kq4LKAoemYQsCk4qL4kIEAEiQASIABEgAt6MwOpNe6Xb4KlaqhggKZMlMpmyBPHf0MxZp8DLqtbMT3JlyyC+LWoIjKCfqFCHM8sYvRk/Z8cOMnb52k1JniShKR09cfo3qaq9Y9MDOkvu7BnN6ZBhLF+/hyyd3l/Sp03t7BCi9PFIyKL09PLiiAARIAJEgAgQASLgfQjAnPno8bNStlhuE3zmIo1kWM/mUqpwLvPf6HP6tERTlWKvLg1qlDRiHBvVq2zBxD6B3mXed9XeE3HDDkPVSDu6zBjZJTDoum0Gy0MlxrAT4HAMARIyx/Di3kSACBABIkAEiAARIAJuRgC+WKWLfGaEPzD6jZwjX6/aLrtXjJP79x+oXL2v6S37++49eT1WTOOnleGDd9wc5ctzulu3/1ZS/NiUlGLs3HdEfLqPkhWzBppeQA7HECAhcwwv7k0EiAARIAJEgAgQASLgZgQ27/rOSLBXKJFXbt352xCA/p0bSZUy+aV5lxFy6epNI80OfzEYHa/ffkD2rBhvyus4XIsAyhlhTQCfuIFdG7v2ZFH06CRkUXRieVlEgAgQASJABIgAEYhKCJw6e0FWbtgjV1X6vnalIpIt04fy7eGTgvI5lMl9nO49c7nrtx2QAaPnyt5VE6LS5Xv0tYAw5/wkg8lScjiOAAmZ45jxF0SACBABIkAEiAARIAKRjAA8zIrX7CSZP0orI/18AqOB0t9HWq7o37tFJEfI0xMB+xAgIbMPJ+5FBIgAESACRIAIEAEi4EEInDxzXuq2GSTr5/tLorfimchWbvxGegyZZnyyUqg6IwcR8AYESMi8YZYYIxEgAkSACBABIkAEiEAoBNAz9kqMZ0bO9+4/lPyV2kj18oWkc8uaRIsIeA0CJGReM1UMlAgQASJABIgAESACROB5CMxftkVGT1ssO5eNVT+ymASKCHgNAiRkXjNVDJQIEAEiQASIABEgAkTgRQhcunJDkidNSJCIgFchQELmVdPFYIkAESACRIAIEAEiQASIABGISgiQkEWl2eS1EAEiQASIABEgAkSACBABIuBVCJCQedV0MVgiQASIABEgAkSACBABIkAEohICJGRRaTZ5LUSACBABIkAEiAARIAJEgAh4FQIkZF41XQyWCBABIkAEiAARIAJEgAgQgaiEAAlZVJpNXgsRIAJEgAgQASJABIgAESACXoUACZlXTReDJQJEgAgQASJABIgAESACRCAqIUBCFpVmk9dCBIgAESACRIAIEAEiQASIgFchQELmVdPFYIkAESACRIAIEAEiQASIABGISgiQkEWl2eS1EAEiQASIABEgAkSACBABIuBVCJCQedV0MVgiQASIABEgAkSACBABIkAEohIC/wNe1k3uRbs4vwAAAABJRU5ErkJggg==",
- "text/html": [
- " "
+ ],
+ "source": [
+ "f1(\"banking_sentiment_zs_gpt3\").visualize()"
]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "f1(\"banking_sentiment_zs_gpt3\").visualize()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2f17fa91-07e3-4d3c-9634-082ffa7d8d94",
- "metadata": {},
- "source": [
- "Another interesting metric is the distribution by input text length:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 181,
- "id": "fccfda5c-ba02-4d2e-bdd4-e6e46ca8412b",
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "application/vnd.plotly.v1+json": {
- "config": {
- "plotlyServerURL": "https://plot.ly"
- },
- "data": [
+ "cell_type": "markdown",
+ "id": "2f17fa91-07e3-4d3c-9634-082ffa7d8d94",
+ "metadata": {},
+ "source": [
+ "Another interesting metric is the distribution by input text length:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 181,
+ "id": "fccfda5c-ba02-4d2e-bdd4-e6e46ca8412b",
+ "metadata": {},
+ "outputs": [
{
- "type": "bar",
- "x": [
- 96,
- 97,
- 98,
- 99,
- 100,
- 101,
- 102,
- 103,
- 104,
- 105,
- 106,
- 107,
- 108,
- 109,
- 110,
- 111,
- 112,
- 113,
- 114,
- 115,
- 116,
- 117,
- 118,
- 119,
- 120,
- 121,
- 122,
- 123,
- 124,
- 125,
- 126,
- 127,
- 128,
- 129,
- 130,
- 131,
- 132,
- 133,
- 134,
- 135,
- 136,
- 137,
- 138,
- 139,
- 140,
- 141,
- 142,
- 143,
- 144,
- 145,
- 146,
- 147,
- 148,
- 149,
- 150,
- 151,
- 152,
- 153,
- 154,
- 155,
- 156,
- 157,
- 158,
- 159,
- 160,
- 161,
- 162,
- 163,
- 164,
- 165,
- 166,
- 167,
- 168,
- 169,
- 170,
- 171,
- 172,
- 173,
- 174,
- 175,
- 176,
- 177,
- 178,
- 179,
- 180,
- 181,
- 182,
- 183,
- 184,
- 185,
- 186,
- 187,
- 188,
- 189,
- 190,
- 191,
- 192,
- 193,
- 194,
- 195,
- 196,
- 197,
- 198,
- 199,
- 200,
- 201,
- 202,
- 203,
- 204,
- 205,
- 206,
- 207,
- 208,
- 209,
- 210,
- 211,
- 212,
- 213,
- 214,
- 215,
- 216,
- 217,
- 218,
- 219,
- 220,
- 221,
- 222,
- 223,
- 224,
- 225,
- 226,
- 227,
- 228,
- 229,
- 230,
- 231,
- 232,
- 233,
- 234,
- 235,
- 236,
- 237,
- 238,
- 239,
- 240,
- 241,
- 242,
- 243,
- 244,
- 245,
- 246,
- 247,
- 248,
- 249,
- 250,
- 251,
- 252,
- 253,
- 254,
- 255,
- 256,
- 257,
- 258,
- 259,
- 260,
- 261,
- 262,
- 263,
- 264,
- 265,
- 266,
- 267,
- 268,
- 269,
- 270,
- 271,
- 272,
- 273,
- 274,
- 275,
- 276,
- 277,
- 278,
- 279,
- 280,
- 281,
- 282,
- 283,
- 284,
- 285,
- 286,
- 287,
- 288,
- 289,
- 290,
- 291,
- 292,
- 293,
- 294,
- 295,
- 296,
- 297,
- 298,
- 299,
- 300,
- 301
- ],
- "y": [
- 1,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 1,
- 0,
- 1,
- 0,
- 0,
- 0,
- 0,
- 1,
- 0,
- 2,
- 1,
- 1,
- 0,
- 0,
- 0,
- 0,
- 1,
- 3,
- 2,
- 0,
- 1,
- 0,
- 0,
- 0,
- 0,
- 1,
- 0,
- 0,
- 0,
- 1,
- 2,
- 0,
- 1,
- 0,
- 0,
- 0,
- 0,
- 1,
- 0,
- 1,
- 0,
- 0,
- 0,
- 1,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 1,
- 0,
- 0,
- 2,
- 1,
- 0,
- 0,
- 1,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 1,
- 0,
- 1,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 1,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 1,
- 1,
- 0,
- 0,
- 0,
- 0,
- 1,
- 0,
- 0,
- 0,
- 0,
- 1,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 1
- ]
- }
- ],
- "layout": {
- "autosize": true,
- "template": {
- "data": {
- "bar": [
- {
- "error_x": {
- "color": "#2a3f5f"
- },
- "error_y": {
- "color": "#2a3f5f"
- },
- "marker": {
- "line": {
- "color": "#E5ECF6",
- "width": 0.5
- },
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "bar"
- }
- ],
- "barpolar": [
- {
- "marker": {
- "line": {
- "color": "#E5ECF6",
- "width": 0.5
- },
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "barpolar"
- }
- ],
- "carpet": [
- {
- "aaxis": {
- "endlinecolor": "#2a3f5f",
- "gridcolor": "white",
- "linecolor": "white",
- "minorgridcolor": "white",
- "startlinecolor": "#2a3f5f"
- },
- "baxis": {
- "endlinecolor": "#2a3f5f",
- "gridcolor": "white",
- "linecolor": "white",
- "minorgridcolor": "white",
- "startlinecolor": "#2a3f5f"
- },
- "type": "carpet"
- }
- ],
- "choropleth": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "choropleth"
- }
- ],
- "contour": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "contour"
- }
- ],
- "contourcarpet": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "contourcarpet"
- }
- ],
- "heatmap": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "heatmap"
- }
- ],
- "heatmapgl": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "heatmapgl"
- }
- ],
- "histogram": [
- {
- "marker": {
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "histogram"
- }
- ],
- "histogram2d": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "histogram2d"
- }
- ],
- "histogram2dcontour": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "histogram2dcontour"
- }
- ],
- "mesh3d": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "mesh3d"
- }
- ],
- "parcoords": [
- {
- "line": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "parcoords"
- }
- ],
- "pie": [
- {
- "automargin": true,
- "type": "pie"
- }
- ],
- "scatter": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatter"
- }
- ],
- "scatter3d": [
- {
- "line": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatter3d"
- }
- ],
- "scattercarpet": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattercarpet"
- }
- ],
- "scattergeo": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattergeo"
- }
- ],
- "scattergl": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattergl"
- }
- ],
- "scattermapbox": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "type": "bar",
+ "x": [
+ 96,
+ 97,
+ 98,
+ 99,
+ 100,
+ 101,
+ 102,
+ 103,
+ 104,
+ 105,
+ 106,
+ 107,
+ 108,
+ 109,
+ 110,
+ 111,
+ 112,
+ 113,
+ 114,
+ 115,
+ 116,
+ 117,
+ 118,
+ 119,
+ 120,
+ 121,
+ 122,
+ 123,
+ 124,
+ 125,
+ 126,
+ 127,
+ 128,
+ 129,
+ 130,
+ 131,
+ 132,
+ 133,
+ 134,
+ 135,
+ 136,
+ 137,
+ 138,
+ 139,
+ 140,
+ 141,
+ 142,
+ 143,
+ 144,
+ 145,
+ 146,
+ 147,
+ 148,
+ 149,
+ 150,
+ 151,
+ 152,
+ 153,
+ 154,
+ 155,
+ 156,
+ 157,
+ 158,
+ 159,
+ 160,
+ 161,
+ 162,
+ 163,
+ 164,
+ 165,
+ 166,
+ 167,
+ 168,
+ 169,
+ 170,
+ 171,
+ 172,
+ 173,
+ 174,
+ 175,
+ 176,
+ 177,
+ 178,
+ 179,
+ 180,
+ 181,
+ 182,
+ 183,
+ 184,
+ 185,
+ 186,
+ 187,
+ 188,
+ 189,
+ 190,
+ 191,
+ 192,
+ 193,
+ 194,
+ 195,
+ 196,
+ 197,
+ 198,
+ 199,
+ 200,
+ 201,
+ 202,
+ 203,
+ 204,
+ 205,
+ 206,
+ 207,
+ 208,
+ 209,
+ 210,
+ 211,
+ 212,
+ 213,
+ 214,
+ 215,
+ 216,
+ 217,
+ 218,
+ 219,
+ 220,
+ 221,
+ 222,
+ 223,
+ 224,
+ 225,
+ 226,
+ 227,
+ 228,
+ 229,
+ 230,
+ 231,
+ 232,
+ 233,
+ 234,
+ 235,
+ 236,
+ 237,
+ 238,
+ 239,
+ 240,
+ 241,
+ 242,
+ 243,
+ 244,
+ 245,
+ 246,
+ 247,
+ 248,
+ 249,
+ 250,
+ 251,
+ 252,
+ 253,
+ 254,
+ 255,
+ 256,
+ 257,
+ 258,
+ 259,
+ 260,
+ 261,
+ 262,
+ 263,
+ 264,
+ 265,
+ 266,
+ 267,
+ 268,
+ 269,
+ 270,
+ 271,
+ 272,
+ 273,
+ 274,
+ 275,
+ 276,
+ 277,
+ 278,
+ 279,
+ 280,
+ 281,
+ 282,
+ 283,
+ 284,
+ 285,
+ 286,
+ 287,
+ 288,
+ 289,
+ 290,
+ 291,
+ 292,
+ 293,
+ 294,
+ 295,
+ 296,
+ 297,
+ 298,
+ 299,
+ 300,
+ 301
+ ],
+ "y": [
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1,
+ 0,
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1,
+ 0,
+ 2,
+ 1,
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1,
+ 3,
+ 2,
+ 0,
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1,
+ 0,
+ 0,
+ 0,
+ 1,
+ 2,
+ 0,
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1,
+ 0,
+ 1,
+ 0,
+ 0,
+ 0,
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1,
+ 0,
+ 0,
+ 2,
+ 1,
+ 0,
+ 0,
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1,
+ 0,
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1,
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 1
+ ]
+ }
+ ],
+ "layout": {
+ "autosize": true,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Computes the input text length distribution"
+ },
+ "xaxis": {
+ "autorange": true,
+ "range": [
+ 95.5,
+ 301.5
+ ],
+ "showspikes": false,
+ "title": {
+ "text": ""
+ },
+ "type": "linear"
+ },
+ "yaxis": {
+ "autorange": true,
+ "range": [
+ 0,
+ 3.1578947368421053
+ ],
+ "showspikes": false,
+ "title": {
+ "text": ""
+ },
+ "type": "linear"
+ }
+ }
},
- "type": "scattermapbox"
- }
- ],
- "scatterpolar": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterpolar"
- }
- ],
- "scatterpolargl": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterpolargl"
- }
- ],
- "scatterternary": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterternary"
- }
- ],
- "surface": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "surface"
- }
- ],
- "table": [
- {
- "cells": {
- "fill": {
- "color": "#EBF0F8"
- },
- "line": {
- "color": "white"
- }
- },
- "header": {
- "fill": {
- "color": "#C8D4E3"
- },
- "line": {
- "color": "white"
- }
- },
- "type": "table"
- }
- ]
- },
- "layout": {
- "annotationdefaults": {
- "arrowcolor": "#2a3f5f",
- "arrowhead": 0,
- "arrowwidth": 1
- },
- "autotypenumbers": "strict",
- "coloraxis": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "colorscale": {
- "diverging": [
- [
- 0,
- "#8e0152"
- ],
- [
- 0.1,
- "#c51b7d"
- ],
- [
- 0.2,
- "#de77ae"
- ],
- [
- 0.3,
- "#f1b6da"
- ],
- [
- 0.4,
- "#fde0ef"
- ],
- [
- 0.5,
- "#f7f7f7"
- ],
- [
- 0.6,
- "#e6f5d0"
- ],
- [
- 0.7,
- "#b8e186"
- ],
- [
- 0.8,
- "#7fbc41"
- ],
- [
- 0.9,
- "#4d9221"
- ],
- [
- 1,
- "#276419"
- ]
- ],
- "sequential": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "sequentialminus": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAFoCAYAAABNITkUAAAgAElEQVR4XuzdB5wkVYHA4Te7LLDkLEGQJCqCiAooiCCLIEEyiCA5R0lKlBwk5xxEkJyTSM4gigRBxAQmco7LsjszV6+4np2enZ6entc1XTv71e/ud8d2v6rqr9709v67pqqtM1uChQABAgQIECBAgAABAgQIECBAgAABAgQIEEgSaBPck/wMJkCAAAECBAgQIECAAAECBAgQIECAAAECuYDgbiIQIECAAAECBAgQIECAAAECBAgQIECAAIEmCAjuTUC0CgIECBAgQIAAAQIECBAgQIAAAQIECBAgILibAwQIECBAgAABAgQIECBAgAABAgQIECBAoAkCgnsTEK2CAAECBAgQIECAAAECBAgQIECAAAECBAgI7uYAAQIECBAgQIAAAQIECBAgQIAAAQIECBBogoDg3gREqyBAgAABAgQIECBAgAABAgQIECBAgAABAoK7OUCAAAECBAgQIECAAAECBAgQIECAAAECBJogILg3AdEqCBAgQIAAAQIECBAgQIAAAQIECBAgQICA4G4OECBAgAABAgQIECBAgAABAgQIECBAgACBJggI7k1AtAoCBAgQIECAAAECBAgQIECAAAECBAgQICC4mwMECBAgQIAAAQIECBAgQIAAAQIECBAgQKAJAoJ7ExCtggABAgQIECBAgAABAgQIECBAgAABAgQICO7mAAECBAgQIECAAAECBAgQIECAAAECBAgQaIKA4N4ERKsgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKCuzlAgAABAgQIECBAgAABAgQIECBAgAABAgSaICC4NwHRKggQIECAAAECBAgQIECAAAECBAgQIECAgOBuDhAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSYICO5NQLQKAgQIECBAgAABAgQIECBAgAABAgQIECAguJsDBAgQIECAAAECBAgQIECAAAECBAgQIECgCQKCexMQrYIAAQIECBAgQIAAAQIECBAgQIAAAQIECAju5gABAgQIECBAgAABAgQIECBAgAABAgQIEGiCgODeBESrIECAAAECBAgQIECAAAECBAgQIECAAAECgrs5QIAAAQIECBAgQIAAAQIECBAgQIAAAQIEmiAguDcB0SoIECBAgAABAgQIECBAgAABAgQIECBAgIDgbg4QIECAAAECBAgQIECAAAECBAgQIECAAIEmCAjuTUC0CgIECBAgQIAAAQIECBAgQIAAAQIECBAgILibAwQIECBAgAABAgQIECBAgAABAgQIECBAoAkCgnsTEK2CAAECBAgQIECAAAECBAgQIECAAAECBAgI7uYAAQIECBAgQIAAAQIECBAgQIAAAQIECBBogoDg3gREqyBAgAABAgQIECBAgAABAgQIECBAgAABAoK7OUCAAAECBAgQIECAAAECBAgQIECAAAECBJogILg3AdEqCBAgQIAAAQIECBAgQIAAAQIECBAgQICA4G4OECBAgAABAgQIECBAgAABAgQIECBAgACBJggI7k1AtAoCBAgQIECAAAECBAgQIECAAAECBAgQICC4J86Bzs7O8OIrb4RPxo4Ls886U5hq5BSJazS8PwKffDI2nPbL68JC888dVv/et/ozZMDPGTuuPXw0+uMw5RSThykmHzHg9RhYW+Bf/30lXPub+8PyS381fG3RhUpN9fx/Xg7X3/pA+O4yi4fFF/l8U/f17gcfD0/++R9hyw1XDTNMP02I7y/vffBRGDHZ8Oy9Zcqmbqu3lY3++JPsvWxsmHqqKcNkw4fnT7nk2jvDu+9/GHbcbM3Ctx838MGHo0N7R0eYftqpB2V7NkKAAAECBAgQIECAAAECBAgQaKaA4D5AzWf++kLY76jzwj//9WLVGj4z64zhR2uNCj9cc4Uw3TRTDXDt5Rl2x/2PhfseeSpsv+ka4bNzzDroO3buJTeH/738ejhkry2qth0D4NI/2Cl8Y7EvhF+dvG+h+xWD45Gn/Dqst/pyE+xHoRvuY+UDOS61LIt4DY1uK4bmXQ44Jey0xdqDFnb7et3t7R3hoON+GT4//2fDZuuvXPXU2+79fdjj4DPCbtusF7bZePWm8u116Jnh1rsfDTf+6siwwOfmDC9kcX/1TfcNc8w2U7jzyhP6va2BzI+48h33PTH/eT/h4J3CyssvkW9vxQ32CK+9+U74010X9Hv79Z7Y1/4tscp22RdcY8IjN58xJN5D61l4nAABAgQIECBAgAABAgQIEBhaAoL7AI7nJdfekQXYS/KRCy80b1jyq18MH4/5JD8z9bl//Cf/85MO3Tl87zvfGMDayzUkhuYYnC86Zb/w9a8M/pnHq/547/Dv/70a/nzvhVUwgxncb7v3D+Gkc68K66z6naYH1oEe7YEcl1qWA92HvsY1uq2yBff4GxSLr7RNWOQL84Urzj6o6qUOZnB/+bW3wpa7/yLMN88c4Yyjdu/3oRrI/IgrP/aMy8PdDz0eDs6+4Fpq8S/l2ysiuPe1fxvteFh4+933wzXnHTooZ/X3G9UTCRAgQIAAAQIECBAgQIAAAQL9EBDc+4HU/Smvvv52WGH9T8PXYT/bMo+w3Zennv1n2DU7U/eA3TYR3Bu07e3pZQjuTXgZTV/FQIJqoxE8Zacb3Zbg/ql2zzPcB3oMBjI/am1rsIP7QF+zcQQIECBAgAABAgQIECBAgACBMggI7g0ehUoQW3uVZcPhe2/V6+h4dmy87ne8DnJcHvrDM+H4s64I/8guPzM8uy7yl7Oz4g/ec/Ow4HxzdY1//Om/haNOvTRsvM6K2WVqXgo33v5QeOOtd/Mz6A/96Rbhc5/9TDj2zCvCndklXt565/0w1+yzhKMP2K7qGtJ7H352eOX1t8KuW62bby9e9iZub6XsTPv45cDk/3/98ft/91Q49YLrwi5brh2+883FuvbhPy++FvY85Iz8mujxMhq/vPzWcNbFN+bXVI7bm366afLnbvHDVcKqo5bK//94Rv/hJ10c/vy3f4X4uueZa7awx3YbVH3ZEK8Lfe4lN4Ubb3sovzRFvA76/PPMGTZY47th3dWqv7DoDhov23HnA4+FeHmP6FBZjv359mHGGabtuqTMD9dYId/PeHmfeA39eDmf3bdZP3vtw7rGjGtvD6dlr/nmOx4O8azhaaYeGZZZYtFw0B6bZa+r72tFx99cOOLkX4fNNlg5rL7ip9eLv+iq28JNdzwS9t1l43DFDXeHex95Mnf6/HyfzY/LFxaYu2vbrTguPSdmX5bzzj17/vRb7vpdOPvim8K//vtyPm/ia4jzJr6mjo7OsMM+J+RzL86vZZdatGsT0XO3n5+az6+zj9kzHHD0+TWPW2VbPfevVnCPZzofduLF4XeP/zm8+96HYZaZps8v7bPjZmt1Hd/Kz86P1/1e+M+Lr4brsuurxy/G4nP32XmjsMoKn87VyhL39+DscjG/f/K5rjkbLx3z8qtvhVMO3zVMm82NTXc9Mvz1n//Nt/GFBebJh8Zr+F986n6hcob7TpuvlV9rvN72er7Wyn+/9sY74cBjzw+PPvHpfsSf8fibMnHfK5eUiX++8c5H5L9dEl9LZbkh+1mKP5//zl5vXOIlZ1Zefsn8NzDifOzr57YyH88/4WfhsuvuCg/+/unwfnad+OOzy8jc/eAfw/W/fSifw/NnZ9XHpRLczz/+Z+H4s68Mz2Y/6/FneMVlv5FdYmnzpr+v7HvkueG/L70Wfn3a/l2vN95DIf5W0X3Zz1mcg/H1rvX9ZcOO2TEYNqxtgp+1+HN51KmXhCee+Xv+2LeXXDQcte+2dX/Wax0rf06AAAECBAgQIECAAAECBAgQ6K+A4N5fqf9/3rJr7ZIHn7uvOjHE67XXW67/7YNh/1+clz8tXm/84yw+xxAel8vPPDAs+qX58/+/EvEq66tE4BgZY8gcOeXkeXCMfx4DdIy7MSjed+3JXbsQw1iMiZUlRqnKfy/9jUXCucftlT905Y33hENO+FU4KIv+G/xg+a7n/+Xv/w7rbXNQqHyZcOoF14YLsqgXo1/cbgyOcdk5u852PLM/hvsd9jkx/7N4yYuRU06Rx7i4HJNF8dVGfTP//yvXhY6Re5EvzpeFzTfzy8TEOP6HW8+uSbjVHsdkofXZ/PHu1uceu1eYZeYZ8uBeWWIYnS37s8rr3W/XH+dfXsQl3nhyg+0OyfctPu9bX/9yV2yN673j8uOr4nzPHeotBv/8mAvym3xWlngsYhSM156Or/PBG07Lb3QZl8E+Lr2B9mW5wLxzhROykHr+Zb/Jh8ablr74yut5+I3LHZcfF+bMvnC564HHw64/PyWfj/HP4muOIX69bQ7M43TlNz7qbau3/evNOAbp1TbZOzeN8+9LC36uaz6sufIy4ch9t8lX1fNnJ86reIPR+IVVXG688IgQX2NcXspucPz9jX+W/wzF/Z9nrs+Evz3/3/znKX9udu30+Odrb3lA1+uvzL24zpsvOqqh7fX2WuOfxde28kY/7frZivsRr9fefT/iNdzjnFpile3DYgsvEC494+f56i7NIvkRJ1+cz9mvfGmBMPrjMeHvL/wvf023XPyL7Iugh/v8ua3Mx+7vD3G9111weB7rL8/+95LTDwhf/fKCdedv/OLlrKP3zJ/XrPeVVbLjE7/8q1xGamx2Q+poFedjPBbxC6D4JVi06r79uA+9/azFL/mizXLfWqyhy/LUOnb+nAABAgQIECBAgAABAgQIECDQl4Dg3sD8iGdJLzZqqzx09ecGgvHM7u+svUseDGPMWig7izYulUAYzyC+9vzDqv4sxr4TD9k5i56fz/+8Ei/jn8ezb2N4iwF5012PCvHM3ngjxRjOusembX/8g7BDdpPTGEZjgF5js33zfbgpi4XxrNX+hrG4zlqXpohn8C+3zq75lwDxWstfXPDTs4D/8cKLYc0t9g8zZWegP3D9qXkUW2q1HfK4HiN0PDM2LjG6x3C45/Yb9HkE6l1SJh6LeDZrPMs9nul678NPhp32Oynfn7hfcbnq5nuzM5ovDCst943wi/23y/chBrhdDjg5v0HkL/bbNvxgpaVr7kdfwT0ej2MP3CH/DYBosn72hUWMnxecuHfVNbDjcRiM49IXZi3Lyo05Y8y86pxDwswzTpev5uKrbw+/OO3S/Kz+eMZzXA478aI8yMbXHaPsyeddk/32ws25X3SsLM24pMxuB54W4s0145cnG609KrS1tYUPP/o4fG/DPfN5d9dVJ4TZZ52p6+cpzrnjD9opLLn4F/PdqMzdrX60av5bF3HZZq/jwsOPPRO22+QH+Zn6lSV+cRS/QOp+Znm9a7j3Z3u1jkf8jYP4PrBh9tsYP999066nVb6cquxHb8F9pQ33yr4QeaPqPSU+77xLb8mcVsy/MOjrkjKVKB33f++dNgpfz74IjNE+zuFjTr+sZnDvPn/jb9L8ILuZa3xfiV9CxC/cmvG+EiF6Bvf4RVD8Qij+/MbjG3/O4+uNX6LFuRvP1P/m1xbODSuvLd64eo/t1s+/eHk9C+6jsi8j4898fN/u/psvfb75eJAAAQIECBAgQIAAAQIECBAgMAABwb0BtHh27Pey2BXDZDzDvd7yyGN/DlvvdWx+pnc847v7UgmSD2UReobpp+mKhrtts17VjTkrZ7P+dMcNw+YbfL9rFZUY2v068rWutXzSuVfnUfTALOzFy600I4w99tRfw2Y/OSqs8O2vhRMO2rHqta22yT55EHzst+dkkas9D+4xcl173mFVl9Gp5xcfrxfc428N/OrkfbtWFb+MWGzFrfKzzB++8fT8z9ff9uD87PYYMeeZc7au59790BNhj4NPz8+Ej1G31tJXcI831Iw31qws8ZIsp5x/TXYZoC27LpczmMelL9NaljGan/Prm/L7Dqy32nJdq3gvu8zId9beNb/UyW9+fXT+5/FLhTU33y//DYV47KNNvIzQjRceGUaMmKxrbGpwj2fOL7rCFvlxvP+6U8KwLLZXlhiTr7zp3vxs5XjWcq2bmD79l+fDhjscml9q5YSDd8zPxq+s85Gbzqi6FEnPa6cP5KapPbfX17H4yqgt8wB87zUnhVmz38yoLD33o7fgXrGNX4JULnHUc1v9Ce5P3H5u1+VgKuMrX6j0PMM9niXe80vGyvtK5TdlmvG+EvejZ3Bfa4sD8i+xev5WUeXLte6X96r1s7bJLkd++gXlFceHOT4zc3/eejyHAAECBAgQIECAAAECBAgQIDAgAcG9AbZKhItnjsdYVW+pFcvjuEpYi5eJiGcL14qGN2fXCd/7iLPzM3TjmbqVpXKpmp/t9KP8eutxqRWb4rW5f3bYWfn4uJ5mhLHKOvoyuPWSo/NLdlTOKo7PjWfjx0uWxPAfr0tdb2k0uMf1xcDfkV1bu3K5mvjflUt19La97y69eDjtyJ/U3JVGgnvFJcbreJbtYB+XvjxrWcbLxMTLxdRael76p/tlWeIXKbddeuwEETM1uMdLisTw2tdSMa71s1NZR+X4Vv47ng0dz4ruvjQjuPfcXq19j2eHj1p/j16/uOtPcP9Vdv+AeCZ6XOIXEvHnaeXllwhrrLRM15cI9YJ7bwE9rq+R4F55X4nXjY9fFDbjfSXuQ8/gvsQq24Vx2ZcTPd9zKzew7n65nVrvgZU5XnlPqve+43ECBAgQIECAAAECBAgQIECAwEAFBPcG5ZZeY6f8chbxrNvKpTdqraJyKYT9f7JJfkmM7ku8MWC8MeqFJ+0TlvjqF2sG90rU6hncb7r94bDPkeeE/gT3SrSvXEajK4xlNwyNNy6tLD2v4R7/vFa4q7y2eA3leH343pZ4nfcYBOOZvL+84tZw+fV3VV1jvvulSmoZNiO4V84m3jv7cqK3JV7fe5klen8N8fmNBPerb74vHJTdkLM/wb2I49LXdK5lWblsUfwNit7uSzD1VCOrbm7b/Zra8fjelV3WKP7f7ktqcI8341136wPzL2g2/f8vlHq+tnjM4rGrFdwrv5FSCe7xprprbL5/fgPeq845uGp1zQjuPbdX61jE692vs9XPJ7j+eHx+f4J7fN49Dz8RTj3/2vza+ZUlWt16yTH5bxoMZnCPl5r5ydbrjg/uCe8r8bX0DO7x5zdeBqrn/R7ivTTiPTW6H89awX33g04Lt9/3WObz6ZeAFgIECBAgQIAAAQIECBAgQIBAUQKCe4OylbO1+7oMSbysSTwj84HsmtC7HHBKdsmS72WXLNm4aks/3vmI8MQzf++6BnutaNiM4F65ZEjlEhSVa5r3vExNX8G9+zXJ4wupXM6h5zWo63HGS2TE8BVv2hp/YyBe5z1eS7rW0ozgXlnH739zVph6qinr7eIEjxcV3Is4Ln29uFqWlTh7anaPgHiZmHpL5cuiGOfjWcbdb8hbGZsa3OO1weOZzfFyNTEi97X0N7hX1hnPyn/i9vOqruVdK7h3vxdAZR/6u71a+/zu+x/mN/yNXxbEG7p2X/ob3Ctj4n0lHnvyr9nP04X5jUZPOHin/Gz3yjHt+XMbx9WK0vGxRs5wP+uiG0O8sXLlHgjNeF+J+9AzuFf+Owb3+NsWlaW3S/gI7vV+ej1OgAABAgQIECBAgAABAgQIFC0guDcoXLkpaBx2XHazzFVWWKpqDf/890th94NOD7tsuXZ2qZgFw3fX2y2PRPdde3J+A7+4/OfFV7OotHd+VvDvbj4jvxlkUcH9nXc/yG8yGWNj5RrIDzz6p7D93ieEUct+LZxy2K75PsXrW59x4fXhzItuCN2viVyJaofstUVYb/Xx1/d+4613s5um/iSPljdf9Is8jFaWGAFvvO2hEM9wf+2Nd8Ifnnouv4599yVeWzsGs1+ftn9YfJFPbxDb21L5YuKOy48Lc2Y3dawslWjZ8xru8fGel5SpRMQ1V14mHLnvNlWbeT676eI7776fX5aj1lJEcC/quPQ1nWtZVl5fvGlmvLFu5ca2cV3R+Xd/fDaPuHG5ITuu+x11bn7d+njs1siu5x5D7093yO4x8MPx9xiota1GjCuhtbdrlcc5vND8c+dn5DcSwCtfBBz0/2dhx3l/b3a2+L7Za4qXHarcrDTu55eX3zz/GX30ljOrdruR7dV6vfHLhPgz2X178TdnNt758PxGoH3dNPWSa+/Mfxa7H6f4s3t69r87bb5W2DH731o/t3F/mhHc4w2hR22we/7bPrdnP5tx7jTjfSXuX8/gfsDR54frbn0gv2xNvHxNZamctV65N0Vfr80Z7n29M3iMAAECBAgQIECAAAECBAgQaKaA4D4AzcqZyXFoDI8x+n4ydmz407PPh2f++kK+xpMO3Tl87zvfyM/kjpdwiZd7+PF6K4V4OY54g8oY27rf8LRZwf3l194K8azcb3594TBmzNhw0x0P5yExXpajckmVGHu/s86u+aVe4j7GS+PES1TEs5Xj0j24V278Gq9bv8m63wsfZ+uM116PATbG+dMuuC6P7utmcf1zn509/O35/4Z7H3kyD3F/vvfCUDlrPgb5FZf9RvjsHLOEp579Zx5u55tnjnBTdiPT+IVDreXYMy8PF17x2zzorzbqW/nNWHfYbM0w/XRT52cJ9ye4x5t/xi8H4hn1X1hg7rDSckuEMdn/H2+iGG/+utMWa4cds3XWWpoR3AfzuDRqGW032vGw/LhE13jj1GmnmSr8KftC5L7sWMY5Hu81EC/JsnZ2KZThw4eH+AXILDNNn395tPqm++Zz6fIzDwyLfmn+fPO1jlv3L2a672dvxo8//fewyS6fngEeLwsT593Lr70Zfvf4X/J9qdzYs5EA/sCjT2dfNh2frzPO6XhT37jvlaV7AK/crPPbSy6a32ch3ig2xv9GtlfrWMT3gPg+Evdhre9/O7yXfbERb+Ib52hc+gru8RIrI6ecIr9h6kLzfzbfr8tuuDt/LfHyPvEmrH393A4kuMf5G699/61vfDl7rxsXrr753vz9ovt7RbPeV3oG99ezG7aO2mCP/Ditv/ry4Uufnyfcl/320H2PPJX/dsw92Y1nJ8vmZFyc4V7zbcwDBAgQIECAAAECBAgQIECAwCAJCO4DhP7d48+GA4+5IA/A3ZcYIeMNQeONTOPlS+LZ3vEGh/Gs1MoSA/U+O29cdV33O+5/LOx24GkTnMV5692P5td17nkGceX63/vsvFHYJAv5ldgUw1iMUPH6xnGJ29pyw1XDrlut23VDxfjnlZuuVvYpnsm7ybor5RE9npkevwyoLCede3W4LLv+euXGo92vJx+vWX706ZfmXyB0f30xBsazyeOZ8PGM/xi3uy+fn++z4YRDdgrzZ9G9ryWeYX3I8b8Kdz7wWFcYvfrcQ8Jcc8wavrX6jr0G93id/Rjnup+ZHF3i8Xr4sWeqNhcv63FAdo39JRf/Ys3dqMTgXbZcJ2y/6Rr58w4+7sIQL6ERrwUeryFdWa655f5w4LEXhMoZ1K06Lr29mFqWX/r85/Ljd8r514RLr7uzKkDHAB/Pmo5zOt7oMx7P04/cLSy/9FcneM1xDt1z9Un5b3T0ta3e9q034/i8OG/2/8V5+Vn03ZcYf4/ab9sw2ywzhFo/Oy+/+mZY8Yd7Vv0mR1zH7594Lpz96xtD/G2VeGb2ait+M4/4cR+6X+Iofll05CmXdM3d+LP0p7suaHh7vb3e+L4Q52P84qmyxC824hK/tIu/aRB/NuIlmJZYZfv8t0DibxTEJZ7xHe//0P2LgnicDv/ZVlWXBKr1c9tXcD/8pIvzn/XuX57E58efn3h8u998OMb2OM/jNeMrSzPeV3oG94rJTvuelM+/yhK/WDz9qN3C7LPO1PVntV7bHgefkX9REi9PVOtLn5pvAB4gQIAAAQIECBAgQIAAAQIECDQgILg3gNXbU8eOaw///u8r+Rnus882c83rkcczV+PlZiabbHgW0uasun504i70GptimHo/O7M7nnU+bFjvZ5B/+NHH4flsn6afbpq6ESpel/6F7HVOl535HL9U6Lm8nV2WJX75MOtMM+QRtOdZ69HpxZdfDx98NDrM+ZlZ+rxue28e0S9G19mz3xToeYPORvxi6IzriWcDzzX7rFXXhG5kPY08t3sEHOzj0qhlPM6vZGcuv/3Oe7lPDLkpS7OOW/xCIJ5NHy/LNOfsM3ed0Zyyb93H9hWh45nbcX7HOB/PSG/mEn8T5IX/vpz9nH4mzDh97XsZ9NxmPE6vvvF2eD27ZNMs2Rntn5llxl5/zuv93DbyWmLg/1e2r/E3RuLlfGrdD6GZ7ys99++V198K8YuU+eaeI8ww/TSN7L7nEiBAgAABAgQIECBAgAABAgQGRUBwHxTmwdlIX9FwcPbAVnoTcFzKMy/iNfsvzX7bJF4mZp4scn+YXW7pkuys/ptufzi/REu8ZIyFAAECBAgQIECAAAECBAgQIECAwEAFBPeBypVwnLBbwoOS7ZLjUp7jEq/Zv9lPjppgh+Iljs4/4Wf5/QwsBAgQIECAAAECBAgQIECAAAECBAYqILgPVK6E4+J13ePlHjZae1QJ927S3SXHpTzHPt4sN17DPd7c9933PshvMPr57Maj8ZrwFgIECBAgQIAAAQIECBAgQIAAAQKpAoJ7qqDxBAgQIECAAAECBAgQIECAAAECBAgQIEAgExDcTQMCBAgQIECAAAECBAgQIECAAAECBAgQINAEAcG9CYhWQYAAAQIECBAgQIAAAQIECBAgQIAAAQIEBHdzgAABAgQIECBAgAABAgQIECBAgAABAgQINEFAcG8ColUQIECAAAECBAgQIECAAAECBAgQIECAAAHB3RwgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNEBDcm4BoFQQIECBAgAABAgQIECBAgAABAgQIECBAQHA3BwgQIECAAAECBAgQIECAAAECBAgQIECAQBMEBPcmIFoFAQIECBAgQIAAAQIECBAgQIAAAQIECBAQ3M0BAhCFzPsAACAASURBVAQIECBAgAABAgQIECBAgAABAgQIECDQBAHBvQmIVkGAAAECBAgQIECAAAECBAgQIECAAAECBAR3c4AAAQIECBAgQIAAAQIECBAgQIAAAQIECDRBQHBvAqJVECBAgAABAgQIECBAgAABAgQIECBAgAABwd0cIECAAAECBAgQIECAAAECBAgQIECAAAECTRAQ3JuAaBUECBAgQIAAAQIECBAgQIAAAQIECBAgQEBwNwcIECBAgAABAgQIECBAgAABAgQIECBAgEATBAT3JiBaBQECBAgQIECAAAECBAgQIECAAAECBAgQENzNAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AQBwb0JiFZBgAABAgQIECBAgAABAgQIECBAgAABAgQEd3OAAAECBAgQIECAAAECBAgQIECAAAECBAg0QUBwbwKiVRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAcHdHCBAgAABAgQIECBAgAABAgQIECBAgAABAk0QENybgGgVBAgQIECAAAECBAgQIECAAAECBAgQIEBAcDcHCBAgQIAAAQIECBAgQIAAAQIECBAgQIBAEwQE9yYgWgUBAgQIECBAgAABAgQIECBAgAABAgQIEBDczQECBAgQIECAAAECBAgQIECAAAECBAgQINAEAcG9CYhWQYAAAQIECBAgQIAAAQIECBAgQIAAAQIEBHdzgAABAgQIECBAgAABAgQIECBAgAABAgQINEFAcG8ColUQIECAAAECBAgQIECAAAECBAgQIECAAAHB3RwgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNEBDcm4BoFQQIECBAgAABAgQIECBAgAABAgQIECBAQHA3BwgQIECAAAECBAgQIECAAAECBAgQIECAQBMEBPcmIFoFAQIECBAgQIAAAQIECBAgQIAAAQIECBAQ3M0BAgQIECBAgAABAgQIECBAgAABAgQIECDQBAHBvQmIVkGAAAECBAgQIECAAAECBAgQIECAAAECBAR3c4AAAQIECBAgQIAAAQIECBAgQIAAAQIECDRBQHBvAqJVECBAgAABAgQIECBAgAABAgQIECBAgAABwd0cIECAAAECBAgQIECAAAECBAgQIECAAAECTRAQ3JuAaBUECBAgQIAAAQIECBAgQIAAAQIECBAgQEBwNwcIECBAgAABAgQIECBAgAABAgQIECBAgEATBAT3JiBaBQECBAgQIECAAAECBAgQIECAAAECBAgQENzNAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AQBwb0JiFZBgAABAgQIECBAgAABAgQIECBAgAABAgQEd3OAAAECBAgQIECAAAECBAgQIECAAAECBAg0QUBwbwKiVRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAcHdHCBAgAABAgQIECBAgAABAgQIECBAgAABAk0QENwTEV96c3TiGgwnQIAAAQIECBAgQIAAAQIECBAgQIBAOQTmnHlkOXZkIt0LwT3xwAnuiYCGEyBAgAABAgQIECBAgAABAgQIECBQGgHBPe1QCO5pfkFwTwQ0nAABAgQIECBAgAABAgQIECBAgACB0ggI7mmHQnDvh9+49vbwymtvhY6OzjDX7LOE4cOHdY0S3PsB6CkECBAgQIAAAQIECBAgQIAAAQIECEwUAoJ72mES3Ov4nXvJzeGkc6/uetZUI6cIZx29Z/j6VxbK/0xwT5uARhMgQIAAAQIECBAgQIAAAQIECBAgUB4BwT3tWAjudfwuve6uMNMM04ZvL7loGDeuPWy5x9FhXHtHuPHCIwT3tLlnNAECBAgQIECAAAECBAgQIECAAAECJRMQ3NMOiODeoN8Wu/8iv7TMr07eV3Bv0M7TCRAgQIAAAQIECBAgQIAAAQIECBAot4DgnnZ8BPd++l1y7R3hljt/F/71v1fCmb/YIyy28AKCez/tPI0AAQIECBAgQIAAAQIECBAgQIAAgYlDQHBPO06Cez/9Dj7uwvD7J/8S3nz7vXD0/tuF5Zf+aj7y/dHj+rkGTyPQGoGOzs4Qsv/pubS1tYXsfywECBAgQIAAAQIECBAgQIAAAQIEugSmHTkZjQQBwb1BvGNOvyxcdsPd4Ynbz81Hvv/R2AbX4OkEBlfgtTc6wpXXtWWXQhpf1+easyOstVpbGD5McR/co2FrBAgQIECAAAECBAgQIECAAIFyC0w71Yhy72DJ905wb/AAXXfrA+GAo88PT911fphs+PDw0pujG1yDpxMYXIF3320LJ582PLvZ7/jtLrhAZ9h0425/MLi7ZGsECBAgQIAAAQIECBAgQIAAAQIlFXBJmbQDI7jX8TvsxIvCCt/+Wlh8kQXDy6+9FXbY+4Qw5ZRThBsvPCIfKbinTUCjixcQ3Is3tgUCBAgQIECAAAECBAgQIECAwFARENzTjqTgXsdv+72PDw88+nTXs+aZa7ZwxlG7h/nmmUNwT5t7Rg+SgOA+SNA2Q4AAAQIECBAgQIAAAQIECBAYAgKCe9pBFNz74Tfmk7HhpVfeCNNOM1WYZabpq0Y4w70fgJ7SUgHBvaX8Nk6AAAECBAgQIECAAAECBAgQmKgEBPe0wyW4p/m5pEyin+HFCwjuxRvbAgECBAgQIECAAAECBAgQIEBgqAgI7mlHUnBP8xPcE/0ML15AcC/e2BYIECBAgAABAgQIECBAgAABAkNFQHBPO5KCe5qf4J7oZ3jxAoJ78ca2QIAAAQIECBAgQIAAAQIECBAYKgKCe9qRFNzT/AT3RD/DixcQ3Is3tgUCBAgQIECAAAECBAgQIECAwFARENzTjqTgnuYnuCf6GV68gOBevLEtECBAgAABAgQIECBAgAABAgSGioDgnnYkBfc0P8E90c/w4gUE9+KNbYEAAQIECBAgQIAAAQIECBAgMFQEBPe0Iym4p/kJ7ol+hhcvILgXb2wLBAgQIECAAAECBAgQIECAAIGhIiC4px1JwT3NT3BP9DO8eAHBvXhjWyBAgAABAgQIECBAgAABAgQIDBUBwT3tSAruaX6Ce6Kf4cULCO7FG9sCAQIECBAgQIAAAQIECBAgQGCoCAjuaUdScE/zE9wT/QwvXkBwL97YFggQIECAAAECBAgQIECAAAECQ0VAcE87koJ7mp/gnuhnePECgnvxxrZAgAABAgQIECBAgAABAgQIEBgqAoJ72pEU3NP8BPdEP8OLFxDcize2BQIECBAgQIAAAQIECBAgQIDAUBEQ3NOOpOCe5ie4J/oZXryA4F68sS0QIECAAAECBAgQIECAAAECBIaKgOCediQF9zQ/wT3Rz/DiBQT34o1tgQABAgQIECBAgAABAgQIECAwVAQE97QjKbin+QnuiX6GFy8guBdvbAsECBAgQIAAAQIECBAgQIAAgaEiILinHUnBPc1PcE/0M7x4AcG9eGNbIECAAAECBAgQIECAAAECBAgMFQHBPe1ICu5pfoJ7op/hxQsI7sUb2wIBAgQIECBAgAABAgQIECBAYKgICO5pR1JwT/MT3BP9DC9eQHAv3tgWCBAgQIAAAQIECBAgQIAAAQJDRUBwTzuSgnuan+Ce6Gd48QKCe/HGtkCAAAECBAgQIECAAAECBAgQGCoCgnvakRTc0/wE90Q/w4sXENyLN7YFAgQIECBAgAABAgQIECBAgMBQERDc046k4J7mJ7gn+hlevIDgXryxLRAgQIAAAQIECBAgQIAAAQIEhoqA4J52JAX3ND/BPdHP8OIFBPfijW2BAAECBAgQIECAAAECBAgQIDBUBAT3tCMpuKf5Ce6JfoYXLyC4F29sCwQIECBAgAABAgQIECBAgACBoSIguKcdScE9zU9wT/QzvHgBwb14Y1sgQIAAAQIECBAgQIAAAQIECAwVAcE97UgK7ml+gnuin+HFCwjuxRvbAgECBAgQIECAAAECBAgQIEBgqAgI7mlHUnBP8xPcE/0ML15AcC/e2BYIECBAgAABAgQIECBAgAABAkNFQHBPO5KCe5qf4J7oZ3jxAoJ78ca2QIAAAQIECBAgQIAAAQIECBAYKgKCe9qRFNzT/AT3RD/DixcQ3Is3tgUCBAgQIECAAAECBAgQIECAwFARENzTjqTgnuYnuCf6GV68gOBevLEtECBAgAABAgQIECBAgAABAgSGioDgnnYkBfc0P8E90c/w4gUE9+KNbYEAAQIECBAgQIAAAQIECBAgMFQEBPe0Iym4p/kJ7ol+hhcvILgXb2wLBAgQIECAAAECBAgQIECAAIGhIiC4px1JwT3NT3BP9DO8eAHBvXhjWyBAgAABAgQIECBAgAABAgQIDBUBwT3tSAruaX6Ce6Kf4cULCO7FG9sCAQIECBAgQIAAAQIECBAgQGCoCAjuaUdScE/zE9wT/QwvXkBwL97YFggQIECAAAECBAgQIECAAAECQ0VAcE87koJ7mp/gnuhnePECgnvxxrZAgAABAgQIECBAgAABAgQIEBgqAoJ72pEU3NP8BPdEP8OLFxDcize2BQIECBAgQIAAAQIECBAgQIDAUBEQ3NOOpOCe5ie4J/oZXryA4F68sS0QIECAAAECBAgQIECAAAECBIaKgOCediQF9zQ/wT3Rz/DiBQT34o1tgQABAgQIECBAgAABAgQIECAwVAQE97QjKbin+QnuiX6GFy8guBdvbAsECBAgQIAAAQIECBAgQIAAgaEiILinHUnBPc1PcE/0M7x4AcG9eGNbIECAAAECBAgQIECAAAECBAgMFQHBPe1ICu5pfoJ7op/hxQsI7sUb2wIBAgQIECBAgAABAgQIECBAYKgICO5pR1JwT/MT3BP9DC9eQHAv3tgWCBAgQIAAAQIECBAgQIAAAQJDRUBwTzuSgnuan+Ce6Gd48QKCe/HGtkCAAAECBAgQIECAAAECBAgQGCoCgnvakRTc0/wE90Q/w4sXENyLN7YFAgQIECBAgAABAgQIECBAgMBQERDc046k4J7mJ7gn+hlevIDgXryxLRAgQIAAAQIECBAgQIAAAQIEhoqA4J52JAX3ND/BPdHP8OIFBPfijW2BAAECBAgQIECAAAECBAgQIDBUBAT3tCMpuPfDb+y49vDyq2+GWWeeIYyccvKqES+9Obofa/AUAq0TENxbZ2/LBAgQIECAAAECBAgQIECAAIGJTUBwTztignsdv2PPvDxceMVvu571tUUXCicdunOYecbp8j8T3NMmoNHFCwjuxRvbAgECBAgQIECAAAECBAgQIEBgqAgI7mlHUnCv43f+Zb8J839ujrDU4l8Kz//n5bDJLkeGzdZfOey2zXqCe9rcM3qQBAT3QYK2GQIECBAgQIAAAQIECBAgQIDAEBAQ3NMOouDeoN+O+54Y/vfyG+HGC48Q3Bu08/TWCAjurXG3VQIECBAgQIAAAQIECBAgQIDAxCgguKcdNcG9Ab+xY8eFpdfYKay8/JLh8L23EtwbsPPU1gkI7q2zt2UCBAgQIECAAAECBAgQIECAwMQmILinHTHBvZ9+nZ2dYaf9TgoP/v7pcNtlx4U5ZpspH/n+6HH9XIOnTSwCHR2dve5qW1tbyP5noltee70jHHtSW8ju/du1LLhAZ9h+q+z19PZqsj8cNjG+0EE8Mr3OEW6DeASG3qayv2JC/Hum5xJ/FON7j4UAAQIECBAgQIAAAQIECAyWwLQjJxusTQ3J7Qju/Tysh514Ubjq5nvDL0/cJ3z9Kwt1jXr/o7H9XIOnTSwCr73ZHi6/enjV7s43b0dYdaVhYfhE2L1eeyMG92ETBvctQ/jzcx3h3geqX+uK3+0ICy80bGI5XC3Zzz//tT3cdW+123eX7QiLLsytJQdkCGz0o487wnU3hfDmW+Pn0JRTdoR11wjZTbrNqyFwiL0EAgQIECBAgAABAgQITDQC0041YqLZ1zLuqOBe56i0t3eE/Y46N9x6z6PhVyfvGxZf5PNVI156c3QZj6t9ShB4++0QTjy1+pu8Rb/cEdZftyNhra0b2tclZZ76U1u45vrqcLzlZu1h3s/1fpZ/615Fubb852fbwhU9vpTZbOP2sED2mwMWAgMRGJt9d3v+hcPDSy+P/1ZvmmlC2GHbcWHa7P9aCBAgQIAAAQIECBAgQIDAYAm4pEyatOBex2/7vY8PDzz6dDjh4B3DgvN9tuvZ88w5WxgxYrIguKdNwDKOFtwF93rzUnCvJ+TxRgUE90bFPJ8AAQIECBAgQIAAAQIEihIQ3NNkBfc6fkuttkP44MMJz2K//peHh89nAV5wT5uAZRwtuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu499Ovs7MzjGvvCCMmG1414qU3R/dzDZ42sQgI7oJ7vbkquNcT8nijAoJ7o2KeT4AAAQIECBAgQIAAAQJFCQjuabKCez/9Lr3urnDiOVeGP9x6tuDeT7OJ9WmCu+Beb+4K7vWEPN6ogODeqJjnEyBAgAABAgQIECBAgEBRAoJ7mqzgXsfvn/96MWy00+Hhgw9Hh6lGTiG4p823iWK04C6415uogns9IY83KiC4Nyrm+QQIECBAgAABAgQIECBQlIDgniYruNfxGzuuPbz6+lvhpjseDhdc9hvBPW2+TRSjBXfBvd5EFdzrCXm8UQHBvVExzydAgAABAgQIECBAgACBogQE9zRZwb2fflfdfG845vTLBPd+ek3MTxPcBfd681dwryfk8UYFBPdGxTyfAAECBAgQIECAAAECBIoSENzTZAX3fvrVCu7vfji21zUMG9bWzzVPPE/r6OiccGezlzmsrfZrHciYZor0uv1sA23Z8am11y+/2h6OOXFY1W4s+uWOsNnGw3ofU1lRbzyZTR88zXypoZb1G290hmNPastu+jt+cwsu0Bm236otPPpYR7jq2urXus0WHWHhL1TfHLj7jrb6mMYbGGf/M8HS1mTrWtuJB/SxJ9rDZVdWu225aUdYdOEyu4XMbUK4vtzi0xsdM5BJPVjbGci+9TWmmT8LH33cEU7PbhHy0svj35mmmSaE3XbqDDNO38u7VZ333lr7nb+N9zoPsvfFwXqzavaBaPH6BjIPav3dNBQ/O7T48Axo847PgNgMIkBgIhDozD4I9PIxOv8M0NtnvviPn77+rdfMl1yGz4MD+Tu9mQbWRYAAgVYI1Hrvm36qEa3YnSGzTcG9n4eyVnB/7vmPwzU3VEe2xRbtCN/5VgytQye6xw9Aj/6xI/z+j9WRcbWVO8IC81b/WYU0jvn9Ex3h0T9UP77qSh1hwfl6H9PPw9Hvp732Znu4/Orq47PA/B1hlVHDwrAau/Dyqx3hmJN6D+5PPdMeHny4en0rj+oI008XwpXXVY+Z93MdYbWV2sLwQfry5ak/t4f7Hqzet++t0BFmnjFkwX3YhMF9y+yYPtYZruqx33lwX6j28fnTs+3h3geqt7Pi8jHSD84xfeOtjnD19SF8Mnb89madtSOs+4O2MPmI5v3Mxe1cc2MIY8aM387MM3+6nT892zlhcN8kBvfaBn/+a3u4695qt+WX7Qhf6WNMvyd6P5749nud+ev56MPxRtNP3xnWW6MzTD1V7/sdx1yXjfmg25jppusM664RwrRTN8/6vfc7w7U3hfDe++PXOe00nWGdbDvTT9u87fSDqaGn/O359vDbO6qP6beW6ghLfLXxn4U8uJ/TNmFw37EjvPVOZ7j19urtfHPJjrDk4o1vZ8wn0bozvP7G+LFTTJHN68x6lpkaX19DYEP0yS/8pz3cdGv18fn6VzvCMkvV9vzXf9vDjb+pHrPsMu1h8UVqf2k3RPlK+bL+93J7uPbG6mPxtcWzY7pE9sV7ed+SSmlppwgQKJfA229nn6Ozz1yjR4//O2qmmbLPXKt3hhf+XXUQBwAAIABJREFU2xnuuqf6vW+5b3eExb48OJ8PButzZ19H5Ll/tIfb76o2+Pa3OsLXvjI4BuWaLfaGAIFJQSB+2Xr/I53hqaer3+fWWDXrG1+YYlIgKOw1Cu79pK0V3J/4y+hw+lmTVa1luWXbw6gsQA61f5U99MiwcNsd1T+E2289Lsw5Z23Eh383LPz29uox223dHuaas7dzK/p5MBp4Wm+Xh4lfiKy7dnZ8aix9XVLmj08MCzfc1POM8PYw7bSd4YRTqufBwl/sCBuun51WPkj/On/yqbZwbY8vf7bcrD3MOEMIJ582fILgvunG7eGpP7WFa66v/lAZx8z7udrH509Pt4Wrr6ses8Wm7WG+eQfnmL7/fginnTlZGP3x+AM499ydYatsv2t9idLAlOl6atzO6WdPFj76aPzoOG+33rw9PPe3tnBFjy9yNss8F8h+c6DW8uyzbRN8+ROPQfxtg8FYPvyoLZx17rDw7rvja9Fss4aw7ZbjwuQ1/h6NY845b1h4+53xY2aZuTNsu1V7mHLK5u316NHZds4fFt58a/x2ZpqxM2y3dUcYOXJwfAbyav7xj7Zw0aXVPwvxZ37hLzW+z31dUua1V9vCry6p3s4P12sPX1648e20Z29J5184PPzvxfHWU00Vwo7bjQvTTTsQBWP+/Z+23LT7ss6a7eGri9U+Pv/5b1s475fVY9ZesyMsvljtv5tID57Ay6+EcOY51X+nj/puR1gu+5LUQoAAgYlZ4MMPQjjjnOHh/Q/Gfw6YffaQfb4dF/7xz+yz6lXVfzdtulH2WXXBxj9vDMRosD539rVvf80+419yebXBRj9sD1/8wuAYDMTNGAIECKQK3HVPW7ivx0mVO20/Liz+pZGpq56kxwvudQ5//LZn9MefhOtuvT+cdO7V4b5rTwkjJhseRoz49B9igrvgvs0WgrvgHrJLDgnuA/3bVHAPQXAf6Oxp/TjBvfXHoNl7ILg3W9T6CBAoi4Dg3veRENzLMlPtBwECgykguBejLbjXcX32b/8K6297cNWzlv7GIuHc4/YS3DMBZ7iHILiHILgL7il/RQnugnvK/Gn1WMG91Ueg+dsX3Jtvao0ECJRDQHAX3MsxE+0FAQJlEhDcizkagnuiqzPcneEuuAvu8W3EGe4DfzMV3AX3gc+e1o8U3Ft/DJq9B4J7s0WtjwCBsggI7oJ7Weai/SBAoDwCgnsxx0JwT3QV3AV3wV1wF9zT3kgFd8E9bQa1drTg3lr/IrYuuBehap0ECJRBQHAX3MswD+0DAQLlEhDcizkegnuiq+AuuAvugrvgnvZGKrgL7mkzqLWjBffW+hexdcG9CFXrJECgDAKCu+BehnloHwgQKJeA4F7M8RDcE10Fd8FdcBfcBfe0N1LBXXBPm0GtHS24t9a/iK0L7kWoWicBAmUQENwF9zLMQ/tAgEC5BAT3Yo6H4J7oKrgL7oK74C64p72RCu6Ce9oMau1owb21/kVsXXAvQtU6CRAog4DgLriXYR7aBwIEyiUguBdzPAT3RFfBXXAX3AV3wT3tjVRwF9zTZlBrRwvurfUvYuuCexGq1kmAQBkEBHfBvQzz0D4QIFAuAcG9mOMhuCe6Cu6Cu+AuuAvuaW+kgrvgnjaDWjtacG+tfxFbF9yLULVOAgTKICC4C+5lmIf2gQCBcgkI7sUcD8E90VVwF9wFd8FdcE97IxXcBfe0GdTa0YJ7a/2L2LrgXoSqdRIgUAYBwV1wL8M8tA8ECJRLQHAv5ngI7omugrvgLrgL7oJ72hup4C64p82g1o4W3FvrX8TWBfciVK2TAIEyCAjugnsZ5qF9IECgXAKCezHHQ3BPdBXcBXfBXXAX3NPeSAV3wT1tBrV2tODeWv8iti64F6FqnQQIlEFAcBfcyzAP7QMBAuUSENyLOR6Ce6Kr4C64C+6Cu+Ce9kYquAvuaTOotaMF99b6F7F1wb0IVeskQKAMAoK74F6GeWgfCBAol4DgXszxENwTXQV3wV1wF9wF97Q3UsFdcE+bQa0dLbi31r+IrQvuRahaJwECZRAQ3AX3MsxD+0CAQLkEBPdijofgnugquAvugrvgLrinvZEK7oJ72gxq7WjBvbX+RWxdcC9C1ToJECiDgOAuuJdhHtoHAgTKJSC4F3M8BPdEV8FdcBfcBXfBPe2NVHAX3NNmUGtHC+6t9S9i64J7EarWSYBAGQQEd8G9DPPQPhAgUC4Bwb2Y4yG4J7oK7oK74C64C+5pb6SCu+CeNoNaO1pwb61/EVsX3ItQtU4CBMogILgL7mWYh/aBAIFyCQjuxRwPwT3RVXAX3AV3wV1wT3sjFdwF97QZ1NrRgntr/YvYuuBehKp1EiBQBgHBXXAvwzy0DwQIlEtAcC/meAjuia6Cu+AuuAvugnvaG6ngLrinzaDWjhbcW+tfxNYF9yJUrZMAgTIICO6CexnmoX0gQKBcAoJ7McdDcE90FdwFd8FdcBfc095IBXfBPW0GtXa04N5a/yK2LrgXoWqdBAiUQUBwF9zLMA/tAwEC5RIQ3Is5HoJ7oqvgLrgL7oK74J72Riq4C+5pM6i1owX31voXsXXBvQhV6yRAoAwCgrvgXoZ5aB8IECiXgOBezPEQ3BNdBXfBXXAX3AX3tDdSwV1wT5tBrR0tuLfWv4itC+5FqFonAQJlEBDcBfcyzEP7QIBAuQQE92KOh+Ce6Cq4C+6Cu+AuuKe9kQrugnvaDGrtaMG9tf5FbF1wL0LVOgkQKIOA4C64l2Ee2gcCBMolILgXczwE90RXwV1wF9wFd8E97Y1UcBfc02ZQa0cL7q31L2LrgnsRqtZJgEAZBAR3wb0M89A+ECBQLgHBvZjjIbgnugrugrvgLrgL7mlvpIK74J42g1o7WnBvrX8RWxfci1C1TgIEyiAguAvuZZiH9oEAgXIJCO7FHA/BPdFVcBfcBXfBXXBPeyMV3AX3tBnU2tGCe2v9i9i64F6EqnUSIFAGAcFdcC/DPLQPBAiUS0BwL+Z4CO6JroK74C64C+6Ce9obqeAuuKfNoNaOFtxb61/E1gX3IlStkwCBMggI7oJ7GeahfSBAoFwCgnsxx0NwT3QV3AV3wV1wF9zT3kgFd8E9bQa1drTg3lr/IrYuuBehap0ECJRBQHAX3MswD+0DAQLlEhDcizkegnuiq+AuuAvugrvgnvZGKrgL7mkzqLWjBffW+hexdcG9CFXrJECgDAKCu+BehnloHwgQKJeA4F7M8RDcE10Fd8FdcBfcBfe0N1LBXXBPm0GtHS24t9a/iK0L7kWoWicBAmUQENwF9zLMQ/tAgEC5BAT3Yo6H4J7oKrgL7oK74C64p72RCu6Ce9oMau1owb21/kVsXXAvQtU6CRAog4DgLriXYR7aBwIEyiUguBdzPAT3RFfBXXAX3AV3wT3tjVRwF9zTZlBrRwvurfUvYuuCexGq1kmAQBkEBHfBvQzz0D4QIFAuAcG9mOMhuCe6Cu6Cu+AuuAvuaW+kgrvgnjaDWjtacG+tfxFbF9yLULVOAgTKICC4C+5lmIf2gQCBcgkI7sUcD8E90VVwF9wFd8FdcE97IxXcBfe0GdTa0YJ7a/2L2LrgXoSqdRIgUAYBwV1wL8M8tA8ECJRLQHAv5ngI7omugrvgLrgL7oJ72hup4C64p82g1o4W3FvrX8TWBfciVK2TAIEyCAjugnsZ5qF9IECgXAKCezHHQ3BPdBXcBXfBXXAX3NPeSAV3wT1tBrV2tODeWv8iti64F6FqnQQIlEFAcBfcyzAP7QMBAuUSENyLOR6Ce6Kr4C64C+6Cu+Ce9kYquAvuaTOotaMF99b6F7F1wb0IVeskQKAMAoK74F6GeWgfCBAol4DgXszxENwTXQV3wV1wF9wF97Q3UsFdcE+bQa0dLbi31r+IrQvuRahaJwECZRAQ3AX3MsxD+0CAQLkEBPdijofgnugquAvugrvgLrinvZEK7oJ72gxq7WjBvbX+RWxdcC9C1ToJECiDgOAuuJdhHtoHAgTKJSC4F3M8BPdEV8FdcBfcBXfBPe2NVHAX3NNmUGtHC+6t9S9i64J7EarWSYBAGQQEd8G9DPPQPhAgUC4Bwb2Y4yG4J7oK7oK74C64C+5pb6SCu+CeNoNaO1pwb61/EVsX3ItQtU4CBMogILgL7mWYh/aBAIFyCQjuxRwPwT3RVXAX3AV3wV1wT3sjFdwF97QZ1NrRgntr/YvYuuBehKp1EiBQBgHBXXAvwzy0DwQIlEtAcC/meAjuia6Cu+AuuAvugnvaG6ngLrinzaDWjhbcW+tfxNYF9yJUrZMAgTIICO6CexnmoX0gQKBcAoJ7McdDcE90FdwFd8FdcBfc095IBXfBPW0GtXa04N5a/yK2LrgXoWqdBAiUQUBwF9zLMA/tAwEC5RIQ3Is5HoJ7oqvgLrgL7oK74J72Riq4C+5pM6i1owX31voXsXXBvQhV6yRAoAwCgrvgXoZ5aB8IECiXgOBezPEQ3BNdBXfBXXAX3AX3tDdSwV1wT5tBrR0tuLfWv4itC+5FqFonAQJlEBDcBfcyzEP7QIBAuQQE92KOh+Ce6Cq4C+6Cu+AuuKe9kQrugnvaDGrtaMG9tf5FbF1wL0LVOgkQKIOA4C64l2Ee2gcCBMolILgXczwE90RXwV1wF9wFd8E97Y1UcBfc02ZQa0cL7q31L2LrgnsRqtZJgEAZBAR3wb0M89A+ECBQLgHBvZjjIbgnugrugrvgLrgL7mlvpIK74J42g1o7WnBvrX8RWxfci1C1TgIEyiAguAvuZZiH9oEAgXIJCO7FHA/BvZ+u7773YRg7blyYZabpq0YI7oK74C64C+79fCOt8TTBXXBPm0GtHS24t9a/iK0L7kWoWicBAmUQENwF9zLMQ/tAgEC5BAT3Yo6H4F7H9YMPR4et9zo2PP2X5/NnzjX7LOGiU/cLs886U/7fgrvgLrgL7oJ72l9QgrvgnjaDWjtacG+tfxFbF9yLULVOAgTKICC4C+5lmIf2gQCBcgkI7sUcD8G9jutxZ10Rrrrp3nDd+YeFqacaGTbc4ZAw3zxzhDOO2l1wzwS231pwF9wFd8E97S8owV1wT5tBrR0tuLfWv4itC+5FqFonAQJlEBDcBfcyzEP7QIBAuQQE92KOh+Bex3WF9XcPq6ywVPjpDhvmz7zmlvvDgcdeEJ6555ehra3NGe6CexDcBXfBPe0vKMFdcE+bQa0dLbi31r+IrQvuRahaJwECZRAQ3AX3MsxD+0CAQLkEBPdijofgXsf1K6O2DAfvuXlYZ9Xv5M98/Om/h012OSI8eMOpYcbppxXcBXfBPfu52GLT9jDfvJ3FvEv1WOv774dw2pmThdEfj39g7rk7w1abtYdhw5q3C3E7p589Wfjoo/HrnGvOzrD15u3hub+1hSuuHl61sc02bg8LLFDb4Nln28LlPcZsmo1ZsI8xzXs1IXz4UVs469xh4d1327pWO9usIWy75bgw+RS9bymOOee8YeHtd8aPmWXmzrDtVu1hyimbt3eCu+DevNk0+GsS3AffvOgtCu5FC1s/AQKtEhDcBfdWzT3bJUCgvAKCezHHRnDvw7WzszMs8t0twrE/3yGsOmqp/Jl/+fu/w3rbHBRuveSYMM9cs4W//3tMuPLa8TEqPuerX+kMq3x38jBmbEfomd8mH/FppPtkbHvVluPzpp5ieBg9pr3QMXGjUzW4nThm5OTDw50Pjgm/f6z6ta65aghf/PzkE7yeypi7Hx4Tfvf76jFrrBLClxbqfUy+b9Gto1pu8uFtWUwdFj7u4db1emqM+d+r48IlV1Yf5AXm7wzrrT55GJtto+d2Jsu28/Jr48Kvr6geM38Wk9dbY/LwyGOfhAcern49q60UwgzTt4VLrqre53nn6QwbrDkijMv+uLftTNbg64n71teYhx4bE+59oHrfvr9iCLPO3BZ+fWX2Wrvt3pxzdIaN1xsR/vDk2F7HLP7lyWtaP/zHMeGe+6u3s/KoEL62SO0x8Wehvccxrfd6ao15/c32zLojjB07fh9mnbUzbLL+iDy499zOiMxt+GTZ3Ml+tnoucb71tp045rVsO5de3RE++aRbbJ6pM/x4gxHhmb+ODXfeU22w4vIhLLF4ZlBjO48+OWaCMaOWC2HJr9UeU2vfRmSv56MGX8/b73aGS65pDx99OF5h+uwe0D9eb3gYObJtArfhmcG773WGS7Mx8R9nlWX66ULYKBsz9VS9j5miwX2L23n//c5wWbad97IvOSrLNFOHsPH6w8O002bbaa/+2Ro+rC1MMaIPg3HZfBuEMU/8eUz4ze3V8+Db3wxhuW9NXvP4jM32bWwv+zbmk+z4XN0e3nprvMGUU3SGH2XWr73RHm65rXo7S2d/JX136d63M2U2r9trbCe793f49VVjwxtvjl/f5JN3Zsd0WJht5uG97lst676209eYcdm+jWvg+MTtNDwm+7t2XMeE22nL5s7IGnNnygGOefYfY8INt1Qfn28s3hlWXn6KXudB3M5f/jkmXH9z9ZjvLNMZll2y9pjBej0D2U5HZv1Jj2Naz7rRMfnnpwa3U+szV5Qfmc2r3t5H45h/Zp/trr6++vh8PTumKy03Rfj4kwn/Lhnodnr7PFjZtw+z9/jqPQih3naK/gw5kM+qA/3cOZDPqjXHZH/PxA8IPT971/sMOZDPnY2OqfdZqLfPxMaEUM+gmZ87JxvAZ8iBfO4crDFvvt2Rfb5tz05cGf8OM+OMn34efO6f48Idd1e/86yQnXP2ra/X/lzTrM+qg/m5s6/Pqn98Zkz47R09/34O2d/PfRgM0ufOWp8h+/pM3OiYgX62q/W5s9mfIQeynYY/Q5b8c+dAPqcNtTGNfoaMn70bHTOYnzv7+jxY67NqM8fEn9Nb7/kkPPmn6ve+ddfIWt8Ck0/QUPxB/wUE9zpW8Qz3Q/baIqy9yrL5MytnuD90w2lZZJ2m/9KeSYAAAQIECBAgQIAAAQIECBAgQIAAAQJDWkBwr3N44zXcVx31zbDX9j/Mn3n1zfeFg477Zdc13If07PDiCBAgQIAAAQIECBAgQIAAAQIECBAgQKDfAoJ7Hapjz7w8j+zXnn9YmHrklOFHOx4a5ptnjnDGUbv3G9kTCRAgQIAAAQIECBAgQIAAAQIECBAgQGDoCwjudY7xBx+ODlvtcUx2zeYX8mfOMdtM4eLTDsj/b1HLuPbs5o9tw7LLTfa8emcIYz7Jrr371rthzs/MHNraJnz8ldffCtNNM1WYKvtywEKAAIGhINAR77eQ3YRg+PDG74r77nsfhrHZhctnmSm7YL2FAAECE7nA2HHt4eVX38zuzzJDGDll79fV7OuzYL3PkRM5j90nQGASE4ifEV9/850wYsRkYaYZpm341cfxL736RvjMrDOFEZN9eq81CwECBCZmgXff/zC8+fZ7+b9/YxvsudT7LKgpNu/oC+79tHzrnfezmy2NDbNnfxkXuXw0+uOw8o9+GnbcfK3wo7WyO1H+/xJj01GnXhIuufbO/E8mn3xEOOvoPcJSi38p/+9/vPBi2PQnR2Y3Ofz0jojLfWuxcPKhu+QfPiwECBCYWAXie98u+5+S7/5pR/6k6mUsu9YuIb43d182WntU2P8nm4T4ZenWex0bnv7L8/nDc80+S7jo1P0Kfw+fWJ3tNwEC5ReIv3V54RW/7drRry26UDjp0J3DzDNmd7Ou81mw3ufI8r96e0iAAIFqgbsffDzsdtBpob29I38g/hZ6vPfa17+yUP7fN9z2UNjvqHMnYHvst+fkX1jeevejYe8jzu4av/u264etN1oNMwECBCZKgfjv39U22Sc/QbeyrLz8kuHYn2+fn7hW77Ogptj8wy64N990wGuMHwjiB4O4HLDbJlXB/Xd/fDZstecx4Zxj9wpLLPaFcOiJF4Xb7v19ePSWs/Iz4dfZ6udh6qlGhrOP2SP896XXw/rbHhT22XnjEOOThQABAhOjwDW33B8OP/ni8En2mz3fXXrxXoP76t9bOqyz6qc3tY7LjNNPm3+bf9xZV4Srbro3XBcvB5a9N264wyEuBzYxTgL7TIBAl8D5l/0mzP+5OfKTLZ7/z8thk12ODJutv3LYbZv18uf09Vmw3udIzAQIEJjYBO55+Inw0itvhlVWWCqM/nhM2OOg00NHdqLGVeccnL+U63/7YDjw2AvCNecdWvXSFpx3rvz531x9xzyw77DZWuGWOx8J+//ivHDzRUflnxctBAgQmNgE4pntp5x3Tdh43e+Fz831mXDH/Y+FPQ85I2+IyyyxSKj3WVBTbP4RF9ybbzrgNcZvoj4e80lYe8sDwh7bbVAV3A84+vzwzHMvhOt/eXi+/vjrxCv+cM/w69P2D5/77Owhnul53nE/Dd/6xpfzx/c4+Iz81+MuP/PAAe+PgQQIEGilwIcffRzefvf9/EbVI6eYotfgvlX2D6XNN/j+BLsZb3gd/wH20x02zB+L8T7+o+uZe37Z6+W4Wvk6bZsAAQIDEdhx3xPD/15+I9x44RH5b/v09Vmwr8+Riy/y+YFs3hgCBAiUSiD+JviRp/w6PHXX+WGy4cPz4H7ICb8KT9w+4Vnuv7nr0fDTw84Mj2ePTZH95nhcll5jp/Djdb6X/6a5hQABAhO7wF/+/u+w3jYH5V9CLrzQvEFTHPwjKrgPvnndLS612g752UrdLymzxe6/yM7cnC6ccPCOXeO/vPzm2a+H7JB9Cz97/oN055UndF1b/rQLrgvX3np/uPuqE+tuzxMIECBQZoHdDjwtjMuuW9zbJWXiP5IWnG+u8Nk5ZgsbrrlC/v/H5SujtgwH77l5dvb7d/L/fvzpv2dngx4RHrzh1PwseAsBAgQmZoGxY8flcSj+qvDhe28VKv+oqvVZsK/PkauOWmpiprDvBAgQyAW22eu48M9/v9j1798Y3ONZ699ectEwxRQjwjLfWCSss9py+bXaz7v0lnDB5b8JD994epfehjscGuLZ7/E91UKAAIGJVSD+FuQF2W9F3v3Q42HVFb6ZXz0jLpri4B9RwX3wzetusbfgHn+9I34r1f0DQAxK++/64/wM93i5me4hKX6IOPviG8Mfbj277vY8gQABAmUWqBXcj8guNzM8O4Mp3vDqzgcey69XF39tOP5jaZHvbpF/IVkJSZUYdeslx4R55pqtzC/XvhEgQKBPgXgNzp32Oyk8+Punw22XHZefbFH5NeFanwX7+hz5w+zLSgsBAgQmZoHK2e2nHr5rWOHbX8tfymNP/TU/y32G6acJ/3nx1XDXA4+HlZb7RjjxkJ3zSw/+5q7fVZ2cFmPUNFNPFeI6LAQIEJhYBZ545u/hhLOvCs/949/5PS1OOWzX/B6QmuLgH1HBffDN626x1hnuM80wXTj+oOoz3I87cIcw79yfnuF+11UndN0Q0BnudZk9gQCBiUSgVnDvvvvxOu/LrLlz/ptB8ZJc8QvJeOOstVf59PrulTPcH7rhtPwfXhYCBAhMrAKHZffxuerme8MvT9yn6+aAlS8Va30WjCGp1ufIePktCwECBCZWgXhfs3g51fj5b6sfrVrzZfzqqtvCMadfFp688/zwqyt/6wz3ifWA228CBPol8M67H4TvrLNr2HunH4WNs8tl9fVZUFPsF2nDTxLcGyYrfkBvwT1eb+nZv/0rXJvdADAuL73yRvjehntVXcP9/ON/Fr759YXzx3fP7tj+8mtvuYZ78YfLFggQKFigP8E97sKKG+yRn9W0X/abP/Ea7quO+mbYa/sf5nt39c335deCdw33gg+W1RMgUJhAe3tH2O+oc8Ot9zwafnXyvqH7tdcr13Cv9Vmwr8+RruFe2CGzYgIEChaIXz4efNyF2We/jfOg1Ndy271/yML86flvgN/78JMTXMM9/hs83ojaNdwLPmhWT4DAoAnEyw/GS6zGfxNrioPG3rUhwX3wzWtuMV6Pc2x2neLvrrdb/hf9+qsvH0ZOOXl+g79HHvtz2HqvY8NZR+8Zllz8i3k4uuuBP4ZHbzkrDBvWFtba4oAw7TRTZY/vEf770mthg+0ODvvsvHHYaO1RJXqFdoUAAQL9FxjX3h4++WRc2OvQM7LLxnRk97DYOb+x1fDhw8I/Xngx3HznI/kHiM/MOmMW1O/NbpR1Sddd2I898/I8sscvKaceOWX40Y6HZve7mCOccdTu/d8BzyRAgECJBLbf+/jwwKNP5/fzWXC+z3bt2TxzzhZGjJisz8+C9T5Hluhl2hUCBAj0S+Ci7Iz1o7Mz1rffdI38JIvKMuvMM4Tpsn8Xn3Hh9WGRL86X/SbQF8Kbb78btvvZ8dl75Yj8RtMfjf44LLHK9mHbH/8g7LjZmuGmOx4OPz/mgnDzRUflnxctBAgQmNgE4uUFH3/6b2GNlZfJf6vxyhvvCfHfxOccu1dYZolFNMUWHFDBvQXotTa52U+Oyq8113257oLDw0LzfzbE63UeftLF4fIb7s4fjsHpnGP26jqj/e8v/C/8eOcjwgcfjs4f/843F8uu1bRL/g8wCwECBCZGgXMvuTmcdO7VVbv+0x03DJtv8P3wz3+9GOLNrT4aPabr8R02XTPsvOXa+X/H98Kt9jgmPPPXF/L/jtc4vvi0A7puLD0xethnAgQmbYF49mXlc153iet/eXj4fBbg+/osWO9z5KQt69UTIDAxCsTfgLzj/scm2PWfZZdPiGeqx7M5r7v1ga7H4z184okXlaAeT9zY+/Dx9zv7ydbr5gHeQoAAgYlR4A9PPhe2zb5YjJdarSzxC8ldtlwn/896nwU1xeYfdcG9+aaFrjHGpTfeeifMnZ3NFM9877m8mF1qJp7pHr/VtxAgQGAoC8QPDa+/+W744KPR+XviiMmGT/By42UWPhk7tuv+FkPZw2sjQIBAFOjrs2C9z5EECRAgMJQE4nveK6+/lf/beJaZpp/gpcVLdcXw4yn3AAAIG0lEQVTfDp/zMzPnNxW0ECBAYGIWiP8+fvPt98J7H3wU5p5j1l5PwK33WVBTbN4MENybZ2lNBAgQIECAAAECBAgQIECAAAECBAgQIDAJCwjuk/DB99IJECBAgAABAgQIECBAgAABAgQIECBAoHkCgnvzLK2JAAECBAgQIECAAAECBAgQIECAAAECBCZhAcF9Ej74XjoBAgQIECBAgAABAgQIECBAgAABAgQINE9AcG+epTURIECAAAECBAgQIECAAAECBAgQIECAwCQsILhPwgffSydAgAABAgQIECBAgAABAgQIECBAgACB5gkI7s2ztCYCBAgQIECAAAECBAgQIECAAAECBAgQmIQFBPdJ+OB76QQIECBAgAABAgQIECBAgAABAgQIECDQPAHBvXmW1kSAAAECBAgQIECAAAECBAgQIECAAAECk7CA4D4JH3wvnQABAgQIECBAgAABAgQIECBAgAABAgSaJyC4N8/SmggQIECAAAECBAgQIECAAAECBAgQIEBgEhYQ3Cfhg++lEyBAgAABAgQIECBAgAABAgQIECBAgEDzBAT35llaEwECBAgQIECAAAECBAgQIECAAAECBAhMwgKC+yR88L10AgQIECBAgAABAgQIECBAgAABAgQIEGiegODePEtrIkCAAAECBAgQIECAAAECBAgQIECAAIFJWEBwn4QPvpdOgAABAgQIECBAgAABAgQIECBAgAABAs0TENybZ2lNBAgQIECAAAECBAgQIECAAAECBAgQIDAJCwjuk/DB99IJECBAgAABAgQIECBAgAABAgQIECBAoHkCgnvzLK2JAAECBAgQIECAAAECBAgQIECAAAECBCZhAcF9Ej74XjoBAgQIECBAgAABAgQIECBAgAABAgQINE9AcG+epTURIECAAAECBAgQIECAAAECBAgQIECAwCQsILhPwgffSydAgAABAgQIECBAgAABAgQIECBAgACB5gkI7s2ztCYCBAgQIECAAAECBAgQIECAAAECBAgQmIQFBPdJ+OB76QQIECBAgAABAgQIECBAgAABAgQIECDQPAHBvXmW1kSAAAECBAgQIECAAAECBAgQIECAAAECk7CA4D4JH3wvnQABAgQIECBAgAABAgQIECBAgAABAgSaJyC4N8/SmggQIECAAAECBAgQIECAAAECBAgQIEBgEhYQ3Cfhg++lEyBAgAABAgQIECBAgAABAgQIECBAgEDzBAT35llaEwECBAgQIECAAAECBAgQIECAAAECBAhMwgKC+yR88L10AgQIECBAgAABAgQIECBAgAABAgQIEGiegODePEtrIkCAAAECBAgQIECAAAECBAgQIECAAIFJWEBwn4QPvpdOgAABAgQIECBAgAABAgQIECBAgAABAs0TENybZ2lNBAgQIECAAAECBAgQIECAAAECBAgQIDAJCwjuk/DB99IJECBAgAABAgQIECBAgAABAgQIECBAoHkCgnvzLK2JAAECBAgQ+L927JgGAAAAYZh/15jgWw2QUD4IECBAgAABAgQIECBAgACBsIDDPTy+6gQIECBAgAABAgQIECBAgAABAgQIECDwE3C4/ywlESBAgAABAgQIECBAgAABAgQIECBAgEBYwOEeHl91AgQIECBAgAABAgQIECBAgAABAgQIEPgJONx/lpIIECBAgAABAgQIECBAgAABAgQIECBAICzgcA+PrzoBAgQIECBAgAABAgQIECBAgAABAgQI/AQc7j9LSQQIECBAgAABAgQIECBAgAABAgQIECAQFnC4h8dXnQABAgQIECBAgAABAgQIECBAgAABAgR+Ag73n6UkAgQIECBAgAABAgQIECBAgAABAgQIEAgLONzD46tOgAABAgQIECBAgAABAgQIECBAgAABAj8Bh/vPUhIBAgQIECBAgAABAgQIECBAgAABAgQIhAUc7uHxVSdAgAABAgQIECBAgAABAgQIECBAgACBn4DD/WcpiQABAgQIECBAgAABAgQIECBAgAABAgTCAg738PiqEyBAgAABAgQIECBAgAABAgQIECBAgMBPwOH+s5REgAABAgQIECBAgAABAgQIECBAgAABAmEBh3t4fNUJECBAgAABAgQIECBAgAABAgQIECBA4CfgcP9ZSiJAgAABAgQIECBAgAABAgQIECBAgACBsIDDPTy+6gQIECBAgAABAgQIECBAgAABAgQIECDwE3C4/ywlESBAgAABAgQIECBAgAABAgQIECBAgEBYwOEeHl91AgQIECBAgAABAgQIECBAgAABAgQIEPgJONx/lpIIECBAgAABAgQIECBAgAABAgQIECBAICzgcA+PrzoBAgQIECBAgAABAgQIECBAgAABAgQI/AQc7j9LSQQIECBAgAABAgQIECBAgAABAgQIECAQFnC4h8dXnQABAgQIECBAgAABAgQIECBAgAABAgR+Ag73n6UkAgQIECBAgAABAgQIECBAgAABAgQIEAgLONzD46tOgAABAgQIECBAgAABAgQIECBAgAABAj8Bh/vPUhIBAgQIECBAgAABAgQIECBAgAABAgQIhAUc7uHxVSdAgAABAgQIECBAgAABAgQIECBAgACBn4DD/WcpiQABAgQIECBAgAABAgQIECBAgAABAgTCAg738PiqEyBAgAABAgQIECBAgAABAgQIECBAgMBPwOH+s5REgAABAgQIECBAgAABAgQIECBAgAABAmEBh3t4fNUJECBAgAABAgQIECBAgAABAgQIECBA4CcwuzVoxKzv4lIAAAAASUVORK5CYII=",
+ "text/html": [
+ " "
]
- ]
- },
- "colorway": [
- "#636efa",
- "#EF553B",
- "#00cc96",
- "#ab63fa",
- "#FFA15A",
- "#19d3f3",
- "#FF6692",
- "#B6E880",
- "#FF97FF",
- "#FECB52"
- ],
- "font": {
- "color": "#2a3f5f"
- },
- "geo": {
- "bgcolor": "white",
- "lakecolor": "white",
- "landcolor": "#E5ECF6",
- "showlakes": true,
- "showland": true,
- "subunitcolor": "white"
},
- "hoverlabel": {
- "align": "left"
- },
- "hovermode": "closest",
- "mapbox": {
- "style": "light"
- },
- "paper_bgcolor": "white",
- "plot_bgcolor": "#E5ECF6",
- "polar": {
- "angularaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "bgcolor": "#E5ECF6",
- "radialaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- }
- },
- "scene": {
- "xaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- },
- "yaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- },
- "zaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- }
- },
- "shapedefaults": {
- "line": {
- "color": "#2a3f5f"
- }
- },
- "ternary": {
- "aaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "baxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "bgcolor": "#E5ECF6",
- "caxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- }
- },
- "title": {
- "x": 0.05
- },
- "xaxis": {
- "automargin": true,
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": "",
- "title": {
- "standoff": 15
- },
- "zerolinecolor": "white",
- "zerolinewidth": 2
- },
- "yaxis": {
- "automargin": true,
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": "",
- "title": {
- "standoff": 15
- },
- "zerolinecolor": "white",
- "zerolinewidth": 2
- }
- }
- },
- "title": {
- "text": "Computes the input text length distribution"
- },
- "xaxis": {
- "autorange": true,
- "range": [
- 95.5,
- 301.5
- ],
- "showspikes": false,
- "title": {
- "text": ""
- },
- "type": "linear"
- },
- "yaxis": {
- "autorange": true,
- "range": [
- 0,
- 3.1578947368421053
- ],
- "showspikes": false,
- "title": {
- "text": ""
- },
- "type": "linear"
+ "metadata": {},
+ "output_type": "display_data"
}
- }
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAFoCAYAAABNITkUAAAgAElEQVR4XuzdB5wkVYHA4Te7LLDkLEGQJCqCiAooiCCLIEEyiCA5R0lKlBwk5xxEkJyTSM4gigRBxAQmco7LsjszV6+4np2enZ6entc1XTv71e/ud8d2v6rqr9709v67pqqtM1uChQABAgQIECBAgAABAgQIECBAgAABAgQIEEgSaBPck/wMJkCAAAECBAgQIECAAAECBAgQIECAAAECuYDgbiIQIECAAAECBAgQIECAAAECBAgQIECAAIEmCAjuTUC0CgIECBAgQIAAAQIECBAgQIAAAQIECBAgILibAwQIECBAgAABAgQIECBAgAABAgQIECBAoAkCgnsTEK2CAAECBAgQIECAAAECBAgQIECAAAECBAgI7uYAAQIECBAgQIAAAQIECBAgQIAAAQIECBBogoDg3gREqyBAgAABAgQIECBAgAABAgQIECBAgAABAoK7OUCAAAECBAgQIECAAAECBAgQIECAAAECBJogILg3AdEqCBAgQIAAAQIECBAgQIAAAQIECBAgQICA4G4OECBAgAABAgQIECBAgAABAgQIECBAgACBJggI7k1AtAoCBAgQIECAAAECBAgQIECAAAECBAgQICC4mwMECBAgQIAAAQIECBAgQIAAAQIECBAgQKAJAoJ7ExCtggABAgQIECBAgAABAgQIECBAgAABAgQICO7mAAECBAgQIECAAAECBAgQIECAAAECBAgQaIKA4N4ERKsgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKCuzlAgAABAgQIECBAgAABAgQIECBAgAABAgSaICC4NwHRKggQIECAAAECBAgQIECAAAECBAgQIECAgOBuDhAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSYICO5NQLQKAgQIECBAgAABAgQIECBAgAABAgQIECAguJsDBAgQIECAAAECBAgQIECAAAECBAgQIECgCQKCexMQrYIAAQIECBAgQIAAAQIECBAgQIAAAQIECAju5gABAgQIECBAgAABAgQIECBAgAABAgQIEGiCgODeBESrIECAAAECBAgQIECAAAECBAgQIECAAAECgrs5QIAAAQIECBAgQIAAAQIECBAgQIAAAQIEmiAguDcB0SoIECBAgAABAgQIECBAgAABAgQIECBAgIDgbg4QIECAAAECBAgQIECAAAECBAgQIECAAIEmCAjuTUC0CgIECBAgQIAAAQIECBAgQIAAAQIECBAgILibAwQIECBAgAABAgQIECBAgAABAgQIECBAoAkCgnsTEK2CAAECBAgQIECAAAECBAgQIECAAAECBAgI7uYAAQIECBAgQIAAAQIECBAgQIAAAQIECBBogoDg3gREqyBAgAABAgQIECBAgAABAgQIECBAgAABAoK7OUCAAAECBAgQIECAAAECBAgQIECAAAECBJogILg3AdEqCBAgQIAAAQIECBAgQIAAAQIECBAgQICA4G4OECBAgAABAgQIECBAgAABAgQIECBAgACBJggI7k1AtAoCBAgQIECAAAECBAgQIECAAAECBAgQICC4J86Bzs7O8OIrb4RPxo4Ls886U5hq5BSJazS8PwKffDI2nPbL68JC888dVv/et/ozZMDPGTuuPXw0+uMw5RSThykmHzHg9RhYW+Bf/30lXPub+8PyS381fG3RhUpN9fx/Xg7X3/pA+O4yi4fFF/l8U/f17gcfD0/++R9hyw1XDTNMP02I7y/vffBRGDHZ8Oy9Zcqmbqu3lY3++JPsvWxsmHqqKcNkw4fnT7nk2jvDu+9/GHbcbM3Ctx838MGHo0N7R0eYftqpB2V7NkKAAAECBAgQIECAAAECBAgQaKaA4D5AzWf++kLY76jzwj//9WLVGj4z64zhR2uNCj9cc4Uw3TRTDXDt5Rl2x/2PhfseeSpsv+ka4bNzzDroO3buJTeH/738ejhkry2qth0D4NI/2Cl8Y7EvhF+dvG+h+xWD45Gn/Dqst/pyE+xHoRvuY+UDOS61LIt4DY1uK4bmXQ44Jey0xdqDFnb7et3t7R3hoON+GT4//2fDZuuvXPXU2+79fdjj4DPCbtusF7bZePWm8u116Jnh1rsfDTf+6siwwOfmDC9kcX/1TfcNc8w2U7jzyhP6va2BzI+48h33PTH/eT/h4J3CyssvkW9vxQ32CK+9+U74010X9Hv79Z7Y1/4tscp22RdcY8IjN58xJN5D61l4nAABAgQIECBAgAABAgQIEBhaAoL7AI7nJdfekQXYS/KRCy80b1jyq18MH4/5JD8z9bl//Cf/85MO3Tl87zvfGMDayzUkhuYYnC86Zb/w9a8M/pnHq/547/Dv/70a/nzvhVUwgxncb7v3D+Gkc68K66z6naYH1oEe7YEcl1qWA92HvsY1uq2yBff4GxSLr7RNWOQL84Urzj6o6qUOZnB/+bW3wpa7/yLMN88c4Yyjdu/3oRrI/IgrP/aMy8PdDz0eDs6+4Fpq8S/l2ysiuPe1fxvteFh4+933wzXnHTooZ/X3G9UTCRAgQIAAAQIECBAgQIAAAQL9EBDc+4HU/Smvvv52WGH9T8PXYT/bMo+w3Zennv1n2DU7U/eA3TYR3Bu07e3pZQjuTXgZTV/FQIJqoxE8Zacb3Zbg/ql2zzPcB3oMBjI/am1rsIP7QF+zcQQIECBAgAABAgQIECBAgACBMggI7g0ehUoQW3uVZcPhe2/V6+h4dmy87ne8DnJcHvrDM+H4s64I/8guPzM8uy7yl7Oz4g/ec/Ow4HxzdY1//Om/haNOvTRsvM6K2WVqXgo33v5QeOOtd/Mz6A/96Rbhc5/9TDj2zCvCndklXt565/0w1+yzhKMP2K7qGtJ7H352eOX1t8KuW62bby9e9iZub6XsTPv45cDk/3/98ft/91Q49YLrwi5brh2+883FuvbhPy++FvY85Iz8mujxMhq/vPzWcNbFN+bXVI7bm366afLnbvHDVcKqo5bK//94Rv/hJ10c/vy3f4X4uueZa7awx3YbVH3ZEK8Lfe4lN4Ubb3sovzRFvA76/PPMGTZY47th3dWqv7DoDhov23HnA4+FeHmP6FBZjv359mHGGabtuqTMD9dYId/PeHmfeA39eDmf3bdZP3vtw7rGjGtvD6dlr/nmOx4O8azhaaYeGZZZYtFw0B6bZa+r72tFx99cOOLkX4fNNlg5rL7ip9eLv+iq28JNdzwS9t1l43DFDXeHex95Mnf6/HyfzY/LFxaYu2vbrTguPSdmX5bzzj17/vRb7vpdOPvim8K//vtyPm/ia4jzJr6mjo7OsMM+J+RzL86vZZdatGsT0XO3n5+az6+zj9kzHHD0+TWPW2VbPfevVnCPZzofduLF4XeP/zm8+96HYZaZps8v7bPjZmt1Hd/Kz86P1/1e+M+Lr4brsuurxy/G4nP32XmjsMoKn87VyhL39+DscjG/f/K5rjkbLx3z8qtvhVMO3zVMm82NTXc9Mvz1n//Nt/GFBebJh8Zr+F986n6hcob7TpuvlV9rvN72er7Wyn+/9sY74cBjzw+PPvHpfsSf8fibMnHfK5eUiX++8c5H5L9dEl9LZbkh+1mKP5//zl5vXOIlZ1Zefsn8NzDifOzr57YyH88/4WfhsuvuCg/+/unwfnad+OOzy8jc/eAfw/W/fSifw/NnZ9XHpRLczz/+Z+H4s68Mz2Y/6/FneMVlv5FdYmnzpr+v7HvkueG/L70Wfn3a/l2vN95DIf5W0X3Zz1mcg/H1rvX9ZcOO2TEYNqxtgp+1+HN51KmXhCee+Xv+2LeXXDQcte+2dX/Wax0rf06AAAECBAgQIECAAAECBAgQ6K+A4N5fqf9/3rJr7ZIHn7uvOjHE67XXW67/7YNh/1+clz8tXm/84yw+xxAel8vPPDAs+qX58/+/EvEq66tE4BgZY8gcOeXkeXCMfx4DdIy7MSjed+3JXbsQw1iMiZUlRqnKfy/9jUXCucftlT905Y33hENO+FU4KIv+G/xg+a7n/+Xv/w7rbXNQqHyZcOoF14YLsqgXo1/cbgyOcdk5u852PLM/hvsd9jkx/7N4yYuRU06Rx7i4HJNF8dVGfTP//yvXhY6Re5EvzpeFzTfzy8TEOP6HW8+uSbjVHsdkofXZ/PHu1uceu1eYZeYZ8uBeWWIYnS37s8rr3W/XH+dfXsQl3nhyg+0OyfctPu9bX/9yV2yN673j8uOr4nzPHeotBv/8mAvym3xWlngsYhSM156Or/PBG07Lb3QZl8E+Lr2B9mW5wLxzhROykHr+Zb/Jh8ablr74yut5+I3LHZcfF+bMvnC564HHw64/PyWfj/HP4muOIX69bQ7M43TlNz7qbau3/evNOAbp1TbZOzeN8+9LC36uaz6sufIy4ch9t8lX1fNnJ86reIPR+IVVXG688IgQX2NcXspucPz9jX+W/wzF/Z9nrs+Evz3/3/znKX9udu30+Odrb3lA1+uvzL24zpsvOqqh7fX2WuOfxde28kY/7frZivsRr9fefT/iNdzjnFpile3DYgsvEC494+f56i7NIvkRJ1+cz9mvfGmBMPrjMeHvL/wvf023XPyL7Iugh/v8ua3Mx+7vD3G9111weB7rL8/+95LTDwhf/fKCdedv/OLlrKP3zJ/XrPeVVbLjE7/8q1xGamx2Q+poFedjPBbxC6D4JVi06r79uA+9/azFL/mizXLfWqyhy/LUOnb+nAABAgQIECBAgAABAgQIECDQl4Dg3sD8iGdJLzZqqzx09ecGgvHM7u+svUseDGPMWig7izYulUAYzyC+9vzDqv4sxr4TD9k5i56fz/+8Ei/jn8ezb2N4iwF5012PCvHM3ngjxRjOusembX/8g7BDdpPTGEZjgF5js33zfbgpi4XxrNX+hrG4zlqXpohn8C+3zq75lwDxWstfXPDTs4D/8cKLYc0t9g8zZWegP3D9qXkUW2q1HfK4HiN0PDM2LjG6x3C45/Yb9HkE6l1SJh6LeDZrPMs9nul678NPhp32Oynfn7hfcbnq5nuzM5ovDCst943wi/23y/chBrhdDjg5v0HkL/bbNvxgpaVr7kdfwT0ej2MP3CH/DYBosn72hUWMnxecuHfVNbDjcRiM49IXZi3Lyo05Y8y86pxDwswzTpev5uKrbw+/OO3S/Kz+eMZzXA478aI8yMbXHaPsyeddk/32ws25X3SsLM24pMxuB54W4s0145cnG609KrS1tYUPP/o4fG/DPfN5d9dVJ4TZZ52p6+cpzrnjD9opLLn4F/PdqMzdrX60av5bF3HZZq/jwsOPPRO22+QH+Zn6lSV+cRS/QOp+Znm9a7j3Z3u1jkf8jYP4PrBh9tsYP999066nVb6cquxHb8F9pQ33yr4QeaPqPSU+77xLb8mcVsy/MOjrkjKVKB33f++dNgpfz74IjNE+zuFjTr+sZnDvPn/jb9L8ILuZa3xfiV9CxC/cmvG+EiF6Bvf4RVD8Qij+/MbjG3/O4+uNX6LFuRvP1P/m1xbODSuvLd64eo/t1s+/eHk9C+6jsi8j4898fN/u/psvfb75eJAAAQIECBAgQIAAAQIECBAgMAABwb0BtHh27Pey2BXDZDzDvd7yyGN/DlvvdWx+pnc847v7UgmSD2UReobpp+mKhrtts17VjTkrZ7P+dMcNw+YbfL9rFZUY2v068rWutXzSuVfnUfTALOzFy600I4w99tRfw2Y/OSqs8O2vhRMO2rHqta22yT55EHzst+dkkas9D+4xcl173mFVl9Gp5xcfrxfc428N/OrkfbtWFb+MWGzFrfKzzB++8fT8z9ff9uD87PYYMeeZc7au59790BNhj4NPz8+Ej1G31tJXcI831Iw31qws8ZIsp5x/TXYZoC27LpczmMelL9NaljGan/Prm/L7Dqy32nJdq3gvu8zId9beNb/UyW9+fXT+5/FLhTU33y//DYV47KNNvIzQjRceGUaMmKxrbGpwj2fOL7rCFvlxvP+6U8KwLLZXlhiTr7zp3vxs5XjWcq2bmD79l+fDhjscml9q5YSDd8zPxq+s85Gbzqi6FEnPa6cP5KapPbfX17H4yqgt8wB87zUnhVmz38yoLD33o7fgXrGNX4JULnHUc1v9Ce5P3H5u1+VgKuMrX6j0PMM9niXe80vGyvtK5TdlmvG+EvejZ3Bfa4sD8i+xev5WUeXLte6X96r1s7bJLkd++gXlFceHOT4zc3/eejyHAAECBAgQIECAAAECBAgQIDAgAcG9AbZKhItnjsdYVW+pFcvjuEpYi5eJiGcL14qGN2fXCd/7iLPzM3TjmbqVpXKpmp/t9KP8eutxqRWb4rW5f3bYWfn4uJ5mhLHKOvoyuPWSo/NLdlTOKo7PjWfjx0uWxPAfr0tdb2k0uMf1xcDfkV1bu3K5mvjflUt19La97y69eDjtyJ/U3JVGgnvFJcbreJbtYB+XvjxrWcbLxMTLxdRael76p/tlWeIXKbddeuwEETM1uMdLisTw2tdSMa71s1NZR+X4Vv47ng0dz4ruvjQjuPfcXq19j2eHj1p/j16/uOtPcP9Vdv+AeCZ6XOIXEvHnaeXllwhrrLRM15cI9YJ7bwE9rq+R4F55X4nXjY9fFDbjfSXuQ8/gvsQq24Vx2ZcTPd9zKzew7n65nVrvgZU5XnlPqve+43ECBAgQIECAAAECBAgQIECAwEAFBPcG5ZZeY6f8chbxrNvKpTdqraJyKYT9f7JJfkmM7ku8MWC8MeqFJ+0TlvjqF2sG90rU6hncb7r94bDPkeeE/gT3SrSvXEajK4xlNwyNNy6tLD2v4R7/vFa4q7y2eA3leH343pZ4nfcYBOOZvL+84tZw+fV3VV1jvvulSmoZNiO4V84m3jv7cqK3JV7fe5klen8N8fmNBPerb74vHJTdkLM/wb2I49LXdK5lWblsUfwNit7uSzD1VCOrbm7b/Zra8fjelV3WKP7f7ktqcI8341136wPzL2g2/f8vlHq+tnjM4rGrFdwrv5FSCe7xprprbL5/fgPeq845uGp1zQjuPbdX61jE692vs9XPJ7j+eHx+f4J7fN49Dz8RTj3/2vza+ZUlWt16yTH5bxoMZnCPl5r5ydbrjg/uCe8r8bX0DO7x5zdeBqrn/R7ivTTiPTW6H89awX33g04Lt9/3WObz6ZeAFgIECBAgQIAAAQIECBAgQIBAUQKCe4OylbO1+7oMSbysSTwj84HsmtC7HHBKdsmS72WXLNm4aks/3vmI8MQzf++6BnutaNiM4F65ZEjlEhSVa5r3vExNX8G9+zXJ4wupXM6h5zWo63HGS2TE8BVv2hp/YyBe5z1eS7rW0ozgXlnH739zVph6qinr7eIEjxcV3Is4Ln29uFqWlTh7anaPgHiZmHpL5cuiGOfjWcbdb8hbGZsa3OO1weOZzfFyNTEi97X0N7hX1hnPyn/i9vOqruVdK7h3vxdAZR/6u71a+/zu+x/mN/yNXxbEG7p2X/ob3Ctj4n0lHnvyr9nP04X5jUZPOHin/Gz3yjHt+XMbx9WK0vGxRs5wP+uiG0O8sXLlHgjNeF+J+9AzuFf+Owb3+NsWlaW3S/gI7vV+ej1OgAABAgQIECBAgAABAgQIFC0guDcoXLkpaBx2XHazzFVWWKpqDf/890th94NOD7tsuXZ2qZgFw3fX2y2PRPdde3J+A7+4/OfFV7OotHd+VvDvbj4jvxlkUcH9nXc/yG8yGWNj5RrIDzz6p7D93ieEUct+LZxy2K75PsXrW59x4fXhzItuCN2viVyJaofstUVYb/Xx1/d+4613s5um/iSPljdf9Is8jFaWGAFvvO2hEM9wf+2Nd8Ifnnouv4599yVeWzsGs1+ftn9YfJFPbxDb21L5YuKOy48Lc2Y3dawslWjZ8xru8fGel5SpRMQ1V14mHLnvNlWbeT676eI7776fX5aj1lJEcC/quPQ1nWtZVl5fvGlmvLFu5ca2cV3R+Xd/fDaPuHG5ITuu+x11bn7d+njs1siu5x5D7093yO4x8MPx9xiota1GjCuhtbdrlcc5vND8c+dn5DcSwCtfBBz0/2dhx3l/b3a2+L7Za4qXHarcrDTu55eX3zz/GX30ljOrdruR7dV6vfHLhPgz2X178TdnNt758PxGoH3dNPWSa+/Mfxa7H6f4s3t69r87bb5W2DH731o/t3F/mhHc4w2hR22we/7bPrdnP5tx7jTjfSXuX8/gfsDR54frbn0gv2xNvHxNZamctV65N0Vfr80Z7n29M3iMAAECBAgQIECAAAECBAgQaKaA4D4AzcqZyXFoDI8x+n4ydmz407PPh2f++kK+xpMO3Tl87zvfyM/kjpdwiZd7+PF6K4V4OY54g8oY27rf8LRZwf3l194K8azcb3594TBmzNhw0x0P5yExXpajckmVGHu/s86u+aVe4j7GS+PES1TEs5Xj0j24V278Gq9bv8m63wsfZ+uM116PATbG+dMuuC6P7utmcf1zn509/O35/4Z7H3kyD3F/vvfCUDlrPgb5FZf9RvjsHLOEp579Zx5u55tnjnBTdiPT+IVDreXYMy8PF17x2zzorzbqW/nNWHfYbM0w/XRT52cJ9ye4x5t/xi8H4hn1X1hg7rDSckuEMdn/H2+iGG/+utMWa4cds3XWWpoR3AfzuDRqGW032vGw/LhE13jj1GmnmSr8KftC5L7sWMY5Hu81EC/JsnZ2KZThw4eH+AXILDNNn395tPqm++Zz6fIzDwyLfmn+fPO1jlv3L2a672dvxo8//fewyS6fngEeLwsT593Lr70Zfvf4X/J9qdzYs5EA/sCjT2dfNh2frzPO6XhT37jvlaV7AK/crPPbSy6a32ch3ig2xv9GtlfrWMT3gPg+Evdhre9/O7yXfbERb+Ib52hc+gru8RIrI6ecIr9h6kLzfzbfr8tuuDt/LfHyPvEmrH393A4kuMf5G699/61vfDl7rxsXrr753vz9ovt7RbPeV3oG99ezG7aO2mCP/Ditv/ry4Uufnyfcl/320H2PPJX/dsw92Y1nJ8vmZFyc4V7zbcwDBAgQIECAAAECBAgQIECAwCAJCO4DhP7d48+GA4+5IA/A3ZcYIeMNQeONTOPlS+LZ3vEGh/Gs1MoSA/U+O29cdV33O+5/LOx24GkTnMV5692P5td17nkGceX63/vsvFHYJAv5ldgUw1iMUPH6xnGJ29pyw1XDrlut23VDxfjnlZuuVvYpnsm7ybor5RE9npkevwyoLCede3W4LLv+euXGo92vJx+vWX706ZfmXyB0f30xBsazyeOZ8PGM/xi3uy+fn++z4YRDdgrzZ9G9ryWeYX3I8b8Kdz7wWFcYvfrcQ8Jcc8wavrX6jr0G93id/Rjnup+ZHF3i8Xr4sWeqNhcv63FAdo39JRf/Ys3dqMTgXbZcJ2y/6Rr58w4+7sIQL6ERrwUeryFdWa655f5w4LEXhMoZ1K06Lr29mFqWX/r85/Ljd8r514RLr7uzKkDHAB/Pmo5zOt7oMx7P04/cLSy/9FcneM1xDt1z9Un5b3T0ta3e9q034/i8OG/2/8V5+Vn03ZcYf4/ab9sw2ywzhFo/Oy+/+mZY8Yd7Vv0mR1zH7594Lpz96xtD/G2VeGb2ait+M4/4cR+6X+Iofll05CmXdM3d+LP0p7suaHh7vb3e+L4Q52P84qmyxC824hK/tIu/aRB/NuIlmJZYZfv8t0DibxTEJZ7xHe//0P2LgnicDv/ZVlWXBKr1c9tXcD/8pIvzn/XuX57E58efn3h8u998OMb2OM/jNeMrSzPeV3oG94rJTvuelM+/yhK/WDz9qN3C7LPO1PVntV7bHgefkX9REi9PVOtLn5pvAB4gQIAAAQIECBAgQIAAAQIECDQgILg3gNXbU8eOaw///u8r+Rnus882c83rkcczV+PlZiabbHgW0uasun504i70GptimHo/O7M7nnU+bFjvZ5B/+NHH4flsn6afbpq6ESpel/6F7HVOl535HL9U6Lm8nV2WJX75MOtMM+QRtOdZ69HpxZdfDx98NDrM+ZlZ+rxue28e0S9G19mz3xToeYPORvxi6IzriWcDzzX7rFXXhG5kPY08t3sEHOzj0qhlPM6vZGcuv/3Oe7lPDLkpS7OOW/xCIJ5NHy/LNOfsM3ed0Zyyb93H9hWh45nbcX7HOB/PSG/mEn8T5IX/vpz9nH4mzDh97XsZ9NxmPE6vvvF2eD27ZNMs2Rntn5llxl5/zuv93DbyWmLg/1e2r/E3RuLlfGrdD6GZ7ys99++V198K8YuU+eaeI8ww/TSN7L7nEiBAgAABAgQIECBAgAABAgQGRUBwHxTmwdlIX9FwcPbAVnoTcFzKMy/iNfsvzX7bJF4mZp4scn+YXW7pkuys/ptufzi/REu8ZIyFAAECBAgQIECAAAECBAgQIECAwEAFBPeBypVwnLBbwoOS7ZLjUp7jEq/Zv9lPjppgh+Iljs4/4Wf5/QwsBAgQIECAAAECBAgQIECAAAECBAYqILgPVK6E4+J13ePlHjZae1QJ927S3SXHpTzHPt4sN17DPd7c9933PshvMPr57Maj8ZrwFgIECBAgQIAAAQIECBAgQIAAAQKpAoJ7qqDxBAgQIECAAAECBAgQIECAAAECBAgQIEAgExDcTQMCBAgQIECAAAECBAgQIECAAAECBAgQINAEAcG9CYhWQYAAAQIECBAgQIAAAQIECBAgQIAAAQIEBHdzgAABAgQIECBAgAABAgQIECBAgAABAgQINEFAcG8ColUQIECAAAECBAgQIECAAAECBAgQIECAAAHB3RwgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNEBDcm4BoFQQIECBAgAABAgQIECBAgAABAgQIECBAQHA3BwgQIECAAAECBAgQIECAAAECBAgQIECAQBMEBPcmIFoFAQIECBAgQIAAAQIECBAgQIAAAQIECBAQ3M0BAhCFzPsAACAASURBVAQIECBAgAABAgQIECBAgAABAgQIECDQBAHBvQmIVkGAAAECBAgQIECAAAECBAgQIECAAAECBAR3c4AAAQIECBAgQIAAAQIECBAgQIAAAQIECDRBQHBvAqJVECBAgAABAgQIECBAgAABAgQIECBAgAABwd0cIECAAAECBAgQIECAAAECBAgQIECAAAECTRAQ3JuAaBUECBAgQIAAAQIECBAgQIAAAQIECBAgQEBwNwcIECBAgAABAgQIECBAgAABAgQIECBAgEATBAT3JiBaBQECBAgQIECAAAECBAgQIECAAAECBAgQENzNAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AQBwb0JiFZBgAABAgQIECBAgAABAgQIECBAgAABAgQEd3OAAAECBAgQIECAAAECBAgQIECAAAECBAg0QUBwbwKiVRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAcHdHCBAgAABAgQIECBAgAABAgQIECBAgAABAk0QENybgGgVBAgQIECAAAECBAgQIECAAAECBAgQIEBAcDcHCBAgQIAAAQIECBAgQIAAAQIECBAgQIBAEwQE9yYgWgUBAgQIECBAgAABAgQIECBAgAABAgQIEBDczQECBAgQIECAAAECBAgQIECAAAECBAgQINAEAcG9CYhWQYAAAQIECBAgQIAAAQIECBAgQIAAAQIEBHdzgAABAgQIECBAgAABAgQIECBAgAABAgQINEFAcG8ColUQIECAAAECBAgQIECAAAECBAgQIECAAAHB3RwgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNEBDcm4BoFQQIECBAgAABAgQIECBAgAABAgQIECBAQHA3BwgQIECAAAECBAgQIECAAAECBAgQIECAQBMEBPcmIFoFAQIECBAgQIAAAQIECBAgQIAAAQIECBAQ3M0BAgQIECBAgAABAgQIECBAgAABAgQIECDQBAHBvQmIVkGAAAECBAgQIECAAAECBAgQIECAAAECBAR3c4AAAQIECBAgQIAAAQIECBAgQIAAAQIECDRBQHBvAqJVECBAgAABAgQIECBAgAABAgQIECBAgAABwd0cIECAAAECBAgQIECAAAECBAgQIECAAAECTRAQ3JuAaBUECBAgQIAAAQIECBAgQIAAAQIECBAgQEBwNwcIECBAgAABAgQIECBAgAABAgQIECBAgEATBAT3JiBaBQECBAgQIECAAAECBAgQIECAAAECBAgQENzNAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AQBwb0JiFZBgAABAgQIECBAgAABAgQIECBAgAABAgQEd3OAAAECBAgQIECAAAECBAgQIECAAAECBAg0QUBwbwKiVRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAcHdHCBAgAABAgQIECBAgAABAgQIECBAgAABAk0QENwTEV96c3TiGgwnQIAAAQIECBAgQIAAAQIECBAgQIBAOQTmnHlkOXZkIt0LwT3xwAnuiYCGEyBAgAABAgQIECBAgAABAgQIECBQGgHBPe1QCO5pfkFwTwQ0nAABAgQIECBAgAABAgQIECBAgACB0ggI7mmHQnDvh9+49vbwymtvhY6OzjDX7LOE4cOHdY0S3PsB6CkECBAgQIAAAQIECBAgQIAAAQIECEwUAoJ72mES3Ov4nXvJzeGkc6/uetZUI6cIZx29Z/j6VxbK/0xwT5uARhMgQIAAAQIECBAgQIAAAQIECBAgUB4BwT3tWAjudfwuve6uMNMM04ZvL7loGDeuPWy5x9FhXHtHuPHCIwT3tLlnNAECBAgQIECAAAECBAgQIECAAAECJRMQ3NMOiODeoN8Wu/8iv7TMr07eV3Bv0M7TCRAgQIAAAQIECBAgQIAAAQIECBAot4DgnnZ8BPd++l1y7R3hljt/F/71v1fCmb/YIyy28AKCez/tPI0AAQIECBAgQIAAAQIECBAgQIAAgYlDQHBPO06Cez/9Dj7uwvD7J/8S3nz7vXD0/tuF5Zf+aj7y/dHj+rkGTyPQGoGOzs4Qsv/pubS1tYXsfywECBAgQIAAAQIECBAgQIAAAQIEugSmHTkZjQQBwb1BvGNOvyxcdsPd4Ynbz81Hvv/R2AbX4OkEBlfgtTc6wpXXtWWXQhpf1+easyOstVpbGD5McR/co2FrBAgQIECAAAECBAgQIECAAIFyC0w71Yhy72DJ905wb/AAXXfrA+GAo88PT911fphs+PDw0pujG1yDpxMYXIF3320LJ582PLvZ7/jtLrhAZ9h0425/MLi7ZGsECBAgQIAAAQIECBAgQIAAAQIlFXBJmbQDI7jX8TvsxIvCCt/+Wlh8kQXDy6+9FXbY+4Qw5ZRThBsvPCIfKbinTUCjixcQ3Is3tgUCBAgQIECAAAECBAgQIECAwFARENzTjqTgXsdv+72PDw88+nTXs+aZa7ZwxlG7h/nmmUNwT5t7Rg+SgOA+SNA2Q4AAAQIECBAgQIAAAQIECBAYAgKCe9pBFNz74Tfmk7HhpVfeCNNOM1WYZabpq0Y4w70fgJ7SUgHBvaX8Nk6AAAECBAgQIECAAAECBAgQmKgEBPe0wyW4p/m5pEyin+HFCwjuxRvbAgECBAgQIECAAAECBAgQIEBgqAgI7mlHUnBP8xPcE/0ML15AcC/e2BYIECBAgAABAgQIECBAgAABAkNFQHBPO5KCe5qf4J7oZ3jxAoJ78ca2QIAAAQIECBAgQIAAAQIECBAYKgKCe9qRFNzT/AT3RD/DixcQ3Is3tgUCBAgQIECAAAECBAgQIECAwFARENzTjqTgnuYnuCf6GV68gOBevLEtECBAgAABAgQIECBAgAABAgSGioDgnnYkBfc0P8E90c/w4gUE9+KNbYEAAQIECBAgQIAAAQIECBAgMFQEBPe0Iym4p/kJ7ol+hhcvILgXb2wLBAgQIECAAAECBAgQIECAAIGhIiC4px1JwT3NT3BP9DO8eAHBvXhjWyBAgAABAgQIECBAgAABAgQIDBUBwT3tSAruaX6Ce6Kf4cULCO7FG9sCAQIECBAgQIAAAQIECBAgQGCoCAjuaUdScE/zE9wT/QwvXkBwL97YFggQIECAAAECBAgQIECAAAECQ0VAcE87koJ7mp/gnuhnePECgnvxxrZAgAABAgQIECBAgAABAgQIEBgqAoJ72pEU3NP8BPdEP8OLFxDcize2BQIECBAgQIAAAQIECBAgQIDAUBEQ3NOOpOCe5ie4J/oZXryA4F68sS0QIECAAAECBAgQIECAAAECBIaKgOCediQF9zQ/wT3Rz/DiBQT34o1tgQABAgQIECBAgAABAgQIECAwVAQE97QjKbin+QnuiX6GFy8guBdvbAsECBAgQIAAAQIECBAgQIAAgaEiILinHUnBPc1PcE/0M7x4AcG9eGNbIECAAAECBAgQIECAAAECBAgMFQHBPe1ICu5pfoJ7op/hxQsI7sUb2wIBAgQIECBAgAABAgQIECBAYKgICO5pR1JwT/MT3BP9DC9eQHAv3tgWCBAgQIAAAQIECBAgQIAAAQJDRUBwTzuSgnuan+Ce6Gd48QKCe/HGtkCAAAECBAgQIECAAAECBAgQGCoCgnvakRTc0/wE90Q/w4sXENyLN7YFAgQIECBAgAABAgQIECBAgMBQERDc046k4J7mJ7gn+hlevIDgXryxLRAgQIAAAQIECBAgQIAAAQIEhoqA4J52JAX3ND/BPdHP8OIFBPfijW2BAAECBAgQIECAAAECBAgQIDBUBAT3tCMpuKf5Ce6JfoYXLyC4F29sCwQIECBAgAABAgQIECBAgACBoSIguKcdScE9zU9wT/QzvHgBwb14Y1sgQIAAAQIECBAgQIAAAQIECAwVAcE97UgK7ml+gnuin+HFCwjuxRvbAgECBAgQIECAAAECBAgQIEBgqAgI7mlHUnBP8xPcE/0ML15AcC/e2BYIECBAgAABAgQIECBAgAABAkNFQHBPO5KCe5qf4J7oZ3jxAoJ78ca2QIAAAQIECBAgQIAAAQIECBAYKgKCe9qRFNzT/AT3RD/DixcQ3Is3tgUCBAgQIECAAAECBAgQIECAwFARENzTjqTgnuYnuCf6GV68gOBevLEtECBAgAABAgQIECBAgAABAgSGioDgnnYkBfc0P8E90c/w4gUE9+KNbYEAAQIECBAgQIAAAQIECBAgMFQEBPe0Iym4p/kJ7ol+hhcvILgXb2wLBAgQIECAAAECBAgQIECAAIGhIiC4px1JwT3NT3BP9DO8eAHBvXhjWyBAgAABAgQIECBAgAABAgQIDBUBwT3tSAruaX6Ce6Kf4cULCO7FG9sCAQIECBAgQIAAAQIECBAgQGCoCAjuaUdScE/zE9wT/QwvXkBwL97YFggQIECAAAECBAgQIECAAAECQ0VAcE87koJ7mp/gnuhnePECgnvxxrZAgAABAgQIECBAgAABAgQIEBgqAoJ72pEU3NP8BPdEP8OLFxDcize2BQIECBAgQIAAAQIECBAgQIDAUBEQ3NOOpOCe5ie4J/oZXryA4F68sS0QIECAAAECBAgQIECAAAECBIaKgOCediQF9zQ/wT3Rz/DiBQT34o1tgQABAgQIECBAgAABAgQIECAwVAQE97QjKbin+QnuiX6GFy8guBdvbAsECBAgQIAAAQIECBAgQIAAgaEiILinHUnBPc1PcE/0M7x4AcG9eGNbIECAAAECBAgQIECAAAECBAgMFQHBPe1ICu5pfoJ7op/hxQsI7sUb2wIBAgQIECBAgAABAgQIECBAYKgICO5pR1JwT/MT3BP9DC9eQHAv3tgWCBAgQIAAAQIECBAgQIAAAQJDRUBwTzuSgnuan+Ce6Gd48QKCe/HGtkCAAAECBAgQIECAAAECBAgQGCoCgnvakRTc0/wE90Q/w4sXENyLN7YFAgQIECBAgAABAgQIECBAgMBQERDc046k4J7mJ7gn+hlevIDgXryxLRAgQIAAAQIECBAgQIAAAQIEhoqA4J52JAX3ND/BPdHP8OIFBPfijW2BAAECBAgQIECAAAECBAgQIDBUBAT3tCMpuPfDb+y49vDyq2+GWWeeIYyccvKqES+9Obofa/AUAq0TENxbZ2/LBAgQIECAAAECBAgQIECAAIGJTUBwTztignsdv2PPvDxceMVvu571tUUXCicdunOYecbp8j8T3NMmoNHFCwjuxRvbAgECBAgQIECAAAECBAgQIEBgqAgI7mlHUnCv43f+Zb8J839ujrDU4l8Kz//n5bDJLkeGzdZfOey2zXqCe9rcM3qQBAT3QYK2GQIECBAgQIAAAQIECBAgQIDAEBAQ3NMOouDeoN+O+54Y/vfyG+HGC48Q3Bu08/TWCAjurXG3VQIECBAgQIAAAQIECBAgQIDAxCgguKcdNcG9Ab+xY8eFpdfYKay8/JLh8L23EtwbsPPU1gkI7q2zt2UCBAgQIECAAAECBAgQIECAwMQmILinHTHBvZ9+nZ2dYaf9TgoP/v7pcNtlx4U5ZpspH/n+6HH9XIOnTSwCHR2dve5qW1tbyP5noltee70jHHtSW8ju/du1LLhAZ9h+q+z19PZqsj8cNjG+0EE8Mr3OEW6DeASG3qayv2JC/Hum5xJ/FON7j4UAAQIECBAgQIAAAQIECAyWwLQjJxusTQ3J7Qju/Tysh514Ubjq5nvDL0/cJ3z9Kwt1jXr/o7H9XIOnTSwCr73ZHi6/enjV7s43b0dYdaVhYfhE2L1eeyMG92ETBvctQ/jzcx3h3geqX+uK3+0ICy80bGI5XC3Zzz//tT3cdW+123eX7QiLLsytJQdkCGz0o487wnU3hfDmW+Pn0JRTdoR11wjZTbrNqyFwiL0EAgQIECBAgAABAgQITDQC0041YqLZ1zLuqOBe56i0t3eE/Y46N9x6z6PhVyfvGxZf5PNVI156c3QZj6t9ShB4++0QTjy1+pu8Rb/cEdZftyNhra0b2tclZZ76U1u45vrqcLzlZu1h3s/1fpZ/615Fubb852fbwhU9vpTZbOP2sED2mwMWAgMRGJt9d3v+hcPDSy+P/1ZvmmlC2GHbcWHa7P9aCBAgQIAAAQIECBAgQIDAYAm4pEyatOBex2/7vY8PDzz6dDjh4B3DgvN9tuvZ88w5WxgxYrIguKdNwDKOFtwF93rzUnCvJ+TxRgUE90bFPJ8AAQIECBAgQIAAAQIEihIQ3NNkBfc6fkuttkP44MMJz2K//peHh89nAV5wT5uAZRwtuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu4p/kJ7ol+ZRwuuAvu9eal4F5PyOONCgjujYp5PgECBAgQIECAAAECBAgUJSC4p8kK7ml+gnuiXxmHC+6Ce715KbjXE/J4owKCe6Nink+AAAECBAgQIECAAAECRQkI7mmygnuan+Ce6FfG4YK74F5vXgru9YQ83qiA4N6omOcTIECAAAECBAgQIECAQFECgnuarOCe5ie4J/qVcbjgLrjXm5eCez0hjzcqILg3Kub5BAgQIECAAAECBAgQIFCUgOCeJiu499Ovs7MzjGvvCCMmG1414qU3R/dzDZ42sQgI7oJ7vbkquNcT8nijAoJ7o2KeT4AAAQIECBAgQIAAAQJFCQjuabKCez/9Lr3urnDiOVeGP9x6tuDeT7OJ9WmCu+Beb+4K7vWEPN6ogODeqJjnEyBAgAABAgQIECBAgEBRAoJ7mqzgXsfvn/96MWy00+Hhgw9Hh6lGTiG4p823iWK04C6415uogns9IY83KiC4Nyrm+QQIECBAgAABAgQIECBQlIDgniYruNfxGzuuPbz6+lvhpjseDhdc9hvBPW2+TRSjBXfBvd5EFdzrCXm8UQHBvVExzydAgAABAgQIECBAgACBogQE9zRZwb2fflfdfG845vTLBPd+ek3MTxPcBfd681dwryfk8UYFBPdGxTyfAAECBAgQIECAAAECBIoSENzTZAX3fvrVCu7vfji21zUMG9bWzzVPPE/r6OiccGezlzmsrfZrHciYZor0uv1sA23Z8am11y+/2h6OOXFY1W4s+uWOsNnGw3ofU1lRbzyZTR88zXypoZb1G290hmNPastu+jt+cwsu0Bm236otPPpYR7jq2urXus0WHWHhL1TfHLj7jrb6mMYbGGf/M8HS1mTrWtuJB/SxJ9rDZVdWu225aUdYdOEyu4XMbUK4vtzi0xsdM5BJPVjbGci+9TWmmT8LH33cEU7PbhHy0svj35mmmSaE3XbqDDNO38u7VZ333lr7nb+N9zoPsvfFwXqzavaBaPH6BjIPav3dNBQ/O7T48Axo847PgNgMIkBgIhDozD4I9PIxOv8M0NtnvviPn77+rdfMl1yGz4MD+Tu9mQbWRYAAgVYI1Hrvm36qEa3YnSGzTcG9n4eyVnB/7vmPwzU3VEe2xRbtCN/5VgytQye6xw9Aj/6xI/z+j9WRcbWVO8IC81b/WYU0jvn9Ex3h0T9UP77qSh1hwfl6H9PPw9Hvp732Znu4/Orq47PA/B1hlVHDwrAau/Dyqx3hmJN6D+5PPdMeHny4en0rj+oI008XwpXXVY+Z93MdYbWV2sLwQfry5ak/t4f7Hqzet++t0BFmnjFkwX3YhMF9y+yYPtYZruqx33lwX6j28fnTs+3h3geqt7Pi8jHSD84xfeOtjnD19SF8Mnb89madtSOs+4O2MPmI5v3Mxe1cc2MIY8aM387MM3+6nT892zlhcN8kBvfaBn/+a3u4695qt+WX7Qhf6WNMvyd6P5749nud+ev56MPxRtNP3xnWW6MzTD1V7/sdx1yXjfmg25jppusM664RwrRTN8/6vfc7w7U3hfDe++PXOe00nWGdbDvTT9u87fSDqaGn/O359vDbO6qP6beW6ghLfLXxn4U8uJ/TNmFw37EjvPVOZ7j19urtfHPJjrDk4o1vZ8wn0bozvP7G+LFTTJHN68x6lpkaX19DYEP0yS/8pz3cdGv18fn6VzvCMkvV9vzXf9vDjb+pHrPsMu1h8UVqf2k3RPlK+bL+93J7uPbG6mPxtcWzY7pE9sV7ed+SSmlppwgQKJfA229nn6Ozz1yjR4//O2qmmbLPXKt3hhf+XXUQBwAAIABJREFU2xnuuqf6vW+5b3eExb48OJ8PButzZ19H5Ll/tIfb76o2+Pa3OsLXvjI4BuWaLfaGAIFJQSB+2Xr/I53hqaer3+fWWDXrG1+YYlIgKOw1Cu79pK0V3J/4y+hw+lmTVa1luWXbw6gsQA61f5U99MiwcNsd1T+E2289Lsw5Z23Eh383LPz29uox223dHuaas7dzK/p5MBp4Wm+Xh4lfiKy7dnZ8aix9XVLmj08MCzfc1POM8PYw7bSd4YRTqufBwl/sCBuun51WPkj/On/yqbZwbY8vf7bcrD3MOEMIJ582fILgvunG7eGpP7WFa66v/lAZx8z7udrH509Pt4Wrr6ses8Wm7WG+eQfnmL7/fginnTlZGP3x+AM499ydYatsv2t9idLAlOl6atzO6WdPFj76aPzoOG+33rw9PPe3tnBFjy9yNss8F8h+c6DW8uyzbRN8+ROPQfxtg8FYPvyoLZx17rDw7rvja9Fss4aw7ZbjwuQ1/h6NY845b1h4+53xY2aZuTNsu1V7mHLK5u316NHZds4fFt58a/x2ZpqxM2y3dUcYOXJwfAbyav7xj7Zw0aXVPwvxZ37hLzW+z31dUua1V9vCry6p3s4P12sPX1648e20Z29J5184PPzvxfHWU00Vwo7bjQvTTTsQBWP+/Z+23LT7ss6a7eGri9U+Pv/5b1s475fVY9ZesyMsvljtv5tID57Ay6+EcOY51X+nj/puR1gu+5LUQoAAgYlZ4MMPQjjjnOHh/Q/Gfw6YffaQfb4dF/7xz+yz6lXVfzdtulH2WXXBxj9vDMRosD539rVvf80+419yebXBRj9sD1/8wuAYDMTNGAIECKQK3HVPW7ivx0mVO20/Liz+pZGpq56kxwvudQ5//LZn9MefhOtuvT+cdO7V4b5rTwkjJhseRoz49B9igrvgvs0WgrvgHrJLDgnuA/3bVHAPQXAf6Oxp/TjBvfXHoNl7ILg3W9T6CBAoi4Dg3veRENzLMlPtBwECgykguBejLbjXcX32b/8K6297cNWzlv7GIuHc4/YS3DMBZ7iHILiHILgL7il/RQnugnvK/Gn1WMG91Ueg+dsX3Jtvao0ECJRDQHAX3MsxE+0FAQJlEhDcizkagnuiqzPcneEuuAvu8W3EGe4DfzMV3AX3gc+e1o8U3Ft/DJq9B4J7s0WtjwCBsggI7oJ7Weai/SBAoDwCgnsxx0JwT3QV3AV3wV1wF9zT3kgFd8E9bQa1drTg3lr/IrYuuBehap0ECJRBQHAX3MswD+0DAQLlEhDcizkegnuiq+AuuAvugrvgnvZGKrgL7mkzqLWjBffW+hexdcG9CFXrJECgDAKCu+BehnloHwgQKJeA4F7M8RDcE10Fd8FdcBfcBfe0N1LBXXBPm0GtHS24t9a/iK0L7kWoWicBAmUQENwF9zLMQ/tAgEC5BAT3Yo6H4J7oKrgL7oK74C64p72RCu6Ce9oMau1owb21/kVsXXAvQtU6CRAog4DgLriXYR7aBwIEyiUguBdzPAT3RFfBXXAX3AV3wT3tjVRwF9zTZlBrRwvurfUvYuuCexGq1kmAQBkEBHfBvQzz0D4QIFAuAcG9mOMhuCe6Cu6Cu+AuuAvuaW+kgrvgnjaDWjtacG+tfxFbF9yLULVOAgTKICC4C+5lmIf2gQCBcgkI7sUcD8E90VVwF9wFd8FdcE97IxXcBfe0GdTa0YJ7a/2L2LrgXoSqdRIgUAYBwV1wL8M8tA8ECJRLQHAv5ngI7omugrvgLrgL7oJ72hup4C64p82g1o4W3FvrX8TWBfciVK2TAIEyCAjugnsZ5qF9IECgXAKCezHHQ3BPdBXcBXfBXXAX3NPeSAV3wT1tBrV2tODeWv8iti64F6FqnQQIlEFAcBfcyzAP7QMBAuUSENyLOR6Ce6Kr4C64C+6Cu+Ce9kYquAvuaTOotaMF99b6F7F1wb0IVeskQKAMAoK74F6GeWgfCBAol4DgXszxENwTXQV3wV1wF9wF97Q3UsFdcE+bQa0dLbi31r+IrQvuRahaJwECZRAQ3AX3MsxD+0CAQLkEBPdijofgnugquAvugrvgLrinvZEK7oJ72gxq7WjBvbX+RWxdcC9C1ToJECiDgOAuuJdhHtoHAgTKJSC4F3M8BPdEV8FdcBfcBXfBPe2NVHAX3NNmUGtHC+6t9S9i64J7EarWSYBAGQQEd8G9DPPQPhAgUC4Bwb2Y4yG4J7oK7oK74C64C+5pb6SCu+CeNoNaO1pwb61/EVsX3ItQtU4CBMogILgL7mWYh/aBAIFyCQjuxRwPwT3RVXAX3AV3wV1wT3sjFdwF97QZ1NrRgntr/YvYuuBehKp1EiBQBgHBXXAvwzy0DwQIlEtAcC/meAjuia6Cu+AuuAvugnvaG6ngLrinzaDWjhbcW+tfxNYF9yJUrZMAgTIICO6CexnmoX0gQKBcAoJ7McdDcE90FdwFd8FdcBfc095IBXfBPW0GtXa04N5a/yK2LrgXoWqdBAiUQUBwF9zLMA/tAwEC5RIQ3Is5HoJ7oqvgLrgL7oK74J72Riq4C+5pM6i1owX31voXsXXBvQhV6yRAoAwCgrvgXoZ5aB8IECiXgOBezPEQ3BNdBXfBXXAX3AX3tDdSwV1wT5tBrR0tuLfWv4itC+5FqFonAQJlEBDcBfcyzEP7QIBAuQQE92KOh+Ce6Cq4C+6Cu+AuuKe9kQrugnvaDGrtaMG9tf5FbF1wL0LVOgkQKIOA4C64l2Ee2gcCBMolILgXczwE90RXwV1wF9wFd8E97Y1UcBfc02ZQa0cL7q31L2LrgnsRqtZJgEAZBAR3wb0M89A+ECBQLgHBvZjjIbgnugrugrvgLrgL7mlvpIK74J42g1o7WnBvrX8RWxfci1C1TgIEyiAguAvuZZiH9oEAgXIJCO7FHA/BPdFVcBfcBXfBXXBPeyMV3AX3tBnU2tGCe2v9i9i64F6EqnUSIFAGAcFdcC/DPLQPBAiUS0BwL+Z4CO6JroK74C64C+6Ce9obqeAuuKfNoNaOFtxb61/E1gX3IlStkwCBMggI7oJ7GeahfSBAoFwCgnsxx0NwT3QV3AV3wV1wF9zT3kgFd8E9bQa1drTg3lr/IrYuuBehap0ECJRBQHAX3MswD+0DAQLlEhDcizkegnuiq+AuuAvugrvgnvZGKrgL7mkzqLWjBffW+hexdcG9CFXrJECgDAKCu+BehnloHwgQKJeA4F7M8RDcE10Fd8FdcBfcBfe0N1LBXXBPm0GtHS24t9a/iK0L7kWoWicBAmUQENwF9zLMQ/tAgEC5BAT3Yo6H4J7oKrgL7oK74C64p72RCu6Ce9oMau1owb21/kVsXXAvQtU6CRAog4DgLriXYR7aBwIEyiUguBdzPAT3RFfBXXAX3AV3wT3tjVRwF9zTZlBrRwvurfUvYuuCexGq1kmAQBkEBHfBvQzz0D4QIFAuAcG9mOMhuCe6Cu6Cu+AuuAvuaW+kgrvgnjaDWjtacG+tfxFbF9yLULVOAgTKICC4C+5lmIf2gQCBcgkI7sUcD8E90VVwF9wFd8FdcE97IxXcBfe0GdTa0YJ7a/2L2LrgXoSqdRIgUAYBwV1wL8M8tA8ECJRLQHAv5ngI7omugrvgLrgL7oJ72hup4C64p82g1o4W3FvrX8TWBfciVK2TAIEyCAjugnsZ5qF9IECgXAKCezHHQ3BPdBXcBXfBXXAX3NPeSAV3wT1tBrV2tODeWv8iti64F6FqnQQIlEFAcBfcyzAP7QMBAuUSENyLOR6Ce6Kr4C64C+6Cu+Ce9kYquAvuaTOotaMF99b6F7F1wb0IVeskQKAMAoK74F6GeWgfCBAol4DgXszxENwTXQV3wV1wF9wF97Q3UsFdcE+bQa0dLbi31r+IrQvuRahaJwECZRAQ3AX3MsxD+0CAQLkEBPdijofgnugquAvugrvgLrinvZEK7oJ72gxq7WjBvbX+RWxdcC9C1ToJECiDgOAuuJdhHtoHAgTKJSC4F3M8BPdEV8FdcBfcBXfBPe2NVHAX3NNmUGtHC+6t9S9i64J7EarWSYBAGQQEd8G9DPPQPhAgUC4Bwb2Y4yG4J7oK7oK74C64C+5pb6SCu+CeNoNaO1pwb61/EVsX3ItQtU4CBMogILgL7mWYh/aBAIFyCQjuxRwPwT3RVXAX3AV3wV1wT3sjFdwF97QZ1NrRgntr/YvYuuBehKp1EiBQBgHBXXAvwzy0DwQIlEtAcC/meAjuia6Cu+AuuAvugnvaG6ngLrinzaDWjhbcW+tfxNYF9yJUrZMAgTIICO6CexnmoX0gQKBcAoJ7McdDcE90FdwFd8FdcBfc095IBXfBPW0GtXa04N5a/yK2LrgXoWqdBAiUQUBwF9zLMA/tAwEC5RIQ3Is5HoJ7oqvgLrgL7oK74J72Riq4C+5pM6i1owX31voXsXXBvQhV6yRAoAwCgrvgXoZ5aB8IECiXgOBezPEQ3BNdBXfBXXAX3AX3tDdSwV1wT5tBrR0tuLfWv4itC+5FqFonAQJlEBDcBfcyzEP7QIBAuQQE92KOh+Ce6Cq4C+6Cu+AuuKe9kQrugnvaDGrtaMG9tf5FbF1wL0LVOgkQKIOA4C64l2Ee2gcCBMolILgXczwE90RXwV1wF9wFd8E97Y1UcBfc02ZQa0cL7q31L2LrgnsRqtZJgEAZBAR3wb0M89A+ECBQLgHBvZjjIbgnugrugrvgLrgL7mlvpIK74J42g1o7WnBvrX8RWxfci1C1TgIEyiAguAvuZZiH9oEAgXIJCO7FHA/BvZ+u7773YRg7blyYZabpq0YI7oK74C64C+79fCOt8TTBXXBPm0GtHS24t9a/iK0L7kWoWicBAmUQENwF9zLMQ/tAgEC5BAT3Yo6H4F7H9YMPR4et9zo2PP2X5/NnzjX7LOGiU/cLs886U/7fgrvgLrgL7oJ72l9QgrvgnjaDWjtacG+tfxFbF9yLULVOAgTKICC4C+5lmIf2gQCBcgkI7sUcD8G9jutxZ10Rrrrp3nDd+YeFqacaGTbc4ZAw3zxzhDOO2l1wzwS231pwF9wFd8E97S8owV1wT5tBrR0tuLfWv4itC+5FqFonAQJlEBDcBfcyzEP7QIBAuQQE92KOh+Bex3WF9XcPq6ywVPjpDhvmz7zmlvvDgcdeEJ6555ehra3NGe6CexDcBXfBPe0vKMFdcE+bQa0dLbi31r+IrQvuRahaJwECZRAQ3AX3MsxD+0CAQLkEBPdijofgXsf1K6O2DAfvuXlYZ9Xv5M98/Om/h012OSI8eMOpYcbppxXcBXfBPfu52GLT9jDfvJ3FvEv1WOv774dw2pmThdEfj39g7rk7w1abtYdhw5q3C3E7p589Wfjoo/HrnGvOzrD15u3hub+1hSuuHl61sc02bg8LLFDb4Nln28LlPcZsmo1ZsI8xzXs1IXz4UVs469xh4d1327pWO9usIWy75bgw+RS9bymOOee8YeHtd8aPmWXmzrDtVu1hyimbt3eCu+DevNk0+GsS3AffvOgtCu5FC1s/AQKtEhDcBfdWzT3bJUCgvAKCezHHRnDvw7WzszMs8t0twrE/3yGsOmqp/Jl/+fu/w3rbHBRuveSYMM9cs4W//3tMuPLa8TEqPuerX+kMq3x38jBmbEfomd8mH/FppPtkbHvVluPzpp5ieBg9pr3QMXGjUzW4nThm5OTDw50Pjgm/f6z6ta65aghf/PzkE7yeypi7Hx4Tfvf76jFrrBLClxbqfUy+b9Gto1pu8uFtWUwdFj7u4db1emqM+d+r48IlV1Yf5AXm7wzrrT55GJtto+d2Jsu28/Jr48Kvr6geM38Wk9dbY/LwyGOfhAcern49q60UwgzTt4VLrqre53nn6QwbrDkijMv+uLftTNbg64n71teYhx4bE+59oHrfvr9iCLPO3BZ+fWX2Wrvt3pxzdIaN1xsR/vDk2F7HLP7lyWtaP/zHMeGe+6u3s/KoEL62SO0x8Wehvccxrfd6ao15/c32zLojjB07fh9mnbUzbLL+iDy499zOiMxt+GTZ3Ml+tnoucb71tp045rVsO5de3RE++aRbbJ6pM/x4gxHhmb+ODXfeU22w4vIhLLF4ZlBjO48+OWaCMaOWC2HJr9UeU2vfRmSv56MGX8/b73aGS65pDx99OF5h+uwe0D9eb3gYObJtArfhmcG773WGS7Mx8R9nlWX66ULYKBsz9VS9j5miwX2L23n//c5wWbad97IvOSrLNFOHsPH6w8O002bbaa/+2Ro+rC1MMaIPg3HZfBuEMU/8eUz4ze3V8+Db3wxhuW9NXvP4jM32bWwv+zbmk+z4XN0e3nprvMGUU3SGH2XWr73RHm65rXo7S2d/JX136d63M2U2r9trbCe793f49VVjwxtvjl/f5JN3Zsd0WJht5uG97lst676209eYcdm+jWvg+MTtNDwm+7t2XMeE22nL5s7IGnNnygGOefYfY8INt1Qfn28s3hlWXn6KXudB3M5f/jkmXH9z9ZjvLNMZll2y9pjBej0D2U5HZv1Jj2Naz7rRMfnnpwa3U+szV5Qfmc2r3t5H45h/Zp/trr6++vh8PTumKy03Rfj4kwn/Lhnodnr7PFjZtw+z9/jqPQih3naK/gw5kM+qA/3cOZDPqjXHZH/PxA8IPT971/sMOZDPnY2OqfdZqLfPxMaEUM+gmZ87JxvAZ8iBfO4crDFvvt2Rfb5tz05cGf8OM+OMn34efO6f48Idd1e/86yQnXP2ra/X/lzTrM+qg/m5s6/Pqn98Zkz47R09/34O2d/PfRgM0ufOWp8h+/pM3OiYgX62q/W5s9mfIQeynYY/Q5b8c+dAPqcNtTGNfoaMn70bHTOYnzv7+jxY67NqM8fEn9Nb7/kkPPmn6ve+ddfIWt8Ck0/QUPxB/wUE9zpW8Qz3Q/baIqy9yrL5MytnuD90w2lZZJ2m/9KeSYAAAQIECBAgQIAAAQIECBAgQIAAAQJDWkBwr3N44zXcVx31zbDX9j/Mn3n1zfeFg477Zdc13If07PDiCBAgQIAAAQIECBAgQIAAAQIECBAgQKDfAoJ7Hapjz7w8j+zXnn9YmHrklOFHOx4a5ptnjnDGUbv3G9kTCRAgQIAAAQIECBAgQIAAAQIECBAgQGDoCwjudY7xBx+ODlvtcUx2zeYX8mfOMdtM4eLTDsj/b1HLuPbs5o9tw7LLTfa8emcIYz7Jrr371rthzs/MHNraJnz8ldffCtNNM1WYKvtywEKAAIGhINAR77eQ3YRg+PDG74r77nsfhrHZhctnmSm7YL2FAAECE7nA2HHt4eVX38zuzzJDGDll79fV7OuzYL3PkRM5j90nQGASE4ifEV9/850wYsRkYaYZpm341cfxL736RvjMrDOFEZN9eq81CwECBCZmgXff/zC8+fZ7+b9/YxvsudT7LKgpNu/oC+79tHzrnfezmy2NDbNnfxkXuXw0+uOw8o9+GnbcfK3wo7WyO1H+/xJj01GnXhIuufbO/E8mn3xEOOvoPcJSi38p/+9/vPBi2PQnR2Y3Ofz0jojLfWuxcPKhu+QfPiwECBCYWAXie98u+5+S7/5pR/6k6mUsu9YuIb43d182WntU2P8nm4T4ZenWex0bnv7L8/nDc80+S7jo1P0Kfw+fWJ3tNwEC5ReIv3V54RW/7drRry26UDjp0J3DzDNmd7Ou81mw3ufI8r96e0iAAIFqgbsffDzsdtBpob29I38g/hZ6vPfa17+yUP7fN9z2UNjvqHMnYHvst+fkX1jeevejYe8jzu4av/u264etN1oNMwECBCZKgfjv39U22Sc/QbeyrLz8kuHYn2+fn7hW77Ogptj8wy64N990wGuMHwjiB4O4HLDbJlXB/Xd/fDZstecx4Zxj9wpLLPaFcOiJF4Xb7v19ePSWs/Iz4dfZ6udh6qlGhrOP2SP896XXw/rbHhT22XnjEOOThQABAhOjwDW33B8OP/ni8En2mz3fXXrxXoP76t9bOqyz6qc3tY7LjNNPm3+bf9xZV4Srbro3XBcvB5a9N264wyEuBzYxTgL7TIBAl8D5l/0mzP+5OfKTLZ7/z8thk12ODJutv3LYbZv18uf09Vmw3udIzAQIEJjYBO55+Inw0itvhlVWWCqM/nhM2OOg00NHdqLGVeccnL+U63/7YDjw2AvCNecdWvXSFpx3rvz531x9xzyw77DZWuGWOx8J+//ivHDzRUflnxctBAgQmNgE4pntp5x3Tdh43e+Fz831mXDH/Y+FPQ85I2+IyyyxSKj3WVBTbP4RF9ybbzrgNcZvoj4e80lYe8sDwh7bbVAV3A84+vzwzHMvhOt/eXi+/vjrxCv+cM/w69P2D5/77Owhnul53nE/Dd/6xpfzx/c4+Iz81+MuP/PAAe+PgQQIEGilwIcffRzefvf9/EbVI6eYotfgvlX2D6XNN/j+BLsZb3gd/wH20x02zB+L8T7+o+uZe37Z6+W4Wvk6bZsAAQIDEdhx3xPD/15+I9x44RH5b/v09Vmwr8+Riy/y+YFs3hgCBAiUSiD+JviRp/w6PHXX+WGy4cPz4H7ICb8KT9w+4Vnuv7nr0fDTw84Mj2ePTZH95nhcll5jp/Djdb6X/6a5hQABAhO7wF/+/u+w3jYH5V9CLrzQvEFTHPwjKrgPvnndLS612g752UrdLymzxe6/yM7cnC6ccPCOXeO/vPzm2a+H7JB9Cz97/oN055UndF1b/rQLrgvX3np/uPuqE+tuzxMIECBQZoHdDjwtjMuuW9zbJWXiP5IWnG+u8Nk5ZgsbrrlC/v/H5SujtgwH77l5dvb7d/L/fvzpv2dngx4RHrzh1PwseAsBAgQmZoGxY8flcSj+qvDhe28VKv+oqvVZsK/PkauOWmpiprDvBAgQyAW22eu48M9/v9j1798Y3ONZ699ectEwxRQjwjLfWCSss9py+bXaz7v0lnDB5b8JD994epfehjscGuLZ7/E91UKAAIGJVSD+FuQF2W9F3v3Q42HVFb6ZXz0jLpri4B9RwX3wzetusbfgHn+9I34r1f0DQAxK++/64/wM93i5me4hKX6IOPviG8Mfbj277vY8gQABAmUWqBXcj8guNzM8O4Mp3vDqzgcey69XF39tOP5jaZHvbpF/IVkJSZUYdeslx4R55pqtzC/XvhEgQKBPgXgNzp32Oyk8+Punw22XHZefbFH5NeFanwX7+hz5w+zLSgsBAgQmZoHK2e2nHr5rWOHbX8tfymNP/TU/y32G6acJ/3nx1XDXA4+HlZb7RjjxkJ3zSw/+5q7fVZ2cFmPUNFNPFeI6LAQIEJhYBZ545u/hhLOvCs/949/5PS1OOWzX/B6QmuLgH1HBffDN626x1hnuM80wXTj+oOoz3I87cIcw79yfnuF+11UndN0Q0BnudZk9gQCBiUSgVnDvvvvxOu/LrLlz/ptB8ZJc8QvJeOOstVf59PrulTPcH7rhtPwfXhYCBAhMrAKHZffxuerme8MvT9yn6+aAlS8Va30WjCGp1ufIePktCwECBCZWgXhfs3g51fj5b6sfrVrzZfzqqtvCMadfFp688/zwqyt/6wz3ifWA228CBPol8M67H4TvrLNr2HunH4WNs8tl9fVZUFPsF2nDTxLcGyYrfkBvwT1eb+nZv/0rXJvdADAuL73yRvjehntVXcP9/ON/Fr759YXzx3fP7tj+8mtvuYZ78YfLFggQKFigP8E97sKKG+yRn9W0X/abP/Ea7quO+mbYa/sf5nt39c335deCdw33gg+W1RMgUJhAe3tH2O+oc8Ot9zwafnXyvqH7tdcr13Cv9Vmwr8+RruFe2CGzYgIEChaIXz4efNyF2We/jfOg1Ndy271/yML86flvgN/78JMTXMM9/hs83ojaNdwLPmhWT4DAoAnEyw/GS6zGfxNrioPG3rUhwX3wzWtuMV6Pc2x2neLvrrdb/hf9+qsvH0ZOOXl+g79HHvtz2HqvY8NZR+8Zllz8i3k4uuuBP4ZHbzkrDBvWFtba4oAw7TRTZY/vEf770mthg+0ODvvsvHHYaO1RJXqFdoUAAQL9FxjX3h4++WRc2OvQM7LLxnRk97DYOb+x1fDhw8I/Xngx3HznI/kHiM/MOmMW1O/NbpR1Sddd2I898/I8sscvKaceOWX40Y6HZve7mCOccdTu/d8BzyRAgECJBLbf+/jwwKNP5/fzWXC+z3bt2TxzzhZGjJisz8+C9T5Hluhl2hUCBAj0S+Ci7Iz1o7Mz1rffdI38JIvKMuvMM4Tpsn8Xn3Hh9WGRL86X/SbQF8Kbb78btvvZ8dl75Yj8RtMfjf44LLHK9mHbH/8g7LjZmuGmOx4OPz/mgnDzRUflnxctBAgQmNgE4uUFH3/6b2GNlZfJf6vxyhvvCfHfxOccu1dYZolFNMUWHFDBvQXotTa52U+Oyq8113257oLDw0LzfzbE63UeftLF4fIb7s4fjsHpnGP26jqj/e8v/C/8eOcjwgcfjs4f/843F8uu1bRL/g8wCwECBCZGgXMvuTmcdO7VVbv+0x03DJtv8P3wz3+9GOLNrT4aPabr8R02XTPsvOXa+X/H98Kt9jgmPPPXF/L/jtc4vvi0A7puLD0xethnAgQmbYF49mXlc153iet/eXj4fBbg+/osWO9z5KQt69UTIDAxCsTfgLzj/scm2PWfZZdPiGeqx7M5r7v1ga7H4z184okXlaAeT9zY+/Dx9zv7ydbr5gHeQoAAgYlR4A9PPhe2zb5YjJdarSzxC8ldtlwn/896nwU1xeYfdcG9+aaFrjHGpTfeeifMnZ3NFM9877m8mF1qJp7pHr/VtxAgQGAoC8QPDa+/+W744KPR+XviiMmGT/By42UWPhk7tuv+FkPZw2sjQIBAFOjrs2C9z5EECRAgMJQE4nveK6+/lf/beJaZpp/gpcVLdcXw4yn3AAAIG0lEQVTfDp/zMzPnNxW0ECBAYGIWiP8+fvPt98J7H3wU5p5j1l5PwK33WVBTbN4MENybZ2lNBAgQIECAAAECBAgQIECAAAECBAgQIDAJCwjuk/DB99IJECBAgAABAgQIECBAgAABAgQIECBAoHkCgnvzLK2JAAECBAgQIECAAAECBAgQIECAAAECBCZhAcF9Ej74XjoBAgQIECBAgAABAgQIECBAgAABAgQINE9AcG+epTURIECAAAECBAgQIECAAAECBAgQIECAwCQsILhPwgffSydAgAABAgQIECBAgAABAgQIECBAgACB5gkI7s2ztCYCBAgQIECAAAECBAgQIECAAAECBAgQmIQFBPdJ+OB76QQIECBAgAABAgQIECBAgAABAgQIECDQPAHBvXmW1kSAAAECBAgQIECAAAECBAgQIECAAAECk7CA4D4JH3wvnQABAgQIECBAgAABAgQIECBAgAABAgSaJyC4N8/SmggQIECAAAECBAgQIECAAAECBAgQIEBgEhYQ3Cfhg++lEyBAgAABAgQIECBAgAABAgQIECBAgEDzBAT35llaEwECBAgQIECAAAECBAgQIECAAAECBAhMwgKC+yR88L10AgQIECBAgAABAgQIECBAgAABAgQIEGiegODePEtrIkCAAAECBAgQIECAAAECBAgQIECAAIFJWEBwn4QPvpdOgAABAgQIECBAgAABAgQIECBAgAABAs0TENybZ2lNBAgQIECAAAECBAgQIECAAAECBAgQIDAJCwjuk/DB99IJECBAgAABAgQIECBAgAABAgQIECBAoHkCgnvzLK2JAAECBAgQIECAAAECBAgQIECAAAECBCZhAcF9Ej74XjoBAgQIECBAgAABAgQIECBAgAABAgQINE9AcG+epTURIECAAAECBAgQIECAAAECBAgQIECAwCQsILhPwgffSydAgAABAgQIECBAgAABAgQIECBAgACB5gkI7s2ztCYCBAgQIECAAAECBAgQIECAAAECBAgQmIQFBPdJ+OB76QQIECBAgAABAgQIECBAgAABAgQIECDQPAHBvXmW1kSAAAECBAgQIECAAAECBAgQIECAAAECk7CA4D4JH3wvnQABAgQIECBAgAABAgQIECBAgAABAgSaJyC4N8/SmggQIECAAAECBAgQIECAAAECBAgQIEBgEhYQ3Cfhg++lEyBAgAABAgQIECBAgAABAgQIECBAgEDzBAT35llaEwECBAgQIECAAAECBAgQIECAAAECBAhMwgKC+yR88L10AgQIECBAgAABAgQIECBAgAABAgQIEGiegODePEtrIkCAAAECBAgQIECAAAECBAgQIECAAIFJWEBwn4QPvpdOgAABAgQIECBAgAABAgQIECBAgAABAs0TENybZ2lNBAgQIECAAAECBAgQIECAAAECBAgQIDAJCwjuk/DB99IJECBAgAABAgQIECBAgAABAgQIECBAoHkCgnvzLK2JAAECBAgQ+L927JgGAAAAYZh/15jgWw2QUD4IECBAgAABAgQIECBAgACBsIDDPTy+6gQIECBAgAABAgQIECBAgAABAgQIECDwE3C4/ywlESBAgAABAgQIECBAgAABAgQIECBAgEBYwOEeHl91AgQIECBAgAABAgQIECBAgAABAgQIEPgJONx/lpIIECBAgAABAgQIECBAgAABAgQIECBAICzgcA+PrzoBAgQIECBAgAABAgQIECBAgAABAgQI/AQc7j9LSQQIECBAgAABAgQIECBAgAABAgQIECAQFnC4h8dXnQABAgQIECBAgAABAgQIECBAgAABAgR+Ag73n6UkAgQIECBAgAABAgQIECBAgAABAgQIEAgLONzD46tOgAABAgQIECBAgAABAgQIECBAgAABAj8Bh/vPUhIBAgQIECBAgAABAgQIECBAgAABAgQIhAUc7uHxVSdAgAABAgQIECBAgAABAgQIECBAgACBn4DD/WcpiQABAgQIECBAgAABAgQIECBAgAABAgTCAg738PiqEyBAgAABAgQIECBAgAABAgQIECBAgMBPwOH+s5REgAABAgQIECBAgAABAgQIECBAgAABAmEBh3t4fNUJECBAgAABAgQIECBAgAABAgQIECBA4CfgcP9ZSiJAgAABAgQIECBAgAABAgQIECBAgACBsIDDPTy+6gQIECBAgAABAgQIECBAgAABAgQIECDwE3C4/ywlESBAgAABAgQIECBAgAABAgQIECBAgEBYwOEeHl91AgQIECBAgAABAgQIECBAgAABAgQIEPgJONx/lpIIECBAgAABAgQIECBAgAABAgQIECBAICzgcA+PrzoBAgQIECBAgAABAgQIECBAgAABAgQI/AQc7j9LSQQIECBAgAABAgQIECBAgAABAgQIECAQFnC4h8dXnQABAgQIECBAgAABAgQIECBAgAABAgR+Ag73n6UkAgQIECBAgAABAgQIECBAgAABAgQIEAgLONzD46tOgAABAgQIECBAgAABAgQIECBAgAABAj8Bh/vPUhIBAgQIECBAgAABAgQIECBAgAABAgQIhAUc7uHxVSdAgAABAgQIECBAgAABAgQIECBAgACBn4DD/WcpiQABAgQIECBAgAABAgQIECBAgAABAgTCAg738PiqEyBAgAABAgQIECBAgAABAgQIECBAgMBPwOH+s5REgAABAgQIECBAgAABAgQIECBAgAABAmEBh3t4fNUJECBAgAABAgQIECBAgAABAgQIECBA4CcwuzVoxKzv4lIAAAAASUVORK5CYII=",
- "text/html": [
- " "
+ ],
+ "source": [
+ "text_length(\"banking_sentiment_zs_gpt3\").visualize()"
]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "text_length(\"banking_sentiment_zs_gpt3\").visualize()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e08bad23-9703-424d-ace8-f8d9cda0a089",
- "metadata": {},
- "source": [
- "Using ES query string DSL, we can compute performance metrics by interesting regions in the dataset. For example, we can see that performance for longer text (> 175) and neutral examples is much lower than for shorter text (<175). \n",
- "\n",
- "Note that this is a really small dataset, but with a larger dataset we could analyze if our model struggles with longer text, or if longer texts tend to be negative, for example."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 187,
- "id": "9c5f867c-fa8f-4293-b475-99850f0cdd5a",
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "application/vnd.plotly.v1+json": {
- "config": {
- "plotlyServerURL": "https://plot.ly"
- },
- "data": [
- {
- "type": "bar",
- "x": [
- "precision",
- "recall",
- "f1"
- ],
- "xaxis": "x",
- "y": [
- 0.375,
- 0.5,
- 0.42857142857142855
- ],
- "yaxis": "y"
- },
- {
- "type": "bar",
- "x": [
- "precision",
- "recall",
- "f1"
- ],
- "xaxis": "x2",
- "y": [
- 0.75,
- 0.75,
- 0.75
- ],
- "yaxis": "y2"
- },
+ "cell_type": "markdown",
+ "id": "e08bad23-9703-424d-ace8-f8d9cda0a089",
+ "metadata": {},
+ "source": [
+ "Using ES query string DSL, we can compute performance metrics by interesting regions in the dataset. For example, we can see that performance for longer text (> 175) and neutral examples is much lower than for shorter text (<175). \n",
+ "\n",
+ "Note that this is a really small dataset, but with a larger dataset we could analyze if our model struggles with longer text, or if longer texts tend to be negative, for example."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 187,
+ "id": "9c5f867c-fa8f-4293-b475-99850f0cdd5a",
+ "metadata": {},
+ "outputs": [
{
- "type": "bar",
- "x": [
- "negative_precision",
- "negative_recall",
- "negative_f1",
- "neutral_precision",
- "neutral_recall",
- "neutral_f1"
- ],
- "xaxis": "x3",
- "y": [
- 0.75,
- 1,
- 0.8571428571428571,
- 0,
- 0,
- 0
- ],
- "yaxis": "y3"
- }
- ],
- "layout": {
- "annotations": [
- {
- "font": {
- "size": 16
- },
- "showarrow": false,
- "text": "macro average",
- "x": 0.14444444444444446,
- "xanchor": "center",
- "xref": "paper",
- "y": 1,
- "yanchor": "bottom",
- "yref": "paper"
- },
- {
- "font": {
- "size": 16
- },
- "showarrow": false,
- "text": "micro average",
- "x": 0.5,
- "xanchor": "center",
- "xref": "paper",
- "y": 1,
- "yanchor": "bottom",
- "yref": "paper"
- },
- {
- "font": {
- "size": 16
- },
- "showarrow": false,
- "text": "per label",
- "x": 0.8555555555555556,
- "xanchor": "center",
- "xref": "paper",
- "y": 1,
- "yanchor": "bottom",
- "yref": "paper"
- }
- ],
- "autosize": true,
- "showlegend": false,
- "template": {
- "data": {
- "bar": [
- {
- "error_x": {
- "color": "#2a3f5f"
- },
- "error_y": {
- "color": "#2a3f5f"
- },
- "marker": {
- "line": {
- "color": "#E5ECF6",
- "width": 0.5
- },
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "bar"
- }
- ],
- "barpolar": [
- {
- "marker": {
- "line": {
- "color": "#E5ECF6",
- "width": 0.5
- },
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "barpolar"
- }
- ],
- "carpet": [
- {
- "aaxis": {
- "endlinecolor": "#2a3f5f",
- "gridcolor": "white",
- "linecolor": "white",
- "minorgridcolor": "white",
- "startlinecolor": "#2a3f5f"
- },
- "baxis": {
- "endlinecolor": "#2a3f5f",
- "gridcolor": "white",
- "linecolor": "white",
- "minorgridcolor": "white",
- "startlinecolor": "#2a3f5f"
- },
- "type": "carpet"
- }
- ],
- "choropleth": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "type": "bar",
+ "x": [
+ "precision",
+ "recall",
+ "f1"
+ ],
+ "xaxis": "x",
+ "y": [
+ 0.375,
+ 0.5,
+ 0.42857142857142855
+ ],
+ "yaxis": "y"
+ },
+ {
+ "type": "bar",
+ "x": [
+ "precision",
+ "recall",
+ "f1"
+ ],
+ "xaxis": "x2",
+ "y": [
+ 0.75,
+ 0.75,
+ 0.75
+ ],
+ "yaxis": "y2"
+ },
+ {
+ "type": "bar",
+ "x": [
+ "negative_precision",
+ "negative_recall",
+ "negative_f1",
+ "neutral_precision",
+ "neutral_recall",
+ "neutral_f1"
+ ],
+ "xaxis": "x3",
+ "y": [
+ 0.75,
+ 1,
+ 0.8571428571428571,
+ 0,
+ 0,
+ 0
+ ],
+ "yaxis": "y3"
+ }
+ ],
+ "layout": {
+ "annotations": [
+ {
+ "font": {
+ "size": 16
+ },
+ "showarrow": false,
+ "text": "macro average",
+ "x": 0.14444444444444446,
+ "xanchor": "center",
+ "xref": "paper",
+ "y": 1,
+ "yanchor": "bottom",
+ "yref": "paper"
+ },
+ {
+ "font": {
+ "size": 16
+ },
+ "showarrow": false,
+ "text": "micro average",
+ "x": 0.5,
+ "xanchor": "center",
+ "xref": "paper",
+ "y": 1,
+ "yanchor": "bottom",
+ "yref": "paper"
+ },
+ {
+ "font": {
+ "size": 16
+ },
+ "showarrow": false,
+ "text": "per label",
+ "x": 0.8555555555555556,
+ "xanchor": "center",
+ "xref": "paper",
+ "y": 1,
+ "yanchor": "bottom",
+ "yref": "paper"
+ }
+ ],
+ "autosize": true,
+ "showlegend": false,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "F1 Metrics for single-label (averaged and per label)"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "autorange": true,
+ "domain": [
+ 0,
+ 0.2888888888888889
+ ],
+ "range": [
+ -0.5,
+ 2.5
+ ],
+ "type": "category"
+ },
+ "xaxis2": {
+ "anchor": "y2",
+ "autorange": true,
+ "domain": [
+ 0.35555555555555557,
+ 0.6444444444444445
+ ],
+ "range": [
+ -0.5,
+ 2.5
+ ],
+ "type": "category"
+ },
+ "xaxis3": {
+ "anchor": "y3",
+ "autorange": true,
+ "domain": [
+ 0.7111111111111111,
+ 1
+ ],
+ "range": [
+ -0.5,
+ 5.5
+ ],
+ "type": "category"
+ },
+ "yaxis": {
+ "anchor": "x",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "range": [
+ 0,
+ 0.5263157894736842
+ ],
+ "type": "linear"
+ },
+ "yaxis2": {
+ "anchor": "x2",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "range": [
+ 0,
+ 0.7894736842105263
+ ],
+ "type": "linear"
+ },
+ "yaxis3": {
+ "anchor": "x3",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "range": [
+ 0,
+ 1.0526315789473684
+ ],
+ "type": "linear"
+ }
+ }
},
- "type": "choropleth"
- }
- ],
- "contour": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "contour"
- }
- ],
- "contourcarpet": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "contourcarpet"
- }
- ],
- "heatmap": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "heatmap"
- }
- ],
- "heatmapgl": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "heatmapgl"
- }
- ],
- "histogram": [
- {
- "marker": {
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "histogram"
- }
- ],
- "histogram2d": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "histogram2d"
- }
- ],
- "histogram2dcontour": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "histogram2dcontour"
- }
- ],
- "mesh3d": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "mesh3d"
- }
- ],
- "parcoords": [
- {
- "line": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "parcoords"
- }
- ],
- "pie": [
- {
- "automargin": true,
- "type": "pie"
- }
- ],
- "scatter": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatter"
- }
- ],
- "scatter3d": [
- {
- "line": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatter3d"
- }
- ],
- "scattercarpet": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattercarpet"
- }
- ],
- "scattergeo": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattergeo"
- }
- ],
- "scattergl": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattergl"
- }
- ],
- "scattermapbox": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattermapbox"
- }
- ],
- "scatterpolar": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterpolar"
- }
- ],
- "scatterpolargl": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterpolargl"
- }
- ],
- "scatterternary": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterternary"
- }
- ],
- "surface": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "surface"
- }
- ],
- "table": [
- {
- "cells": {
- "fill": {
- "color": "#EBF0F8"
- },
- "line": {
- "color": "white"
- }
- },
- "header": {
- "fill": {
- "color": "#C8D4E3"
- },
- "line": {
- "color": "white"
- }
- },
- "type": "table"
- }
- ]
- },
- "layout": {
- "annotationdefaults": {
- "arrowcolor": "#2a3f5f",
- "arrowhead": 0,
- "arrowwidth": 1
- },
- "autotypenumbers": "strict",
- "coloraxis": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "colorscale": {
- "diverging": [
- [
- 0,
- "#8e0152"
- ],
- [
- 0.1,
- "#c51b7d"
- ],
- [
- 0.2,
- "#de77ae"
- ],
- [
- 0.3,
- "#f1b6da"
- ],
- [
- 0.4,
- "#fde0ef"
- ],
- [
- 0.5,
- "#f7f7f7"
- ],
- [
- 0.6,
- "#e6f5d0"
- ],
- [
- 0.7,
- "#b8e186"
- ],
- [
- 0.8,
- "#7fbc41"
- ],
- [
- 0.9,
- "#4d9221"
- ],
- [
- 1,
- "#276419"
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAFoCAYAAABNITkUAAAgAElEQVR4XuydB5gUxbaADzkLIiiIopj1Yg6YMGEAIwYUAyqiSFAUBVEkoyBBRZAkQcSEIhhIoqIIJtSLARQVFRUkB1GSwMLrU7yeu7ts6JmanqmZ+et977v3sl1Vp//TvbPzd/WpIju9JjQIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASsCBRBuFvxozMEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAwBBAuHMhQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4cw1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOJAAOEeB4gMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAuHMNQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4cw1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOJAAOEeB4gMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAuHMNQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4cw1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOJAAOEeB4gMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAuHMNQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4cw1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOJAAOEeB4gMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAuHMNQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4cw1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOJAAOEeB4gMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAuHMNQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4J+Aa2Llzp2zbtl1KlCguRYoUScCM4U6xectW2bptm5QrW1qKFysW7mTZRp8951uZ89UC2bBhsxxYs5rcem39hM2d30QbNm6WrB07pGKFcqHG8vIbM2TN2r/lrtuujOs8vy1eLhOnzpJzTj9OTjj6sKjGnvXZN/LlNz/KzY0ukiqVK0bVN7+DYznPv9ZvkNHjpkrRokWl9a0NzX1GC0bgp1+XyOR3P5ELzzlZah9eK1inBBz13PjpsnXrNrnjxksTMJv9FDb30a9/LJM3ps2Wc884Xo6vfah9MN4Is+fMky++XiA3XX2h7F2lkvzy+1J58+2PZM+KFaRp4wZxmYNBIAABCEAAAhCAAAQgAAEIQAACEMibAMI9yitj1MtT5Ynhr+bb6+zTjpUhvdvm+Pnk9z6VDo8Ml/5dWkqD8+oEnvGYerdJVtYOOfrIg2Tc0C679cseyzP92skZJ9cOPLYe+O6sL+XDT7+RFjdfLvtVrxq4b6uHnjT9nujWWi7yRF0iWp/BL8tYT8L5rXy5MjJnytBETF3gHCc3uFM2bf5XPp08RPYoXza0eBrc+ID88edK+W7mmLjO8f5Hc+XuTgOlddMrpdUtV0Q1due+o42sf2V417jJ2ljO84Gew2TKjM/kwbtukCbXXBjVOWT6wW94Evbhx0ZKxzY3yo1XXeAMjtMvby36YO+rd0Y4E1NBgdjcR9Nnfi73dRsi995xTdweMPR8cqyMe/N9eXFwJznuP4eYz5HmD/SXz/77vTzetZXUP/eUlOBKkBCAAAQgAAEIQAACEIAABCAAgVQkgHCPMmsjXpwsA0a8Zlb0Vt9nr916n3XqsUZc7tixU2Z89F9ZsPB3GfnSFCM8YhXuOsn4Z7rJUYcdGJlPxz+z4V2y/u+N5t+G9blf6tY5Oqqz6TXwBXlx4nsydmBHOfGY4Kub+w0ZJ+9/PFe6tWsqdY4/Mqo5Yzl40+YtcnKDFlKyZAkZM+BBOcZ7ALF67XqpulelWIaLa58bWvWUdev/kQkje0jZMqXjOnb2wWIR0UGCsRGFLgj3b77/RTQHF51zivcAqFWQU+aYbAQQ7vG5HGzuo0QIdz1LfWPgnGvuNZ9FH7w2wPt9VSo+J88oEIAABCAAAQhAAAIQgAAEIAABCOQggHCP8oLwhXthK0J11bOufs7ebIR77pXz096fI+16/G+FdyKFe5TIrA//8ZfFclWzzpLX2wPWg6fIAAj33ROlD50uadJB/ly+Wma8+oQTD2BS5HKKhIlwj0/GUkG465lOnTFH2vccat4E0TdCaBCAAAQgAAEIQAACEIAABCAAAQjEnwDCPUqmQYW71m1XUazthQnvyutejd5YhHuNalWk4h7lZd6CX+Wdcf1F/7e2y299WBYvXSn1zjxBVL7nFu666rrnk8/LZ3O/M6vgdUX+NZee7a2+byjFihWVZ8dNk2HPvyVag9yfQ8dtel0DubheHVMCZ/mqtTLqiQfk5ddnyEefz5N/NmySx70yMu97K/ffePtj6dPpTjmoZvUIwZ8X/Sla+uW7nxaZcWvW2Mcb61S5xavxrfXev/7uZ3nymfHy/U+/yb/eakuN6fSTahdY0kbP+/7uQ4xU1TIyOqa2Tvc2kWOPOtgr57JFeg180Stx87Ws/esfqb53ZWlYv6608mp5Fy26q16+Pvy45Z7ecspxR0izGy6RMa9Mk6/m/2zqrj/d6558rwA9/yeHj5dPvpwv6//ZaObX1fXNrr9ETvbG0vZQrxEmDy88/bD533Pn/SS9B73k1U6+wCsBs8LkfcWqdeZcVXDlLim0bOVa6db/Wfn86x/MCtSaNfaWQw/aT5atWCsDH2ljzkdbfsJdS6kMf36S/LZ4mZfXYnL4wftLzwduk0Nr7Rfoys5LFH7+1Q/Sb+g4E7/mUa+XA/evLs1vulQuPf+0yLj+CnctLTTpnU+8+vrfm7wec+TB0s8rn+TH7nf44ec/5JEBz3vXx2+Rc73vzmvlgrNOiowZzYMFXx7qdd3de9sie9M3IPQa/unXxSZ3uqpXc3Dd5eeash1a513fPunS71k55fgjpH3Lxjn663k3bdtHau1fTfp2bmF+tj0rS54e/bqpea550+vhjJOPlq733eLdo7tq+Pv5v82rk13Luzde8cp6LPDOWx8WNbr0nEJjyh7EixPfNfepzqVvd5x7+vHy+5LlZqw2za6OHFrYve4fqPtI9B3ysim/o78TKleq4NX33lM0L4U9QNQxNB59I2bVmr/MPaXnr3XftRSKlr3ym5Z+mvTup/LQ3Tea85/p3ZvKU69J/Z2h12j2NnfeQnn0qedNHHqtHXvUIfLN9z+b67mwkjI+7+sbnicLvd8/U71z09zrfdSl7S1y2kn/yTFXEFZ+/I93bSn6O015LVm6yvxOUfZ5NZv7yF/hrtel/j6bPvOLyDnk9RZRkPsod0mZ7DGffdU9ZvyP33xaKlUsH+j3BAdBAAIQgAAEIAABCEAAAhCAAAQgEJwAwj04K3NkUOGefdghY96Qwd7/xyrcO917szRv31+uuvgsI1NVXN/Y+hEjqlXmqtTNLtxXrv7LrPxVKaYi8MhDDvDE+/cmpCsuOkN6PXSHDBo90dtocpoRn3pM6VIlzc/v8mp56zznX3ufEX0qTfU//fb66EeMRMteH1h/phtotnzwSXOYisZSniBcuGiJEZ3PPvmg7FGhrFx9+6469CreKnj1zn/4+XcT48P3NJEbrqyXZyb+++1PXo3xp4wgVOm45/8Lor6dWhjhftEN7Q2DfaruacZVNir3tLyOMtGmwvX0y1qbEgrbvXj0nLXpePkJPRVfF13fPiLxD/DEq8o3FVXZV9rnFsS+PPNPRufUUjPaT9tbYx6Vgw+sYf77Uu8hQn2vNrsvg/Vhggpijd8c+1wvOfiAfc1/z0tE614CWsdfm254+ufyVYaFtne9hzP7/v/DmTzB/v8/5iUKVTjqgxMV1BqTslDJp03l8yXeQxRtvnD3x9ccrPM2MFW+KmNnvz7QMNaW+/ooU7qUefCSe8xohHvbrk/LOx9+KS8N6WyuhexNc3VF04dNzg+qua8R7N8u+MWwvrJBXXmkQzPZtj1LTrm4hYlX9wPQmP32kveQSSVws+svFn0ooA/Qrr2zu4lZpfBpJ/4n8pBEz/vdcY+bf/fzr//m50LH1AdLHVpfX2hM/vzdn3hOXn3rAzOm3r/btm+PPMDLfm0Hudd1TI1f7z99CKg5Ocy7V9asWx+5t4MI9zsfeNw8eFOZraJ+5ep1Zl8BjXHy2MfMv+d1Xeh1pNeQL+k/8kRvieK7NlvWvSB0Twht/oO/H3/5w+SpoPvT55T7fvMffPiltrLvLxCUlX9dazz6oM9v7Vs1znejZpv7KPc56HWoTP1z0HJVRxxSM6r7qCDhriXR9HOsz8N3yqUX/O8BWo4biP8BAQhAAAIQgAAEIAABCEAAAhCAQMwEEO5RovOFu4o8lcbZW+0jasnAnm12G9FWuE97sW9EgOuqxAd7DfdWXX/nCc1BZiVybuF+b5enzYaoHdvcZER2kSJFZOOmLXJB4/uNxJkx/gmpVrWytzI8/xruvnDXVbAdWt8gJx57uLeJ4b9GivX1ZGx24e7XBtaxhz7WVrSOvTads78X39XeCuQJU2YZgZhdWqkEfHP6x7KPJ+9yr0TNDlGl+81tenmbOp5vzslv/qaxF559krcRYGuzol3FnorRRX8sM6vzTz3hqIhw134qZlt6q/yPPLSmx2JDRH7nTtqM2XOlTeeBRpSO6N8u8mNdjavy2X9AkJ9wV24ak66e1uaz9gWu/tsd7fqb1fN3Nrksx4plfXChgrog4a7nd+nND5kHDeOf6S577bmHmef5196Rx55+yaxE19XEhbW8RKE+CChStGiOFep63k3uflRO8q6D5556yAzri0kVwI90uN0Iel1F3cTLlb6ZoG8hXN+wnhHbZ1/Vxlx72eWhL8WV1ew3BpkxoxHudS5p6e2VsEO+mDZ8t9PU6+D3JSu8PB8Q+dlf3sOAcxu19WRulnw7Y7T5d19s537oo2+Q/PLbn/KeV6pGHzqNnzzTexNhjOi19pgnKvWBkkphfRik0vixjs3lsgtPjwh3HVtX3uvDK71ntvy71awoDxKTXl8qx1UeTxjRI7JXxK9ezi/zcp5duAe913VzW82Xri7XtzH8/QZ0xbpem0GEu8p6PZfsDyZ0xf/QsW/m2PDTvy70XtM3HbSPXgON7uhqHsKNfrKD2ftB3xg49+p7zUMt/b1Zr+4JJif672dcfpds9a6lwla4+7JaczSg592RzXsfH/aq90Bxao6HY0FZ+fGr9NY3Cc7z3iIq4z2Q1AcA/n2W+4KzuY/yOwdfjOubDfomTjT3UUHC/adfl8iVt3UK/DuisN8h/BwCEIAABCAAAQhAAAIQgAAEIACBnAQQ7lFeEb5wVxmj0i1701IaKnlzt3gId5XqnfqMMiVJtISMX0ZD/y27cNe61kef19RIsVneCuOinmz3m4q1VyfNlCG92xoRFUS4q/DyVyn74+SWOXO+WiC3eeU3Cqqx7s+lZTVU7uUes6A05CfcGzbtZATe++OfNOLZbzM/+VpadxwQWcnsr3DXTWd189kgzV95q6vmNaf5ibb8hLuW2dASEX5TAd24ZY/I5p7Z8/TppCGR8jd6vNbm1xwXJNyfGjlBnnlhkpHa11xydmSev72yP2dd2UYO2G8fmfpCH2/F/BJ5zZPFuW578+BDVxkXVHtaV+Xriu7l3qp5XQ2tclWl+ocTnzLD5bdpqn89qEBVkfrlNz+akj4qLp/omnNj00uaPGhWEX/59jNSpnTJqIT7f8651QjkiaN65ptSFe/zf/hNlq5YbUqh6Op9Fbwq+FWAq1RXua5vZUwe29uM4z/MUGGsq+e1NWrezbDQnNTcd9dKbm3vf/yV3NdtcORhUPbyIHoN5NUKi0nfPhk29i1TquZarwSO33TF/HneAwNfuEdzrze5u5cpd+M/GPDHjKWG+2+Ll5v7Tle4L1j4h/n94785U9B1oaWPBo6aID3a3yZXX3KWeSij90T2By5+XKdf3tp7wLc1sHDPfb9p3zqXtDC/o/WBTDSs/OtaN2j2S0fle4H518FHc72HLwOltfeGkG6anb0Vdh/lt2mqnsNJ9Zub3+X6BkY091FBwl3LPp1w4R3mrZjnB3Us7NT4OQQgAAEIQAACEIAABCAAAQhAAAJREkC4RwksGSVldIW7rm48/bJWpiyDNr+ee27hriUeVAIX1PyVx4UJ95WeoPRXAmcfL7fM8ctvaOkNXcGdV5v/4yK5zlt5rk0fVujDibp1jvE277sgsto2v5jzE+66Ka2WiMm9CtYXk74w9YV79tXZhaU9N28V7ycfd7jc6tW49+vo6xhBhbufF3+1qv+/dQV+7oc0QYS7rr7XVfj5NX0DQ0Wj1p9+oOew3Q77Ytowwz0v4a5C+p7Og4ygzd2CCHftX7fh3aYMhq5o1zcbdCV5QW3ai31M+ZqgK9z1wcJpl7YyEn+QV+s+d9NV0r292v76JkZeTR8a6Llo81ezT/KEu+5JoOV0VMw/0a2VeUCiTVfT+6V+8hrPz2t+8lT7BI3Jz232twG0f27hHs29rgJb3zDwHzT45xCNcNd7uPVDAyLlkbJz0NX9KvO15fcgxr8O/N8//kNEv8RP9vFshbuO5dcqn/f+s7Jk2arAvxfzi7+g69fmPiromsl+DvrgLOh9VJBw1/M43hPu+laAPpSjQQACEIAABCAAAQhAAAIQgAAEIBBfAgj3KHkmS7hrmP4KUS3ZoqVbtOUW7n45CpUpN3ublebVzji5timlEi/hPvKlKWYzVC33omVf8msqCLUczaw535hyHNp0pfvL3ipiv0ZxXn3zE+7H1LstsoI1ez9f+Por2mMR7jqe9us/9BWvTvgXOWSrbtCpbxhoCyrctUzLBY3bmY0vtTyEv7I6r1X3QYR7s/v6mrr8t15bP8fqfp9DubJlzCpilay//P5nLqxF5Pjah5hSQ3mJwgu9OHXVuT6w0GvoEO9aqbpXJTnnmntlD6+MUmEr3LV0yxlX3CX+ufmlf3Rltpboyatp6RVdyRtUuPs59VfR5x6z++NjzNscKtVbe5tdHnX4gaaMkm6kqtyyC3e/XMyNV11gNrY9zXuwpeVM9KFEcW/jTm16rek1q3XY82p6P+l9VZA8DRpTiw6Py+w58yT3Cuvcwj2ae13jz2sT0qDC3exd4G22qU0FuW50q28F6CakN7TqacrpFCbcX5v8oXT1Ngj2hfuYV942JbGUeZNrLsyBNZ7Cff4Hz5ra9VqmJ8jvxXgJ96D3URDhruege27ovg1B7iOEe74fQ/wAAhCAAAQgAAEIQAACEIAABCAQOgGEe5SIkyncdYWtbr56jSdS/Y03cwt3XQGvK791A0NdGV9Q84W7X1M5+7Fawz3oCndf2mr5Cy2DEaRpSYqnRkyQDz75KlIeJ79++Ql3X87qSm5d0e233OVbYhXu2ePRciTjPYGr/FXaaW1vbbEKdz9Putr/q3dGmlX/fgsi3P3c6epuXeUda8st3PU8z/Hqamc/R39sXRUbRLj7/P068n6Jn8ZXnCed295cYKhBhbsOoiVl/FX0uQfVFfb64OWjNwd5G+1WiPzY3/gzu3DXXJx6aUvz8OZxr+SN1tDPvV/AxTd1MPXXP586TMqVLZ3vORQkT4PGpJu16lsjd912pbS8+X/lSXIL92judX9PhrleiajspbCCCnfda6Fj7xGiJaG6tbs1cv5+Hf5YhLvP6hbvoc4DuR5k2Ap3LZuivwc195rraFjFQ7hHcx/ld83oGxFa+qVihXLmzYRo7qOChLvus3DcBbdTUibWX5r0gwAEIAABCEAAAhCAAAQgAAEIFEIA4R7lJZJM4Z5XqLmFux7jS0vdNFOlZ/Y2e863cthB+5tV0VonWutFZ1+x7R8bjXBfufovOddb/azSWOup+6U6dCytO1zNE9Rff/eznHLckbJ3lUqRcL6av1BuuutROfrIg2Tc0C75ZiI/4e6fe+76zW27Pu2tSv9Sunhy9zpP8sYi3DVuFZMam990c9iTPImnK52/mznG/HOswl37+hLXr9WtdaZneg8gHvLEpj5cKaiGuy/KtbyNlkLJLlH1fD/77/deOZSTC726cwv3BQt/l2u8zS1zP7DxV1MHKSnT6qEnzUaijz54uzSsf6YpQaKro/X6mDz2MTO231QqvuXJXF3hnhfPgk5Ay7xo0/rWuZu/Il03Ga5Usbz5sQr4a5t3lWUr1+ZY4a4/05Xvk9/71Dy4UTnrl7jxx/UFZvZa5f7PdDPTv7yV3loTuyDhHjQmX6zqQ4/XvE1TNf416/6WPt5muFoiKPumqUHvda0vrrnOvjmsXse64lxLuxS2aar/FkvuhyYvvzFDHhnwfEwr3P/4c4V3/3Qwm8POePVJU8Nfm779cWWzznmuyM+d5/x4+/tmZC9XE5RVPIR7NPdRfufgl+q6pN6p0rdzi6juo4KE+y+/L5XLb+ko/riF/pLgAAhAAAIQgAAEIAABCEAAAhCAAASiIoBwjwqXSFDhriJRpY+2jz+fL1r/WEWZltnQDTi1fEVhTQWdCtWCVqrnJdznzlsoTe5+1AyvJUxOPOYwTzKu8UppLDAy68XBneS4/xwin375ndzerp8p69Lk6gtky7/bzLEqaqMR7jqPX/daheX1DeuZlaUzP/3aCPdnn3xQho59Qz7/6gez6auWM1n/zyaZOOVDIz8H97pXzjn9uHxx5CfcdRVpPW8lvopDXXl75KE15cPPvjGyVzdi/GDCAFMSJBbh7gvGU44/Qk478T9SqlRJeW/Wf01d8+yrn22Eu5YN0fIh2jQHWd4145fa0X8rSLjrz7WUxzff/2KEpW6cWsEr9/KttxHlhx732ofXimz4WdB1llu460OFOl5tdP3P42sfav7/+4W/GYGvLS/hrgL9Yk8KlvfK2Lw760sTk8rid8Y9HtkMdujYN82mqyrdr/bk+gH7VfM2dF1srhEte5PfA4yCYvdrnb82oruX+wNyHKqbtOq1p/fP+XVPNBu/vjf7ywjf7CvctaO/Kl//e16r5rVmvD40UC66UeuFZ58suoparwedx98ssyDhHk1MV3nCWcugaPMfAvgnmF24B73Xs++hoPeg5krfLtGHIdoKE+7Z+2sZn/2qVZVPvN8f+qaKtlhWuGs/fzNXvV7OO/NEs2HtJ1/Oj9wTufdnyH09+Lz1/rnQK3NTfZ+9TC61bJBeax+8NiCy4XFQVvEQ7tHcR/45aEmlKy46U/arXkW++/E38wBIm75No3y0Bb2PChLu/sMI/4FYQfcYP4MABCAAAQhAAAIQgAAEIAABCEAgegII9yiZBa1XvnnLVjmp/q5NBHM3lcFaIqCwFo1wf6ZfO1ND2m8qAh9+bKRo3fTsTTfp7O1tbuivNB8w4jXRVar+hpD+xqcFCXdd0ap9dFW6vwJcHzDow4ihz72ZQxprHfDHu7WWDz7+Sp4a+VqOWugqxFo0uVxaeTW2C2p6LirmtM6z1nvO3vLayFGF6eDe95qa3dr8DTaj2TRVJX+nPrvz0/ItfTu1iKzGzS3cVTjf2+Vpyb3qftmKNXL+dfdL7prj+hBi+AtviZbmUDl8yfmnmgcjKsKzb3CZV6kVXYk9cNQEr/zIezmYq4DXuuVBHur4wv3u266SFjdfbnh9/MV8uevhp4xc9tsNV9aTV7zNT/0SHfrv3fqPEa1/rtezrh73m/If1uc+U/c9e9Ma3n0GvxTZ+Fd/pteAvoXR66E7zKHRlJSZ9M4n8mCvZySvUjXKWx866QMdv+m1v8oTzPrQadbrAyMi1v+5X3YlPxGpY3XpOzoihP1+Wt6p0z1NRB/O5Jd/PTaamFTm674IH30+zzyI0Qd1+hZA8/b9PSl7RoSXjhv0Xtea9lpH3m+aN32YpKvmCxPu2ueZFyZ59/CESH99EKAryF+c+J5cfuEZ3u+VXTn0r4vxz3QzcfttwpRZ0qXfaFN2SstPadOV+7ofgS/u9d90TJXQeW2InOOC8v5HdlmdfVNbfQj09KP3REpv+f2CsMov/t8ndxoAACAASURBVNxzZ//fNveRf83ofasPn/ymAl7vI33olb0FuY/y+h3tj3Feo7ZmA97cG+gWdH78DAIQgAAEIAABCEAAAhCAAAQgAIHgBBDuwVml5JEqZbV0Q9kypWXfantFNoHMfjI7d+6URYuXm/rc2cvBxHLCOtZyT0xu3LTFm69KjtrqOp5usqgbcuoKWxXMJUoUj2Wa3fosX7XWCM1a+1ePlBCJx8CbNm+RxUtXmaH237eq4Rh2K+hhR15zG+aeQFv3198e06pmxbtt0wdG/marB3mbYxZ23spe36LYf9+9dxPtuWPxr4GqlSuZBz+6eWssTd8GUEGvuX9nXP/IAxZ/LC3Ro+eg16LGpW+WxKPpwyV9kKUiXHln3z+gsPFtYpo+8wu5r9tgadPsarmzyWW7TRXkXleRr3K70h7lvZXUVQsLd7ef64a4WkJHZbBuplu0aGy5yz2wXj+62v6QWvtFHmYFCS77GwW6wa/+btmr0h6F3gNBWAWZv7Bjor2PlO9vS7zfxV7d9lr7Vyvw3ojlPtJV81o+KfceBYWdBz+HAAQgAAEIQAACEIAABCAAAQhAIDgBhHtwVhwJgbgSUHH5krc6+MxTjpaa++0jG7267S96q9V15ba/4WhcJ0zDwfxSMLp6fdQTD6TNGWrpkIoVynsrxA8wm2YuWPiHdH9ijHlDZPrL/WKS5WkDJ9uJFFTCJx3P1+actLSWPswrWnRXqZ1oHhTZzEtfCEAAAhCAAAQgAAEIQAACEIBAphFAuGdaxjlfZwho7W+t6527Heqt8lV5HK8V2c6ccEiB+PsY3OKtcH6g9fUhzZLYYRs17ybf//TbbpN2ureJ2SOBtosAwj3YlaBvNlx3Z3fzdsOgR9p49fJPCNaRoyAAAQhAAAIQgAAEIAABCEAAAhCImgDCPWpkdIBAfAioBNMa7rp56Pq/N5hSLIcetJ/oam1acAK66vs1bwNebTd4Mlo30Ez1pmWgvvj6R6/W9lrJ2rHDlEo6+bgjZJ+qe6b6qcU1/iXLVnmb4f7X3DO6dwAtbwK6Ga1uKK1vS2iNfBoEIAABCEAAAhCAAAQgAAEIQAAC4RFAuIfHlpEhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAggwgg3DMo2ZwqBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIhEcA4R4eW0aGAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBDCKAcM+gZHOqEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgEB4BhHt4bBkZAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEMogAwj2Dks2pQgACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQHgEEO7hsWVkCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQyCACCPcMSjanCgEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAuERQLiHx5aRIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAIIMIINwzKNmcKgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCIRHAOEeHltGhgAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQwigHDPoGRzqhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIBAeAYR7eGwZGQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABDKIAMI9g5LNqUIAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEB4BBDu4bFlZAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEMggAgj3DEo2pwoBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALhEUC4h8eWkSEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQCCDCCDcMyjZnCoEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQiERwDhHh5bRoYABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIEMIoBwz6Bkc6oQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAQHgGEe3hsGRkCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQyiADCPYOSzalCAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAeAQQ7uGxZWQIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhDIIAII9wxKNqcKAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC4RFAuIfHlpEhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAggwgg3DMo2ZwqBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIhEcA4R4eW0aGAAQgAAEIQAACEEghAps2b5GtW7dLxT3KSZEiRVIockKFAAQgAAEIQMCWwIKFv8vUGXOk0WXnSM0aewcebv6Pi2T6B19I44bnSY1qVQL3y+/AkS9NkT3Kl5VrLz/XeiwGgAAEkkMA4Z4c7swKAQhAAAIQgAAEIOAYgevu7C76pfm9Vx6X6vvs5Vh0hAMBCEAAAhCAQJgEXn3rA+n+xHMyrM99UrfOMYGnenHie9Jr4Asysn97Oe2k/wTul9+BdS5pKVX3qiSTx/a2HosBIACB5BBAuCeHO7NCAAIQgAAEIAABCDhGoOeTY+W/3/4ko554QPbacw/HoiMcCEAAAhCAAATCJIBwD5MuY0Mgswgg3DMr35ytgwR27tzpxGvrmRZH0PMNepyDlxYhQQACEICARyCv3+PJ+N2ejDnzugASFUfQeYIex8UMAQhAAAKZSSDI50SQY4LQS7Rwzy9uVrgHyRbHQMBtAgh3t/NDdClMYMbsuTJo9ERpcfPl8sbbs+WTL7+TYsWKyUXnnCyPdGgmb0z7SEa9PEX++HOllC9XRu5r3kiuu+K8yBn3H/aKVz/uM1m9dr1kZe0w9WQvOucUaesdp/Xc/LY9K0uGjHlDpr0/R/5cvtqMdcpxR0rrpg3l0Fr7SbP7+prX4jWOUV4tuPk//ibH1z5UOra5UbRWbQ9vNd8HH38lGzZuln2q7im3XFtfbml0UaHkdT49v2Ur13r1brdJyZIlpM7xR0j7VtfLwQfsa/7t+lY9Te27J7vflWO8ufMWSg/vVb2brr5Arrn0bPOzN97+SIY//5bhoWOd4MXYvX1T2a96VfNzn+cjDzaTHxb+Ie/N/lJWrVkvfTvdKa97fYOw2rT5X+k7+GWZ9sEcc76VK1WQow47UFasWpdjNeO27VkyYMR4mfzup4a/Mq1/7inSofX1UrZM6ULZcAAEIAABCCSHwPJVa6XFA0/IFRedYT4TJ737ifl9f+xRB8tTPe+WJctWyWODXpIFP/9uArz8wjOkW7tbpbj3+axt4KgJ8v5HX8mEkT28z+yi5t/4nI3/56x+tuor+5/99zvvb5F/pUrlinL7DZeYvwuonZ+ce4dZIQABCLhAwP8cv7heHfM5/u6sL2X93xvl4ANrSP8uLeWwg/aLhBnks2TAiNdk5idfy4uDO8nocVNlztwF5nN93NAueZ5uXsI9yPdyv6SMfl/88LNvRL/vZnnznHnK0d731Rbm+6TfgsSNcHfhaiQGCNgRQLjb8aM3BPIl4H/o6gEqy0885nBZ8NNvRlCXLVPKfMFUIb6/J6Q//PRrI9W/mDYsInSvatZZtm7bLsf95xDzAa2vuH/v9T/1hKOMHNamT8Sv9erN6r8ffvD+csLRh8kvv/8pn3/1g9xx46Vy7x3XyMkN7pR/Pfmt42vTsXTe5556SBrc+ID5Q+asU4+VQ7w/YmZ89F/5fckKufGqC4yQL6j1GzpO3pr+sZzsyX0V9Ys9Uf7BJ1+Zc/tw4kDzn83u7+t9mf5e3nj2ETOn3+7uNNATGnNNTbpaNavLUyMnyDMvTDKcVH4sXLTE9NNYZ054SsqULik+T5XxvuDX8bRO3qNPPV8oqx07dkrD2zrJL7/9aYT+peefZmT6x1/MM2yy1+v1a/jqH3Zne2z0jybtd/pJtWVE/3Zc9RCAAAQg4CiBRX8sk0tvfshEp8K8zvFHyT8bN8m8Bb+a3/36+aFy99j/HCxffvOj+RKfvU5rm84DzQPer98bJSWKF+NzNoTP2bV//SP1rr3P5EL/pjnUkydT3vtU9N/bt2ost3oP/mkQgAAEIJCZBLJ/juvn9kned+jvflpkPq/1c/2Ttwab74hBP0taPfSk9137m8j3b/2Oqt+Nv50xOk/AeQn3IN/Lc3/3P+bIg8yCO/2eebT3333BHzRuhHtmXv+cdXoRQLinVz45G4cI+B+6Kq/1Sbf+gaAf7irAtY0Z8JAnyA81//1NT1x37D1CnujW2qyA16arrPXLfvZ29e1d5Ief/zB/IOh4uir84cdGytmnHStDereNHKp/qKxc85cnGo4086ncV/musegfGdr8PyZ8Ma//pn8QXOmJfpXLhW0Yl1d8uoJgxIuTZezAjt4DhsNk9px50qLD42YVe/d2Tc286//ZKKdf1lpqH15LXhneVZZ6wv+Cxu3MA4OJo3pGzkF3Zn/ymfHS9b5bzO7sPk8V94893FyOOKRm5NggrCZOnSWd+442rJ7q2SbCVmX9S6/PiJyvrmrv8Ohwadq4gbRrcV1kjqZtHzMPMqa92DeqHesduiQJBQIQgEDaE/C/qOtnzDP92pkHudr8B6kPeJ/H/ltcK1f/Jedec2+Oz6jcwp3P2V2XTDw/Zx/s9YxMeucTGfX4A3LqiUeZ8XW14ckNWkjJEsVlzpShaX+dcoIQgAAEIJA3Af9zXBeS6QPxcmVLiy6c6tJvtLw+bbbcd+e10uz6iyXoZ4kv3C+pd6ro3wD60L2glpdwD/IZ6H9X1e/WbZpdLUWLFjFv2DVu2UP0nPTNOf3+GjRuhDt3CARSnwDCPfVzyBk4SiC/ncp1VbmurP5i2vBI5D8v+lOuaPqwkQD6h4A2/cNi+szPZdZn33qrzpebPvqKnUpxfbKvEuG+bkPMMQM9gVyv7gl5klDhXqNaVbPKPHvz+3448akcf3i8OmmmdH98jPTr3FL0Vb6Cmr4q97ZXnuXHXxZ75V3+Mv+vcv/xrq1MCRZdgX/GFXeZPza+9M5XVymMefVt6TdkXOQYX2bo6nH/i7fOuWzFGnn5jRlyw5X15OF7mkSEe147vwdh1eGR4TLZW0GnDyZUuvstt3B/oOcwmeKV8rn1uvpeyZn/bZg3y1vlrqshn+51j5x7+vGOXnWEBQEIQCCzCfhf1PV3ePuWjSMwdDPUcW++7z007eM9NN0n8u/HX3iH7L/v3vLWmEfNv+UW7nzO7kIVz8/Zug3vNg/f77n9mhwX69jx0yN/H/mLAzL7aubsIQABCGQegfw+xz+b+70plarfMfW7ZtDPEl+4z//g2UAly/IS7kE+A/P77v/E8Fe9MrJT5dEHb5eG9c8MHDfCPfOufc44/Qgg3NMvp5yRIwTy+9C9/NaHPZm8Oodw17rlKuKbXHOhPHjXDUZaN733Ma/e+iKzIl3rjKsQ0FqnWpLGF+7+ivfspWhyn35+wt3vO+/9Z80TeL+pWG754JNmRbw+oc+vPfb0S/L8a++YlfZHHnKAHLh/NfNAQKW0L9y1r5aK0ZIx/h8Z53uvkesX7c8mDzV9/VXxep4lvJVtudtVF59lVprnxzMoK391Y25WuYV7o+bdTIkef1Vk7nj0PBDujtxkhAEBCEAgF4H8vqjr/h3PeUI3t3DXz8h9qlY2Jc605RbufM5K4L9JgnzOVtu7stQ+d9cbb/l9zk55/jHZs2IFrm0IQAACEMhAAvl9jv+1foNZyHWKt2fY6Cc6BP4ssRXuQb9r5vdddfrML7xFcoPNPmy6Mj/oZyDCPQMvfk457Qgg3NMupZyQKwRshLv/wdzgvDqmfIq/mVunPqPMq3S+cPf/gHh+UEdTvz2vlp9wV6mucl3ryWldOb/pa976qlvPB24Tld15Na2hd/rlrb2V81Xk1eHdpFLF8uawqTPmSPueQ3MId/+PIy0Z0/X+W+UGbyNV/WNDXwfUpuVcVHpnL6eT15yF/RFTGKu7Oj5lasy/NKSz2TzPb7mFu8/008lDcmxO68p1RRwQgAAEIJA/gWiFe+4vtLmFO5+z4r1Jt0sWxOtzVv8uqVihnLz36hNcyhCAAAQgAIEcBPL7HNeNT1t3HCBXNqgrj3RoZsqmBvkssRXuQT8D8/uu6r/N3bdzC9GyNkHjRrhzY0Ag9Qkg3FM/h5yBowRshLv/6lnusi5aD13rovvCfciYN2Sw9/+5NznVWqhLl68xtcbzE+5+3xY3Xy5333ZVhOKdDzwuH30+L1JnLi+8c75aILe17RP5g8c/Rle868r37Cvc9We+wFDpruVnPnhtgOxdpZLpphvZaW277JvJ+OPpigJdDV/dWxFX2Gt6hbHS2vK6mv6Ki84w4r+UV95GN63R89UV7X7N+uHPT5KBoyZI61sbSivv/7M3XcG/R/mykY1tHb30CAsCEIBAxhKIt3Dnc1Yk6N8kQT9nm9zdS+bO+ymy30v2i/VXr87tQd5m6jQIQAACEMhMAvl9jvsLz/xFYUE/S2yFe9DPwPy+q95yT2/zBrj/hl3QuBHumXn9c9bpRQDhnl755GwcImAj3GfMnmsktW7qctPVF5izmuRt5qmbmWrzhfvGTVvknKvvMa9733jV+d5GpYfL4qUrTakXffqvZWHyE+5aV73ulW28mvBZZmOXww7az6vH/rnZwFVrqetmZvk1FdVaN09LwmgZnH332cuT9PPNinltuYW71npvcveu+rhaq31E/3Y5hvb/ENKNZK5vWM/I8Hk//CrjJ3/o1Xi9Wm69tn6+wj0oq02bt8jZV+1ipbXktUSPz1OD8YX75i1bpd61bUVX8V90zily3pnHy0aP1Rf6h9L7c+T10Y8YVjQIQAACEHCPQLyFO5+zIvH+nP3p1yVy5W2dIn9DHOO9Zbd46Sr58NNvTCm9r94Z4d6FRUQQgAAEIJAQAv7nuJYdu+mqC6Sqt0jry69/NHtx6SKs6S/3N58fQT9LbIV70M9A/7u/vnV+1cV1ve+cW+S5V6fLn8tXywVnnSQDetxl+AWNG+GekMuNSSAQKgGEe6h4GTyTCfilUlRcZ98MtGHTTt4H76ocNdyXLFslF13fXm72Nk3t8P+bpj4+7FV5YeK7snXrNoPx0Fr7mT8ufvj5D/lkkrdpqvc6trZffl8qDz76jFml7bfKlSpIr4fukLp1jjHCXeXyxFE9d0uHrjZv+eATsmLVusjPdEPRvp1aSPlyZQpMn24sqjVxdTNXbXp8nROONF/Mn+jWysjq7E1rt2v9+Wf6tZMzTq6d42cquZ8ePVGen/CO2RTWb7pC/5EOt3sPEg6LlJ7JzVOPDcpq5eq/pPegF8yq+vLlyho+K7xV63oun08dJuXKljZT60r2bv2fNW8TZG/6B5T+sbTXnv/bTDWTr3HOHQIQgIBrBH5bvFwuafKgNG3cwOz/4TfdrFs37Z72Yl/z9pff9Aut1nDPb9NUPY7P2fh/zn41f6F07D1CdA8bv+nfOJeef5r5+4UGAQhAAAKZScAX7rq/ly6U8puWBH2q591Sda9db0lrC/JZErVwnzRTuj8+Rob1ud/7rni0mSfId03/u78+KNCFW34778wTpI9XIrZsmV3fM4PGnfvvk8y8GjhrCKQ2AYR7aueP6NOcwLbtWUak711lT/NEv6Cmf5CouFcZHK0QVhG9bOUaOeTAGhHpHBStPgDQzU71FfAiRf63+WrQ/tmP27lzpye715kV5ftW2yuq0i3RsMo+51XNOssiT9DktaJOS/Ms8VbdaatRvaqUKF4sltOiDwQgAAEIpAEBPmeD/00S9HNWmeoiBH0Ivo/3t072TdzT4JLhFCAAAQhAIEoC2d9U07ewdWFYlcp7FPi9MBGfJdF819RFZstWrJGDD9g33w3CFUsi4o4SP4dDAAJxJIBwjyNMhoIABNwmoLX/dGXjoV5JmCLe/2mJGH09UcvYdLq3idvBEx0EIAABCEDAcQJ8zjqeIMKDAAQg4DiB/ErDOR424UEAAhDYjQDCnYsCAhDIGALnNWqbo3yOnri+5vdYx+ZRr+zPGGicKAQgAAEIQCAgAT5nA4LiMAhAAAIQyJMAwp0LAwIQSBcCCPd0ySTnAQEIFEpA6+H/tGiJrFn7t/daYimp5ZXB0Y1paRCAAAQgAAEI2BPgc9aeISNAAAIQyGQC+jnynVdStfo+e0k1b48VGgQgAIFUJYBwT9XMETcEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQg4RQDh7lQ6CAYCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAARSlQDCPVUzR9wQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgFAGEu2U6lq7ZbDkC3SEAAQhAINUJ7LNnaSlWtEiqn4bT8a/fuE02btnudIwEBwEIQAAC4RIoV7q4VCxXItxJMnz0rB07ZcW6LRlOgdOHAAQgAIF99yoDBAsCCHcLeNoV4W4JkO4QgAAE0oAAwj38JCLcw2fMDBCAAARcJ4BwDz9DCPfwGTMDBCAAgVQggHC3yxLC3Y4fwt2SH90hAAEIpAMBhHv4WUS4h8+YGSAAAQi4TgDhHn6GEO7hM2YGCEAAAqlAAOFul6WMFe7r/94o27ZvlyqVK1oRZIW7FT46QwACEEgLAgj38NOIcA+fMTNAAAIQcJ0Awj2+Gdq5c6dsz9ohJYoXiwyMcI8vY0aDAAQgkKoEEO52mcs44b5h42a5vV0/mbfgV0OuRrUqMnZQR6lWtXKeJN+c/rF07D1it599+fYzUqZ0SVa4211/9IYABCCQFgQQ7uGnEeEePmNmgAAEIOA6AYR7fDP00usz5MlnXpUvpg1HuMcXLaNBAAIQSHkCCHe7FGaccO8/7BUZP2mmvD6qp5QrW0Yat+wutWpWlyG92+ZJ8o23P5Iu/UbLhJE9cvz8kANrSJEiRRDudtcfvSEAAQikBQGEe/hpRLiHz5gZIAABCLhOAOEenwz98tufckPrR0QXo5UtUwrhHh+sjAIBCEAgrQgg3O3SmXHC/bxGbaXBeXWkfcvGhtyEKbOMUJ//wbNGoOduKty7P/GcfPXO7qvc9VhKythdgPSGAAQgkA4EEO7hZxHhHj5jZoAABCDgOgGEe3wytG17lqxYtVYmvfuJjH55KsI9PlgZBQIQgEBaEUC426Uz44T7MfVuk2733ypXXXyWITd33kJpcvej8tGbg2TPihXyFO4PPzZSzjzlaClVqoSccVJtueqSsyN17hDudhcgvSEAAQikAwGEe/hZRLiHz5gZIAABCLhOAOEe3wyNnzxT+g5+GeEeX6yMBgEIQCAtCCDc7dKYUcJdN4WpfW5T6de5pVxcr44ht2Dh73LNHV1l2ot9pWaNvXej+eU3P4qucq9Usbz88ecKmTF7rlx49knyZPe7zLH/bN5ulwF6ZxwB7zIUvRZpbhLQF13yetvFzWiJyhUCZUsVk2JFd39LypX40iGOWIR7ESEnruZ+pyTmc5BrwNUrwPtbiGvA3eQkKLJYrgGEe3yTk59w3/RvVnwnSpPRdu6I5ap1+OS9P5OK5vGWv8MRExoEIJBAAhXKFE/gbOk3VUYJd02frnDv3q6pXNmgrsmmv8L94zefNlK9sPbc+OlmFcDX740yq9z/2bStsC78HAI5CGzavEMmTi4ia9cigly7NEqV2iFXXy5SpXJR10IjHscJlC1dHOEeco5iEe7FFn4jJSY/H3JkDB8LgW0XXCtZtU+JpWtUfYr9Ml9KvDUmqj4cnBgC2867SrKOPT30yYotWiAl3hgV+jxMED2BbWdfLlkn7HrrOGhDuAclFey4fIX7FhaV5UVw6b+bpN2Kj2Vt1tZggB0/qkPl4+TcijUcj5LwIACBZBGoULZEsqZOi3kzTrhrDfeL650q7VpcZxL42uQPpWv/Z/Ot4Z47y9NnfiH3dRtsXrvTDWYoKZMW90FCT2Kr9/fZyDHFZfnyhE7LZAEIlC0r0urO7bLH7tWlAvTmkEwmQEmZ8LMfk3CfO0tKjegZfnDMEDWBf1s/mhjh/s0nUmpY16jjo0P4BP5t0T0xwn3+51Jq8MPhnxAzRE3g3zs6I9yjphbfDpSUiY7n6qwtUn/pW7Isa1N0HR09emK1+lKndDVHoyMsCEAg2QQoKWOXgYwT7v2GjjOSfeKonlKuTGm5vlUPqVWzugzp3daQHDDiNZk+83NTYkbbkDFvSO0jasmJxxwua9atlzsfeFxKlCghb4151Pwc4W53AWZib4S7u1lHuLubG9cjQ7iHnyGEe/iMEzkDwj2RtN2cC+HuZl4SGRXCPZG0c86l5S03b9kqr0+bZb7/fjhxoHl7u0SJ4pLllU1ZsW5L8oJzeGaEu8PJITQIQCDuBBDudkgzTrhv2LhZmt3XV+b/uMiQq753ZXn+6U7mP7U91GuETJnxqXw7Y7T53536jPL+EJkdoax13lXOq6TXhnC3uwAzsTfC3d2sI9zdzY3rkSHcw88Qwj18xomcAeGeSNpuzoVwdzMviYwK4Z5I2jnn+v6n36RR8245/vH0k2rLiP7tEO4FpAXhnrxrlpkhAIHEE0C42zHPOOHu41r71z+ydds2qVZ1l2gvqG3a/K8sX7VW9ihf1qvtXDHHoQj3wujx89wEEO7uXhMId3dz43pkCPfwM4RwD59xImdAuCeStptzIdzdzEsio0K4J5J28LlY4Z4/K4R78OuIIyEAgdQngHC3y2HGCnc7bP/rjXCPF8nMGQfh7m6uEe7u5sb1yBDu4WcI4R4+40TOgHBPJG0350K4u5mXREaFcE8k7eBzIdwR7sGvFo6EAATSmQDC3S67CHc7fpSUseSXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3hLKiiAAAIABJREFURNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mPVHCfedOkSV/imze7C6LTI2sSNEist++ImXKeEmKoiHco4AV46EI9xjBOdoN4e5oYhIYFsI9gbAdnQrh7mZiEO4I94KuzNVZW2Tev6vdvHijjGrPYqXkuFJVo+zF4RDIHAIId7tcI9zt+CHcLfllYneEu7tZT5Rw37FDZNRzxWTx4iLuwsjQyEqUEGnTKksqVkS4u3YJINxdy4hdPAh3O37p0Bvhng5ZtDsHhLsdv7B6I9wR7gVdW9M3/SG3rXw/rMsvoeOeWbq6vFLtooTOyWQQSCUCCHe7bCHc7fgh3C35ZWJ3hLu7WUe4u5ubREWGcE8U6ejnQbhHz8zlHgh3l7OTmNgQ7onh7PIsCHc3s4NwR7gj3N28N4kKAokmgHC3I45wt+OHcLfkl4ndEe7uZh3h7m5uEhUZwj1RpKOfB+EePTOXeyDcXc5OYmJDuCeGs8uzINzdzA7CHeGOcHfz3iQqCCSaAMLdjnjGCvf1f2+Ubdu3S5XKFa0ILl1DEWYrgBnYGeHubtIR7u7mJlGRIdzjT3rHjp2ydMVq2adqZSlRvFjgCVau/sscu3eVSuY/Ee6B0aXEgQj3lEhTqEEi3EPFmxKDI9zjn6Zov+Nu2LhZ/t26Tfbac49IMAh3hDvCPf73JiNCIBUJINztspZxwl3/qLi9XT+Zt+BXQ65GtSoydlBHqeaJgMJa576jZeLUWfLxm09LpYrlzeEI98Ko8fPcBBDu7l4TCHd3c5OoyBDu8SU97f050uHR4ZKV5W1c4LW2zRvJ7Tdcku8kKucfH/aKvPTGDNnqCYBixYrKtzNGm+MR7vHNTbJHQ7gnOwPJnx/hnvwcJDsChHv8MhDtd9w/l6+W+7sPke9/+s0EsV/1qtLroTvkuP8cIgj3/POiG4bWX/qWLMvaFL/kJXGkidXqS53S1aKKgBruUeHiYAikNAGEu136Mk649/e+yI+fNFNeH9VTypUtI41bdpdaNavLkN5tCyQ5dvx06TP4ZXMMwt3uosv03gh3d68AhLu7uUlUZAj3+JHetHmLnHppKyPYW97SUKa896k8/NhImTy2t/nczat16jNKpsz4TO648VJpdOnZZtWdSgBtCPf45caFkRDuLmQhuTEg3JPL34XZEe7xy0K033Gb3ddX1q3/R8YN7SJFvYfbbToNlBWr1smEkT0Q7gWkBeEugnCP333LSBBwnQDC3S5DGSfcz2vUVhqcV0fat2xsyE2YMku69Bst8z94VooUKZInzVmffSN3PfyUdG57s3TrPwbhbnfNZXxvhLu7lwDC3d3cJCoyhHv8SE+dMUfa9xwqc98ZIaVKljADn355a7npqguk1a0Nd5to2Yo1cv5198sDra+XWxpdtNvPEe7xy40LIyHcXchCcmNAuCeXvwuzI9zjl4Vov+M2uPEBqVljHxne934ThC4uGzR6onwxzXsrzXvbbMW6LfELLo1GQrgj3NPocuZUIFAoAYR7oYgKPCDjhPsx9W6TbvffKlddfJYBM3feQmly96Py0ZuDZM+KFXaDtXDRErn69i7yeNdWpvxMo+bdEO5211zG90a4u3sJINzdzU2iIkO4x4/0yJemyOhxU+WTtwZHBm3csocccmANeaRDs90menP6x9Kx9wi54KyT5KdfF0tJLxmNLjtbbvQEvTaEe/xy48JICHcXspDcGBDuyeXvwuwI9/hlIdrvuJPf/dSUfDv2qIPlhivPl16DXpDmN14mt15XH+FeQFoQ7gj3+N21jAQB9wkg3O1ylFHCfefOnVL73KbSr3NLubheHUNuwcLf5Zo7usq0F/t6T/n3zkFzzbq/5eKbOshtjS+WO5tcZmrc5Rbua//ZapcBemccgS1bdsqQkUVl+fKMO3XnT1iFe5tWWVK5UtFQY92+facMHVVEFi/O+62aUCdn8AIJqHBve9cOqbJXdLmpWK6EFCsaXZ90T4W+3j7VKw/z/vgnI6fatO1jUr5cWRn0SJvdTn/Ic2/K4GdflybXXCi1D68l839cJM+/9o508d4uu+6K82TD5u2ydfuuWvBBW9acD6TEMz2DHs5xCSSw7e5eUuy4U0OfMevL2VJiaNfQ52GC6Als8x7AFTvpzOg7Rtkj6+vPpIS3XxPNPQLbmneWYnXOjSqwksWLSvkyxaPqk+4HR/sdV3ks+mOZ3HjXI3LwATXkm+9/9vZMKSYvPv2wHHXYgUa460Nu2u4Elm/dJOcvfjNtari/Ub2B1K2wb1Spfmv9Imm64v2o+rh68Jmlq8vr+zeQovlUOnA1buKCQKIIVK5QMlFTpeU8GSXcNYP69L97u6ZyZYO6JqH+Cvfsddn9TL82+UPp2v9ZufT808w/rV63Xj777/dSr+4J0vS6BnJ87UNly9astLwwOKnwCGzYtEMGDBWEe3iIYx5Zhfv9d++UfaoUi3mMIB3/3bpTBgzbgXAPAivBx6hwb3/PTtl3n+iugRKeAEC450xWtCvcVbi//Pp7MvuNQZGB7mjXXzZv+Vde8CTAZu/zNtpHGhtmz5Diw3sk+CpiuiAEstr0knKnnBHkUKtjNn7yoRQb0sVqDDqHQyCrdQ8pd9rZ4QyebdSNn38sxQYi3EMHHcME2+/sIuXr1ouq507v6DIlo/uMjmqCFD04mu+4eopagub8uidKxzY3yfp/Nsq9XQbJf7/9yZSBK1KkqGyL8gF3imKLOuwlmzfKWYteTxvhPqnGxXJ+5f2i4vDqql/kluUzourj6sEq3KcddIkU9/YxoEEAArsTKM3nrdVlkXHCXf+4uLjeqdKuxXUGnC/V86rhrqvfJ3ubvPlt1eq/zGZujb2Vdtd4m7kdeegBsnTNZqsE0DnzCFBSxt2cU1LG3dwkKjJKysSPdF413Otc0tLUZ8+rhvu09+dIux5D5et3R0qJErtWL95yT2/ZsmWrvDK8KyVl4pcaJ0aipIwTaUhqEJSUSSp+JyanpEz80hDNd9y/N2yS07xNzR/r2Fwuu/B0E8TceT95ZVZ7mc/bIw89kBru+aSGkjKUlInfXctIEHCfACVl7HKUccK939BxRrJPHNVTypUpLde36iG1alaXIb3bGpIDRrwm02d+bkrM5G55lZRBuNtdgJnYG+HubtYR7u7mJlGRIdzjR3rT5i1ycoMW0vymy6TVLVfIpHc/kc59R8vksb3N5+5f6zfIFU0fltZNr5RrLztH1v+9Uepeebdc7e2x8vC9TWTO3AXSvH1/adPsalPWjRru8cuNCyMh3F3IQnJjQLgnl78LsyPc45eFaL/j6gNw3Z9sRP/2Xqm3MtLF+3z+5Mv58sGEAWaFO5um5p0bhDvCPX53LSNBwH0CCHe7HGWccN+wcbM0u6+vqQ2rrfreleX5pzuZ/9T2UK8R3ir2T+XbGaMR7nbXFr3zIYBwd/fSQLi7m5tERYZwjy9pfUuswyPDI4Pec/vVRsBr031SzrqyTUSo67/NmD1X2nZ7WrKydtVqv+icU6Rv5zu9V32LIdzjm5qkj4ZwT3oKkh4Awj3pKUh6AAj3+KUg2u+4X81fKP2GjPPqt//i1W8vKocfXFM6tL5eTjr2cDZNLSAtCHeEe/zuWkaCgPsEEO52Oco44e7jWvvXP7J12zapVnWXaI+1scI9VnKZ2w/h7m7uEe7u5iZRkSHc409a5fnipSu9uvh7ScmSXpH8Qtr2rCxZsnSVVKlc0ay68xsr3Asjl1o/R7inVr7CiBbhHgbV1BoT4R7/fEX7HVfLy2zbtl322nOPSDC6aSor3PPODcId4R7/u5YRIeAuAYS7XW4yVrjbYftfb4R7vEhmzjgId3dzjXB3NzeJigzhnijS0c+DcI+emcs9EO4uZycxsSHcE8PZ5VkQ7m5mB+Gef14Q7gh3N+9aooJAOAQQ7nZcEe52/Ng01ZJfJnZHuLubdYS7u7lJVGQI90SRjn4ehHv0zFzugXB3OTuJiQ3hnhjOLs+CcHczOwh3hHtBV+b0TX/IbSvfd/PijTKqM0tXl1eqXRRlLw6HQOYQQLjb5RrhbscP4W7JLxO7I9zdzTrC3d3cJCoyhHuiSEc/D8I9emYu90C4u5ydxMSGcE8MZ5dnQbi7mR2EO8Id4e7mvUlUEEg0AYS7HXGEux2/qIW77gP3z3rLSekeGoHyFUSKFw9teDMwwj1cvjajI9xt6KVHX4S7u3lEuLubm1giQ7jHQi29+iDc0yufsZwNwj0WauH3KUi4r8naLJt2ZIUfRAJmKOLNsV+J8lHNREkZSspEdcFwMARSnADC3S6BCHc7flEL982bi8gzo4rKmrX6EU9ziUDFijulxR07pFzZnaGGhXAPFa/V4Ah3K3xp0Rnh7m4aEe7u5iaWyBDusVBLrz4I9/TKZyxng3CPhVr4fQoS7pM3/iZ3rpoZfhAJmKFBuQNkZNVzo5oJ4Y5wj+qC4WAIpDgBhLtdAhHudvwQ7pb8XOqOcHcpG8mJBeGeHO4uzYpwdykbOWNBuLubm1giQ7jHQi29+iDc0yufsZwNwj0WauH3QbjnzxjhjnAP/w5kBgi4QwDhbpcLhLsdP4S7JT+XuiPcXcpGcmJBuCeHu0uzItxdygbC3d1s2EeGcLdnmOojINxTPYP28SPc7RmGMQLCHeFe0HXFpqlh3HWMCQE3CSDc7fKCcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhLtL2UC4u5sN+8gQ7vYMU30EhHuqZ9A+foS7PcMwRkC4I9wR7mHcWYwJgdQjgHC3yxnC3Y4fwt2Sn0vdEe4uZSM5sSDck8PdpVkR7i5lA+HubjbsI0O42zNM9REQ7qmeQfv4Ee72DMMYAeGOcEe4h3FnMSYEUo8Awt0uZwh3O34Id0t+LnVHuLuUjeTEgnBPDneXZkW4u5QNhLu72bCPDOFuzzDVR0C4p3oG7eNHuNszDGMEhDvCHeEexp3FmBBIPQIId7ucIdzt+CHcLfm51B3h7lI2khMLwj053F2aFeHuUjYQ7u5mwz4yhLs9w1QfAeGe6hm0jx/hbs8wjBEQ7gh3hHsYdxZjQiD1CCDc7XKGcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhLtL2UC4u5sN+8gQ7vYMU30EhHuqZ9A+foS7PcMwRkC4I9wR7mHcWYwJgdQjgHC3yxnC3Y4fwt2Sn0vdEe4uZSM5sSDck8PdpVkR7i5lA+HubjbsI0O42zNM9REQ7qmeQfv4Ee72DMMYAeGOcEe4h3FnMSYEUo8Awt0uZwh3O34Id0t+LnVHuLuUjeTEgnBPDneXZkW4u5QNhLu72bCPDOFuzzDVR0C4p3oG7eNHuNszDGMEhDvCHeEexp3FmBBIPQIId7ucIdzt+CHcLfm51B3h7lI2khMLwj053F2aFeHuUjYQ7u5mwz4yhLs9w1QfAeGe6hm0jx/hbs8wjBEQ7gh3hHsYdxZjQiD1CCDc7XKGcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhLtL2UC4u5sN+8gQ7vYMU30EhHuqZ9A+foS7PcMwRkC4I9wR7mHcWYwJgdQjgHC3yxnC3Y4fwt2Sn0vdEe4uZSM5sSDck8PdpVkR7i5lA+HubjbsI0O42zNM9REQ7qmeQfv4Ee72DMMYAeGOcEe4h3FnMSYEUo8Awt0uZwh3O34Id0t+LnVHuLuUjeTEgnBPDneXZkW4u5QNhLu72bCPDOFuzzDVR0C4p3oG7eNHuNszDGMEhDvCHeEexp3FmBBIPQIId7ucIdzt+CHcLfm51B3h7lI2khMLwj053F2aFeHuUjYQ7u5mwz4yhLs9w1QfAeGe6hm0jx/hbs8wjBEQ7gh3hHsYdxZjQiD1CCDc7XKGcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhLtL2UC4u5sN+8gQ7vYMU30EhHuqZ9A+foS7PcMwRkC4I9wR7mHcWYwJgdQjgHC3yxnC3Y4fwt2Sn0vdEe4uZSM5sSDck8PdpVkR7i5lA+HubjbsI0O42zNM9REQ7qmeQfv4Ee72DMMYAeGOcEe4h3FnMSYEUo8Awt0uZwh3O34Id0t+LnVHuLuUjeTEgnBPDneXZkW4u5QNhLu72bCPDOFuzzDVR0C4p3oG7eNHuNszDGMEhDvCHeEexp3FmBBIPQIId7ucIdzt+CHcLfm51B3h7lI2khMLwj053F2aFeHuUjYQ7u5mwz4yhLs9w1QfAeGe6hm0jx/hbs8wjBEQ7gh3hHsYdxZjQiD1CCDc7XKGcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhLtL2UC4u5sN+8gQ7vYMU30EhHuqZ9A+foS7PcMwRkC4I9wR7mHcWYwJgdQjgHC3y1nGCvf1f2+Ubdu3S5XKFQsluD0rS5avXCs7duyUGtWqSLFiRSN9lq7ZXGj/7Ads3lxEnhlVVNasLRJVPw4OnwDCPXzGrs+AcHc9Q+HHh3APn3GsM6zfuE02btkeVfdic2dJqRE9o+rDwYkhgHBPDGeXZ0G4u5ydxMSGcI8/52i+4/qzb926TZauWCPV99lLSpUsIQh3hDvCPf73JiNCIBUJINztspZxwn3Dxs1ye7t+Mm/Br4acCvSxgzpKtaqV8yQ54sXJMmDEa5GflS1TSob1uV9OPOYw828Id7sL0KXeCHeXspGcWBDuyeHu0qwId5eykTMWhLu7uYklMoR7LNTSqw/CPb3yGcvZINxjoZZ3n2i/4+ooP/26RO7tMkh+X7LCDHrP7VdL85suQ7gXkJbVWVuk/tK3ZFnWpvglL4kjTaxWX+qUrhZVBNM3/SG3rXw/qj6uHnxm6erySrWLXA2PuCCQdAIId7sUZJxw7z/sFRk/aaa8PqqnlCtbRhq37C61alaXIb3b5knypddnSOVKFeTMU46W7duz5Lb7+sj2rB3y1phHzfEId7sL0KXeCHeXspGcWBDuyeHu0qwId5eykTMWhLu7uYklMoR7LNTSqw/CPb3yGcvZINxjoZZ3n2i/4/65fLVc2LidnHL8EXL7DZfK8bUPkU2b/zVvf7PCPf+8INxFEO7xu28ZCQKuE0C422Uo44T7eY3aSoPz6kj7lo0NuQlTZkmXfqNl/gfPSpEihZd5adr2MVNa5rmnHkK42117zvVGuDuXkoQHhHBPOHLnJkS4O5eSSEAId3dzE0tkCPdYqKVXH4R7euUzlrNBuMdCLe8+0X7HfbDXMzJ95hfyxbRhUrxYsRyDItwR7gVdmQj3+N23jAQB1wkg3O0ylHHC/Zh6t0m3+2+Vqy4+y5CbO2+hNLn7UfnozUGyZ8UK+dJ8ceK7MuW9z+S3Jctl6GP3ybFHHWyOXbFuS1QZ2OS9fTZsJDXco4KWoINVuLdqvlPKl9sZ6oxbt+6U4aOLy/LloU7D4DEQUOF+V4vtUnGPwh++xTB8pIu3LYSMGFNUFi8Odx6bGDO1rwr3e1pnyZ6VoiNQpWIpKVaUfEZHLbqjEe7R8XL9aIS76xkKPz6Ee/iMXZ8B4R6/DEX7Hbduw7tNvfa9q+wpK1evkyMOOUAeaH291Kyxt1nhvnr9v3kG99Y/i6T5qpnxCzyJIzUod4CM3vvcQIvu/DBXeSVlLlzyZtqUlHm9WgM5rWx0JWWmbvg9rUrKjN+3vvAXfBJvRKZ2msA+e5Z2Oj7Xg8so4b5z506pfW5T6de5pVxcr47JzYKFv8s1d3SVaS/2NX9g5Ne69R8jn3+9QNas+1v6PHynnHP6ceZQ/YMkmrb2ryzpP2gHm6ZGAy1Bx6pwb9+mqFStnHOVR7yn/2eDdw0M3olwjzfYOIynwr39PSL77l08DqPlP8Tmf3fI44OzEO6hUo5tcBXuHbwKY/tXj/4aQLjHxjxoL4R7UFKpcRzCPTXyFGaUCPcw6abG2Aj3+OQplu+4/znnVjn4wBpyfcPzpKT3x8/Q596QTVv+lZmvDZBixfP/G+i5ZT9Ks+UfxCfwJI9ysSfcJxx0kZQoXjRwJL9v3CBn/jIxbYT75P0ulvpVawY+fz3wpeUL5eZlM6Lq4+rBWsP9nUMvk5JRXAOungtxQSAMAny/taOaUcJdUenT/+7tmsqVDeoacv4K94/ffFoqVSxfKM2+g1+Wl998X756Z4Q5lhruhSJLmQMoKZMyqQotUErKhIY2ZQampIy7qUK4u5ubWCJDuMdCLb36INzTK5+xnA3CPRZqefeJ9juuCvdeD90hV1x0hhlw4aIl0rBpJxk3tIscdXitfN/inrzxN7kzjVa4j6x6blRJoIY7NdyjumA4GAIpToCSMnYJzDjhrvXtLq53qrRrcZ0h99rkD6Vr/2cD13B/fdps6dRnlHwzY5Spd4dwt7sAXeqNcHcpG8mJBeGeHO4uzYpwdykbOWNBuLubm1giQ7jHQi29+iDc0yufsZwNwj0Wann3ifY7rh5/+YVnyL13XGMG/P6n36RR825mn7Ljjz4M4Z5PahDuCPf43bWMBAH3CSDc7XKUccK939BxRrJPHNVTypUpLde36iG1alaXIb29GgJeGzDiNW8Dmc9NiRltPZ8cK+edeYLZuX3ZyrXSssMTUrp0KXlrzKPm5wh3uwvQpd4Id5eykZxYEO7J4e7SrAh3l7KRMxaEu7u5iSUyhHss1NKrD8I9vfIZy9kg3GOhlnefaL/j6nfe58ZPlwkje0jFCuWka79n5eMv58vH3r5mpUqVQrgj3PO9ONk0NX73LSNBwHUCCHe7DGWccN+wcbM0u6+vzP9xkSFXfe/K8vzTncx/anuo1wiZMuNT+XbGaPO/W3R4XGbPmRehrHXeVc6rpNeGcLe7AF3qjXB3KRvJiQXhnhzuLs2KcHcpGzljQbi7m5tYIkO4x0Itvfog3NMrn7GcDcI9Fmp594n2O+6/W7eZ77mff/WDGbBsmVIyuFdbOeX4I8weZSvWbclzIkrKbJH6S99KmxruE6vVlzqlo9s0FeEev/uWkSDgOgGEu12GMk64+7jW/vWPbN22TapV3SXaC2r6B8nS5aulQvmyUqVyxRyHItwLo5c6P0e4p06uwooU4R4W2dQZF+Hubq4Q7u7mJpbIEO6xUEuvPgj39MpnLGeDcI+FWsF9ovmOqyP9tX6D/L1hk+y/b1UpUqSIGRzhnj9jSspQUib+dy0jQsBdAgh3u9xkrHC3w/a/3gj3eJFM/jgI9+TnINkRINyTnYHkz49wj38Odngr5ZauWC37eA+4SxQvFvMECPeY0TnZEeHuZFoSGhTCPaG4nZwM4e5kWhDuBaQF4Y5wd/N6jigXAAAgAElEQVSuJSoIhEMA4W7HFeFux4+SMpb8XOqOcHcpG8mJBeGeHO4uzYpwj282pr0/Rzo8OlyysnaYgds2byS333BJoZP8tni5XH5rR7Oh2yMdmpnjEe6FYkupAxDuKZWuUIJFuIeCNaUGRbi7mS5WuOefF4Q7wt3Nu5aoIBAOAYS7HVeEux0/hLslP5e6I9xdykZyYkG4J4e7S7Mi3OOXjU2bt8ipl7Yygr3lLQ1lynufysOPjZTJY3tH9kHJa7b1f2+US29+UPS1+Csb1EW4xy8lTo2EcHcqHUkJBuGeFOxOTYpwdyodkWAQ7gj3gq5Mari7ed8SFQTCIIBwt6OKcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhHv8sjF1xhxp33OozH1nhJQqWcIMfPrlreWmqy6QVrc2zHOibduzpHGL7rJvtSry9z8bvZqyeyPc45cSp0ZCuDuVjqQEg3BPCnanJkW4O5UOhHuAdLDCnRXuAS4TDoFA2hBAuNulEuFuxw/hbsnPpe4Id5eykZxYEO7J4e7SrAj3+GVj5EtTZPS4qfLJW4MjgzZu2UMOObBGRKLnnu3+7kNk4aI/ZcKI7nJ7u34I9/ilw7mREO7OpSThASHcE47cuQkR7s6lxATECvf884JwR7i7edcSFQTCIYBwt+OKcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhHv8stF/2CsydcZn8v74JyODNm37mJQvV1YGPdJmt4mGjn1Txrzytkx7sa9UrlRBbrmndw7hvnlrlhSJMrwNs2dI8eE9ouzF4YkgkNWml5Q75YzQp9r4yYdSbEiX0OdhgugJZLXuIeVOOzv6jlH22Pj5x1JsYMcoe3F4Ighsv7OLlK9bL6qpdnpHlykZ+wbcUU2WoQcj3PNPPMId4Z6hvxY47QwlgHC3SzzC3Y4fwt2Sn0vdEe4uZSM5sSDck8PdpVkR7vHLRrQr3Otc0lJqeKVkDq21nwli5qdfS+lSJeWSeqfKA62vlw2bt8vW7bs2Xw3asuZ8ICWe6Rn0cI5LIIFtd/eSYsedGvqMWV/OlhJDu4Y+DxNET2Cb98ZLsZPOjL5jlD2yvv5MSgxCuEeJLSGHb2veWYrVOTequUoWLyrlyxSPqg8HR0cA4Z4/L4Q7wj26u4mjIZDaBBDudvlDuNvxQ7hb8nOpO8LdpWwkJxaEe3K4uzQrwj1+2cirhrtK9VsaXZRnDXcV9OvW/xMJ4K3pH3ur4cvI1ZecbTZeXb9xm2zcsj2qAIvNnSWlRiDco4KWoIMpKZMg0A5PQ0kZh5OToNAoKZMg0FFOg3BHuBd0ybBpapQ3FIdDIIUJINztkodwt+OHcLfk51J3hLtL2UhOLAj35HB3aVaEe/yysWnzFjm5QQtpftNl0uqWK2TSu59I576jZfLY3lKrZnX5a/0GuaLpw9K66ZVy7WXn7DZx7pIyCPf45caFkRDuLmQhuTEg3JPL34XZEe4uZGH3GBDuCHeEu5v3JlFBINEEEO52xBHudvwQ7pb8XOqOcHcpG8mJBeGeHO4uzYpwj282Jr/3qXR4ZHhk0Htuv9oIeG1r1v0tZ13ZRto0u1rubLLr37I3hHt8c+HaaAh31zKS+HgQ7oln7tqMCHfXMrIrHoR7/nmhpAwlZdy8a4kKAuEQQLjbcUW42/FDuFvyc6k7wt2lbCQnFoR7cri7NCvCPf7ZyMraIYuXrpR999lLSpYsEfMErHCPGZ2THRHuTqYloUEh3BOK28nJEO5OpgXhXkBaEO4IdzfvWqKCQDgEEO52XBHudvwQ7pb8XOqOcHcpG8mJBeGeHO4uzYpwdykbOWNBuLubm1giQ7jHQi29+iDc0yufsZwNwj0WauH3YYV7/owR7gj38O9AZoCAOwQQ7na5QLjb8UO4W/JzqTvC3aVsJCcWhHtyuLs0K8LdpWwg3N3Nhn1kCHd7hqk+AsI91TNoHz/C3Z5hGCMg3BHuBV1XbJoaxl3HmBBwkwDC3S4vCHc7fgh3S34udUe4u5SN5MSCcE8Od5dmRbi7lA2Eu7vZsI8M4W7PMNVHQLinegbt40e42zMMYwSEO8Id4R7GncWYEEg9Agh3u5wh3O34Idwt+bnUHeHuUjaSEwvCPTncXZoV4e5SNhDu7mbDPjKEuz3DVB8B4Z7qGbSPH+FuzzCMERDuCHeEexh3FmNCIPUIINztcoZwt+OHcLfk51J3hLtL2UhOLAj35HB3aVaEu0vZQLi7mw37yBDu9gxTfQSEe6pn0D5+hLs9wzBGQLgj3BHuYdxZjAmB1COAcLfLGcLdjh/C3ZKfS90R7i5lIzmxINyTw92lWRHuLmUD4e5uNuwjQ7jbM0z1ERDuqZ5B+/gR7vYMwxgB4Y5wR7iHcWcxJgRSjwDC3S5nCHc7fgh3S34udUe4u5SN5MSCcE8Od5dmRbi7lA2Eu7vZsI8M4W7PMNVHQLinegbt40e42zMMYwSEO8Id4R7GncWYEEg9Agh3u5wh3O34Idwt+bnUHeHuUjaSEwvCPTncXZoV4e5SNhDu7mbDPjKEuz3DVB8B4Z7qGbSPH+FuzzCMERDuCHeEexh3FmNCIPUIINztcoZwt+OHcLfk51J3hLtL2UhOLAj35HB3aVaEu0vZQLi7mw37yBDu9gxTfQSEe6pn0D5+hLs9wzBGQLgj3BHuYdxZjAmB1COAcLfLGcLdjh/C3ZKfS90R7i5lIzmxINyTw92lWRHuLmUD4e5uNuwjQ7jbM0z1ERDuqZ5B+/gR7vYMwxgB4Y5wR7iHcWcxJgRSjwDC3S5nCHc7fgh3S34udUe4u5SN5MSCcE8Od5dmRbi7lA2Eu7vZsI8M4W7PMNVHQLinegbt40e42zMMYwSEO8Id4R7GncWYEEg9Agh3u5wh3O34Idwt+bnUHeHuUjaSEwvCPTncXZoV4e5SNhDu7mbDPjKEuz3DVB8B4Z7qGbSPH+FuzzCMERDuCHeEexh3FmNCIPUIINztcpaxwn393xtl2/btUqVyxUIJbtueJctWrJGqe1WSMqVL5jh+6ZrNhfbPfsDmzUXkmVFFZc3aIlH14+DwCSDcw2fs+gwId9czFH58CPfwGcc6w/qN22Tjlu1RdS82d5aUGtEzqj4cnBgCCPfEcHZ5FoS7y9lJTGwI9/hzjuY7bn6zI9wR7gj3+N+bjAiBVCSAcLfLWsYJ9w0bN8vt7frJvAW/GnI1qlWRsYM6SrWqlfMk2W/oOBnzytuRn51w9GEyoMddsteee5h/Q7jbXYAu9Ua4u5SN5MSCcE8Od5dmRbi7lI2csSDc3c1NLJEh3GOhll59EO7plc9YzgbhHgu1vPtE+x03+yid+46WiVNnycdvPi2VKpYXhDvCHeEev3uTkSCQygQQ7nbZyzjh3n/YKzJ+0kx5fVRPKVe2jDRu2V1q1awuQ3q3zZPkqJenykEHVJc6xx8pv/6xTJrc3UtuaXSR3HvHNQh3u2vPud4Id+dSkvCAEO4JR+7chAh351Lyf+ydB3gVRffGX0LvvSOIKIoCCqIovUjvvUnvoffeO4Tee+9NuiAdpVhQBEVEREAp0qWXwH/O8E++AEnIvZubnb1553l8vo/cnZkzvzO79+47M+cEGkTB3VzfuGMZBXd3qHlXHQru3uVPd0ZDwd0dasHXcfUdN6CVBSu3YsTkpfqfFNxf7Y8r/vdR8vx6XPC/++qLHXDFmlQlkTtWKpcs3Xr3LBr9u9OlOqZenC9WaixPVcJU82gXCdhOgIK7NRdEOsG9SLUOKFUkN7q0rKnJrd60F31HzcGxXXMRJcqrw7z49hiLvy9cwfp5Q3R97nC3NgFNqk3B3SRv2GMLBXd7uJvUKwV3k7zxvC0U3M31jTuWUXB3h5p31aHg7l3+dGc0FNzdoRZ8HXfecfcePILWvcajT4d66O83j4J7GNxBwR2g4B6GicJLSMBLCFBwt+bISCe4Zy/aCP07NUDl0gU0ucNHT6pd60Pw9bqJSJwwfqg0Hz16jDzlW6FEoY8xuFtjCu7W5p5xtSm4G+eSCDeIgnuEIzeuQwruxrkk0CAK7ub6xh3LKLi7Q8276lBw9y5/ujMaCu7uUAu+jqvvuCdP/40qTfpidD9fHWK1WrP+FNzD4A4K7hTcwzBNeAkJeA0BCu7WXBmpBPenT58ia+GGGNWnJUoXza3JHT95BlWb9sOWxSORPm2KEGlK3VY9x+Hrb49i61I/pE7xLOa7xLhzpVy74Q+/iU+YNNUVaBF0rQjuXdr6IHmSqB7t8dZtNQcmP8XFix7tho27QUAE9y7tgDQporlRO+xV7j14gtGT/XHu3KtP1YS9VV4ZHgREcO+mIoy9ltr1ORDVh/4MDx+E1AYFd0/Sjfi2KbhHPHPTeqTgbppHIt4eCu7hw9zVd9yr1/9D6c+7oVHN0mhetxx+/f2vlwT3kCybf+EEGl/cFT6G29xK6bgZsPqNEogezSfMlpy5cxv5Tq3xmpAyG9OVRsnk6cM8frlwycWTqHdhh0t1TL1YQspse6scYrgwB0wdC+0iAU8Q4PutNaqRSnAXVLL6P6BzQ1QqlV+TC9jhHhCzLiScg8YuwMqNuzF3bHd8mD1z4GWXrt93yQN3Vbi3abN8KLi7RC1iLhbB3bfZU8SL69oiiqvWPXz4FNPnRKPg7iq4CLheBPfWLR4jYQLPCqf+/sDMeT4U3CPAp652IYJ7u1b+SJzItZrJEsYEf5C4xszVqym4u0rM7OspuJvtn4iwjoJ7RFA2uw8K7uHnH1fecVdt3IN+fnNR9rNPtQFXrt/EwR9+RdH8OdGwRilkf/dNXLn5IFjj1t86jWaXd4ef4Ta2VEoJ7nNSFA5TWNkAMy+rGO7F/17nNYL72lSl8Gkc12K4b759xqtiuK9MUxKeffOzcZKzaxKwSCBl4lgWW4jc1SOd4C7x7UoX/QSdW9TQng/4wRFSDHd//yfoOWwmtuw6hPnjeyBH1reemzGM4e49NxBDyniPL90dCUPKuEvOe+oxpIy5vqTgbq5v3LGMgrs71LyrDgV37/KnO6Oh4O4OteDruPKOKye8N24/ENjQ5Ss3sGnHQdSsUARVyxZE5kzpEdKmso13/kJzLxLcZyUv7JITGFKGIWVcmjC8mAQcToAhZaw5MNIJ7qOmLtMi+5rZgxA3dizU8h2IjOlTY8owFUNAlXEzV2Hr7m91iBkpLbqNxr5DRzGmvy/ezJgukHb6NCkQPXo0Jk21Nv+Mqk3B3Sh32GIMBXdbsBvVKQV3o9zxnDEU3M31jTuWUXB3h5p31aHg7l3+dGc0FNzdoRZ8HVffcYO2ElxIGQruwXOm4E7BPfzuWrZEAuYToOBuzUeRTnC/feceGncciWMnTmtyEot94aTegTHZewydqVb4D+DnHXP057nLtITUebF8MXcw3lICPHe4W5uAJtWm4G6SN+yxhYK7PdxN6pWCu0neeN4WCu7m+sYdyyi4u0PNu+pQcPcuf7ozGgru7lALvo6r77gU3AEJKcMd7iWRO5ZrIWW23j3rVSFllqcqEX43IlsiAS8jQMHdmkMjneAegOvajVt4+OgRUiV/lvzU3ULB3V1y5tWj4G6eTyLaIgruEU3cvP4ouJvnkwCLKLib6xt3LKPg7g4176pDwd27/OnOaCi4u0Mt9Drh8Y7r/+QpQ8qEgJk73LnDPfzvWrZIAuYSoOBuzTeRVnC3hu1/tSm4hxdJ+9uh4G6/D+y2gIK73R6wv38K7vb7ICQLKLib6xt3LKPg7g4176pDwd27/OnOaCi4u0PN83UouIfMmII7BXfP34HsgQTMIUDB3ZovKLhb48eQMhb5mVSdgrtJ3rDHFgru9nA3qVcK7iZ543lbKLib6xt3LKPg7g4176pDwd27/OnOaCi4u0PN83UouFNwD22WMaSM5+9B9kACphCg4G7NExTcrfGj4G6Rn0nVKbib5A17bKHgbg93k3ql4G6SNyi4m+sN65ZRcLfO0OktUHB3uget20/B3TpDT7RAwZ2COwV3T9xZbJMEnEeAgrs1n1Fwt8aPgrtFfiZVp+BukjfssYWCuz3cTeqVgrtJ3qDgbq43rFtGwd06Q6e3QMHd6R60bj8Fd+sMPdECBXcK7hTcPXFnsU0ScB4BCu7WfEbB3Ro/Cu4W+ZlUnYK7Sd6wxxYK7vZwN6lXCu4meYOCu7nesG4ZBXfrDJ3eAgV3p3vQuv0U3K0z9EQLFNwpuFNw98SdxTZJwHkEKLhb8xkFd2v8KLhb5GdSdQruJnnDHlsouNvD3aReKbib5A0K7uZ6w7plFNytM3R6CxTcne5B6/ZTcLfO0BMtUHCn4E7B3RN3FtskAecRoOBuzWcU3K3xo+BukZ9J1Sm4m+QNe2yh4G4Pd5N6peBukjcouJvrDeuWUXC3ztDpLVBwd7oHrdtPwd06Q0+0QMGdgjsFd0/cWWyTBJxHgIK7NZ9RcLfGj4K7RX4mVafgbpI37LGFgrs93E3qlYK7Sd6g4G6uN6xbRsHdOkOnt0DB3eketG4/BXfrDD3RAgV3Cu4U3D1xZ7FNEnAeAQru1nxGwd0aPwruFvmZVJ2Cu0nesMcWCu72cDepVwruJnmDgru53rBuGQV36wyd3gIFd6d70Lr9FNytM/RECxTcKbhTcPfEncU2ScB5BCi4W/MZBXdr/Ci4W+RnUnUK7iZ5wx5bKLjbw92kXim4m+QNCu7mesO6ZRTcrTN0egsU3J3uQev2U3C3ztATLVBwp+BOwd0TdxbbJAHnEaDgbs1nFNyt8aPgbpGfSdUpuJvkDXtsoeBuD3eTeqXgbpI3KLib6w3rllFwt87Q6S1QcHe6B63bT8HdOkNPtEDBnYI7BXdP3FlskwScR4CCuzWfUXC3xo+Cu0V+JlWn4G6SN+yxhYK7PdxN6pWCu0neoOBurjesW0bB3TpDp7dAwd3pHrRuPwV36ww90QIFdwruFNw9cWexTRJwHgEK7tZ8RsHdGj8K7hb5mVSdgrtJ3rDHFgru9nA3qVcK7uHvjSdPnuL8pStImTwJokeL+soOrt+8hXv3HiBNqmTPXXvzziPcuf/4lfWDXhD18F7EnDnIpTq8OGIIUHCPGM4m90LB3WTvRIxtFNwjhrOrvVBwp+BOwd3Vu4bXk4B3EqDgbs2vFNyt8aPgbpGfSdUpuJvkDXtsoeBuD3eTeqXgHr7e2LLzELoNmQ5//ye64Q7NqqFJ7TLBdnLx8jVUbtwHN/+7oz9Pkig+WtaviNqViup/U3APX9/Y3RoFd7s9YH//FNzt94HdFlBwt9sDwfdPwT1kv1zxv4+S59fjgv9dM53nolVrUpVE7lipXKq19e5ZNPp3p0t1TL04X6zUWJ6qhKnm0S4SsJ0ABXdrLqDgbo0fBXeL/EyqTsHdJG/YYwsFd3u4m9QrBffw88bde/fxSVlfLbCLcL5p+wH0Gj4LGxcMQ8b0qV/q6MKlq1i4ahtqV/4M8ePGwaS5a7B8/S4c3DgFcWLHouAefq4xoiUK7ka4wVYjKLjbit+Izim4G+GGl4yg4E7BPbSZScHdzPuWVpGAJwhQcLdGlYK7NX4U3C3yM6k6BXeTvGGPLRTc7eFuUq8U3MPPG5t3HEKXQVNxeNtMxIwRXTecp3wrfF65GHwbVHxlR6fPXkDZej0wY1Rn5P0oKwX3VxJz1gUU3J3lL09YS8HdE1Sd1SYFdzP9RcGdgjsFdzPvTVpFAhFNgIK7NeIU3K3xo+BukZ9J1Sm4m+QNe2yh4G4Pd5N6peAeft6YtWQT5izbjP3rJwc2WrPlQLz5eloM7tb4lR3NX7kVIycvxe7V45A8aSL8d/cR7j3wf2W9oBdE+X4PYjCGu0vMIurih62H4Gm23B7vLsqP3yDGtH4e74cduE7gYcsBePpBXtcrulgjytFDiDGpl4u1eHlEEHjYtA+e5iroUlexY0ZFgjjPFnFZPEOAgnvIXBlSBuAOd8/cd2yVBEwkQMHdmlcouFvjR8HdIj+TqlNwN8kb9thCwd0e7ib1SsE9/LzhN205Nu84iJ0rxwY22rDDcMRT4WImDm4bakfHTpxGbd9BqF6uMHq3r6uvvf/QXyVd9XHJwBu7v0LUaQNdqsOLI4bAk3bDkPDTfB7v7Oa+XfCZ3Nfj/bAD1wk8aTUICfMXcr2iizVuHvgaPuN7uFiLl0cEAf8WfZGoUDGXunrs/xQxo7v2XeBSB7wYFNxDngQU3Cm48xFBApGJAAV3a96m4G6NHwV3i/xMqk7B3SRv2GMLBXd7uJvUKwX38POGuzvcJZRM5SZ9kSv725g2oiOiRn0mrDBpavj5xoSWGFLGBC/YawNDytjL34TeGVLGBC+8bAMFdwruoc1M7nA3876lVSTgCQIU3K1RpeBujR8Fd4v8TKpOwd0kb9hjCwV3e7ib1CsF9/DzRnAx3HOXaYn61UqEGMNddrbXbTMU+XNnw9j+rQPFdgru4ecXU1qi4G6KJ+yzg4K7fexN6ZmCuymeeN4OCu4U3Cm4m3lv0ioSiGgCFNytEafgbo0fBXeL/EyqTsHdJG/YYwsFd3u4m9QrBffw88bde/fxUakWaPZ5OfjWr4ANX+1Hn5FzsHHBMGRMnxo3bt5GhYa90KphJRU6phCOHv8TEuP94xzvoHc7FUYmShRtTHwVgiZFskTc4R5+rjGiJQruRrjBViMouNuK34jOKbgb4YaXjKDgTsGdgruZ9yatIoGIJkDB3RpxCu7W+FFwt8jPpOoU3E3yhj22UHC3h7tJvVJwD19vbNx+AN0GTw9stF2TKlqAl3L1+n8oUKkt2jauguZ1y2Hlxt3o7zfvJQPy5MqKmX6dKbiHr2tsb42Cu+0usN0ACu62u8B2Ayi42+6CYA2g4E7BnYK7mfcmrSKBiCZAwd0acQru1vhRcLfIz6TqFNxN8oY9tlBwt4e7Sb1ScA9/b/j7P8G58/8iTcqkiBEjutsdMIa72+iMrEjB3Ui3RKhRFNwjFLeRnVFwN9ItTJoailuYNJVJU828a2kVCXiGAAV3a1wjreB+8787ePT4MZIlSRgmgk+fPsVjJRpEjxb1uevPX70XpvoBF927FwUzZvvg6rVnR+VZzCFAwd0cX9hlCQV3u8ib0y8Fd3N88aIlFNzN9Y07llFwd4ead9Wh4O5d/nRnNBTc3aEWeh1X3nEfPfbHhUtXkTxpIsSOFSOwYe5wD5kxBXcK7uF/17JFEjCXAAV3a76JdIL77Tv30KTzKB0rVkraVMmwYGJPpEqeJFSSS9buwNgZK/Ddlv8djZcKFNytTUCTalNwN8kb9thCwd0e7ib1SsHdJG88bwsFd3N9445lFNzdoeZddSi4e5c/3RkNBXd3qAVfx9V33FFTl2He8i8DG8uZLTPGDWyNpIkTcId7KG6h4E7BPfzuWrZEAuYToOBuzUeRTnD3m7YcKzfsxtrZgxA3TmyVoG2ATt42ZViHYEme+usf1G41GPIjJk7smBTcrc03o2tTcDfaPRFiHAX3CMFsdCcU3M11DwV3c33jjmUU3N2h5l11KLh7lz/dGQ0Fd3eoBV/H1Xfc2Us3440MqZE7Rxb8efYC6rYZivrVSqB906oU3Cm4hzoxt949i0b/7gy/yWtjS/lipcbyVCVstIBdk4DZBCi4W/NPpBPci1TrgFJFcqNLy5qa3OpNe9F31Bwc2zUXUaK8HOZFjtpdunwNG77ajznqhwl3uFubcCbXpuBusncixjYK7hHD2eReKLib6x0K7ub6xh3LKLi7Q8276lBw9y5/ujMaCu7uUAu+jqvvuC+24ttjLP6+cAXr5w2h4E7BnYJ7+N2abIkEHE2Agrs190U6wT170Ubo36kBKpcuoMkdPnpSregPwdfrJiJxwvgh0ly5cTdGTl5Kwd3afDO6NgV3o90TIcZRcI8QzEZ3QsHdXPdQcDfXN+5YRsHdHWreVYeCu3f5053RUHB3h1rwddx9x5XWHj16jDzlW6FEoY8xuFtjCu4U3Cm4h9+tyZZIwNEEKLhbc1+kEtwl8WnWwg0xqk9LlC6aW5M7fvIMqjbthy2LRyJ92hQuC+73H/q75IHrN59g3JSnTJrqErWIuVgE946toqjYhT4e7fD2XTUHpgIXL3q0GzbuBgER3Du1eYqUyZ5PjuxGU6FWefDwKcZNe4Jz55g8ObzZWm1PBPcu7Z4iTUrX5kD0aD6I6kN/WuUfWn0K7p6kG/FtU3CPeOam9UjB3TSPRLw9FNzDh7mVd1yp26rnOHz97VFsXeqH1CmSaMH90eMnwRq3+N+TaHJpV/gYbnMrpeNmwPIMxRAtatjf/f6+dwcFTq/FBf+7NlsfPt1vSFsanyVJ51JjKy6fQv2LO1yqY+rFElJmyxtlXJoDpo6FdpGAJwjEiuHaO7EnbHBym5FKcBdHyer/gM4NUalUfu23gB3u36ybhEQJ44Xoy5B2uF+79dAl/9+6/RRTZkSh4O4StYi5WAT3Ni2eIkF8z4pm9++rOTDLh4J7xLjVpV5EcG/r648kicL+w9ulDv7/4sePn2Lq7CgU3N2B5+E6Irh3aP0EyZK69hxIGDc6BXcP+4aCu4cBR3DzFNwjGLiB3VFwN9ApEWwSBffwA+7uO+6gsQsg77lzx3bHh9kza4NEcJfv3ODKmhun0PTf3eFnuI0tieA+P3VR+LiwYeLiw7v47Nw6rxHcv0hdCvnjp3HJC+tvnkbDS94Tw33ta6XgE0xoYZeg8GIS8FICSeLH8NKRRcywIp3gLvHtShf9BJ1b1NCEV23cg35+c0OM4R7gBoaUiZgJaWcvDCljJ30z+mZIGTP8YKcVDCljJ/3Q+6bgbq5v3LGMgrs71LyrDgV37/KnO6Oh4O4OteDruPqO6+//BD2HzcSWXYcwf3wP5Mj6VmDDIrhfun4/2I423vkLzS97h+BeSgnus5IXdskJV/zvo+T59V4juK9JVRK5Y6VyiQGTptl+uHQAACAASURBVLqEixeTgKMJMKSMNfdFOsF91NRlWmRfM3sQ4saOhVq+A5ExfWpMGdZBkxw3cxW27v5Wh5iRIsfs7t1/iLVb9urP9qyZgOjRoiJ69Gj68/NX77nkgXv3omDGbB/ucHeJWsRcTME9Yjib3AsFd5O9EzG2UXCPGM7u9ELB3R1q5tah4G6ubyLKMgruEUXa3H4ouIefb1x9x23RbTT2HTqKMf198WbG/4UUSZ8mBXyiRqXgHoJrKLgDFNzD775lSyRgOgEK7tY8FOkE99t37qFxx5E4duK0Jidx6hZO6q3/V0qPoTOxaccB/Lxjjv73r7//hWrN+j9HOU+urJjp11n/jYK7tQloUm0K7iZ5wx5bKLjbw92kXim4m+SN522h4G6ub9yxjIK7O9S8qw4Fd+/ypzujoeDuDrXg67j6jpu7TEtInRfLF3MH440MaSm4h+AaCu4U3MPvrmVLJGA+AQru1nwU6QT3AFzXbtzCw0ePkCr5M6Hd3ULB3V1y5tWj4G6eTyLaIgruEU3cvP4ouJvnkwCLKLib6xt3LKPg7g4176pDwd27/OnOaCi4u0Mt9Drh8Y7LkDIhM6bgTsE9/O9atkgC5hKg4G7NN5FWcLeG7X+1KbiHF0n726Hgbr8P7LaAgrvdHrC/fwru9vsgJAsouJvrG3cso+DuDjXvqkPB3bv86c5oKLi7Q83zdSi4U3APbZYxpIzn70H2QAKmEKDgbs0TFNyt8WNIGYv8TKpOwd0kb9hjCwV3e7ib1CsFd5O88bwtFNzN9Y07llFwd4ead9Wh4O5d/nRnNBTc3aHm+ToU3Cm4U3D3/H3GHkjACQQouFvzEgV3a/wouFvkZ1J1Cu4mecMeWyi428PdpF4puJvkDQru5nrDumUU3K0zdHoLFNyd7kHr9lNwt87QEy1QcKfgTsHdE3cW2yQB5xGg4G7NZxTcrfGj4G6Rn0nVKbib5A17bKHgbg93k3ql4G6SNyi4m+sN65ZRcLfO0OktUHB3uget20/B3TpDT7RAwZ2COwV3T9xZbJMEnEeAgrs1n1Fwt8aPgrtFfiZVp+BukjfssYWCuz3cTeqVgrtJ3qDgbq43rFtGwd06Q6e3QMHd6R60bj8Fd+sMPdECBXcK7hTcPXFnsU0ScB4BCu7WfEbB3Ro/Cu4W+ZlUnYK7Sd6wxxYK7vZwN6lXCu4meYOCu7nesG4ZBXfrDJ3eAgV3p3vQuv0U3K0z9EQLFNwpuFNw98SdxTZJwHkEKLhb8xkFd2v8KLhb5GdSdQruJnnDHlsouNvD3aReKbib5A0K7uZ6w7plFNytM3R6CxTcne5B6/ZTcLfO0BMtUHCn4E7B3RN3FtskAecRoOBuzWcU3K3xo+BukZ9J1Sm4m+QNe2yh4G4Pd5N6peBukjcouJvrDeuWUXC3ztDpLVBwd7oHrdtPwd06Q0+0QMGdgjsFd0/cWWyTBJxHgIK7NZ9RcLfGj4K7RX4mVafgbpI37LGFgrs93E3qlYK7Sd6g4G6uN6xbRsHdOkOnt0DB3eketG4/BXfrDD3RAgV3Cu4U3D1xZ7FNEnAeAQru1nxGwd0aPwruFvmZVJ2Cu0nesMcWCu72cDepVwruJnmDgru53rBuGQV36wyd3gIFd6d70Lr9FNytM/RECxTcKbhTcPfEncU2ScB5BCi4W/MZBXdr/Ci4W+RnUnUK7iZ5wx5bKLjbw92kXim4m+QNCu7mesO6ZRTcrTN0egsU3J3uQev2U3C3ztATLVBwp+BOwd0TdxbbJAHnEaDgbs1nFNyt8aPgbpGfSdUpuJvkDXtsoeBuD3eTeqXgbpI3KLib6w3rllFwt87Q6S1QcHe6B63bT8HdOkNPtEDBnYI7BXdP3FlskwScR4CCuzWfUXC3xo+Cu0V+JlWn4G6SN+yxhYK7PdxN6pWCu0neoOBurjesW0bB3TpDp7dAwd3pHrRuPwV36ww90QIFdwruFNw9cWexTRJwHgEK7tZ8RsHdGj8K7hb5mVSdgrtJ3rDHFgru9nA3qVcK7iZ5g4K7ud6wbhkFd+sMnd4CBXene9C6/RTcrTP0RAsU3Cm4U3D3xJ3FNknAeQQouFvzGQV3a/wouFvkZ1J1Cu4mecMeWyi428PdpF4puJvkDQru5nrDumUU3K0zdHoLFNyd7kHr9lNwt87QEy1QcKfgTsHdE3cW2yQB5xGg4G7NZxTcrfGj4G6Rn0nVKbib5A17bKHgbg93k3ql4G6SNyi4m+sN65ZRcLfO0OktUHB3uget20/B3TpDT7RAwZ2COwV3T9xZbJMEnEeAgrs1n1Fwt8aPgrtFfiZVp+BukjfssYWCuz3cTeqVgrtJ3qDgbq43rFtGwd06Q6e3QMHd6R60bj8Fd+sMPdECBXcK7hTcPXFnsU0ScB4BCu7WfEbB3Ro/Cu4W+ZlUnYK7Sd6wxxYK7vZwN6lXCu4meYOCu7nesG4ZBXfrDJ3eAgV3p3vQuv0U3K0z9EQLFNwpuFNw98SdxTZJwHkEKLhb8xkFd2v8KLhb5GdSdQruJnnDHlsouNvD3aReKbib5A0K7uZ6w7plFNytM3R6CxTcne5B6/ZTcLfO0BMtUHCn4E7B3RN3FtskAecRoOBuzWcU3K3xo+BukZ9J1Sm4m+QNe2yh4G4Pd5N6peBukjcouJvrDeuWUXC3ztDpLVBwd7oHrdtPwd06Q0+0QMGdgjsFd0/cWWyTBJxHgIK7NZ9RcLfGj4K7RX4mVafgbpI37LGFgrs93E3qlYK7Sd6g4G6uN6xbRsHdOkOnt0DB3eketG4/BXfrDD3RAgV3Cu4U3D1xZ7FNEnAeAQru1nxGwd0aPwruFvmZVJ2Cu0nesMcWCu72cDepVwruJnmDgru53rBuGQV36wyd3gIFd6d70Lr9FNytM/RECxTcKbhTcPfEncU2ScB5BCi4W/MZBXdr/Ci4W+RnUnUK7iZ5wx5bKLjbw92kXim4m+QNCu7mesO6ZRTcrTN0egsU3J3uQev2U3C3ztATLVBwp+BOwd0TdxbbJAHnEaDgbs1nFNzDyO/mf3fw6PFjJEuS8Lka56/eC2MLzy67dy8KZsz2wdVrUVyqx4s9T4CCu+cZm94DBXfTPeR5+yi4e57xq3p48uQpzl+6gpTJkyB6tKiBl9+88wh37j9+VfXnPo96eC9izhzkUh1eHDEEKLhHDGeTe6HgbrJ3IsY2Cu4Rwzm0XoJ7x6XgHjKxK/73UfL8elzwv2u/88LBgjWpSiJ3rFQutbT17lk0+nenS3VMvThfrNRYnqqEqebRLhKwnQAFd2suoOD+Cn6379xDk86jcPT4n/rKtKmSYcHEnkilhAApFNytTUCTalNwN8kb9thCwd0e7ib1SsHdXm9s2XkI3YZMh7//E21Ih2bV0KR2Gf3/Kbjb65vw7p2Ce3gTdV57FNyd57PwtpiCe3gTDXt7ob3jUnAPmSMFd4CCe9jvM15JAk4nQMHdmgcpuL+Cn9+05Vi5YTfWzh6EuHFio2bLAciYPjWmDOtAwd3a3DOuNgV341wS4QZRcI9w5MZ1SMHdPpfcvXcfn5T11QJ7y/oVsWn7AfQaPgsbFwzT37sU3O3zjSd6puDuCarOapOCu7P85QlrKbh7gmrY2gztHZeCOwX30GYRBfew3WO8igS8gQAFd2tepOD+Cn5FqnVAqSK50aVlTX3l6k170XfUHBzbNRdRokThDndr88+o2hTcjXKHLcZQcLcFu1GdUnC3zx2bdxxCl0FTcXjbTMSMEV0bkqd8K3xeuRh8G1Sk4G6fazzSMwV3j2B1VKMU3B3lLo8YS8HdI1jD1Gho77gqshsuXb8fbDsb7/yF5pd3h6kP0y8qFTcDZiUv7JKZ3OHOHe4uTRheTAIOJ0DB3ZoDKbi/gl/2oo3Qv1MDVC5dQF95+OhJ1G0zBF+vm4jECeNTcLc2/4yqTcHdKHfYYgwFd1uwG9UpBXf73DFrySbMWbYZ+9dPDjSiZsuBePP1tBjcrTEFd/tc45GeKbh7BKujGqXg7ih3ecRYCu4ewRqmRkN7x00QPx4F9xAoUnCn4B6mG4wXkYCXEKDgbs2RFNxD4ff06VNkLdwQo/q0ROmiufWVx0+eQdWm/bBl8UikT5vCZfpXrvtj6Wp//HfL5aqs4GECceICtatERcqk/0vS54ku/7vtj0Wr/HH9uidaZ5tWCMSI8RS1q/ogbcpnu2s9Ve49eIKFKx/h8mUmT/YUY3fbjapu/9pVoyB9GtfmgBy/jupDf7rLXerJ8fbNOw5i58qxgc007DAc8eLGwcTBbfHg0RPEjO7jUhdXvj0En/XzXarDiyOGQJRStZA4b36Pd3bl++/h88Ucj/fDDtwgULwakhRwbXepG73g6o8/Isrqme5UZR1PEyhSEUmKFHepF3e+C1zqIBJc/Kp33LSpk4f4m+aLC39h5PUfvYJS7pgpMTLDJypBe9h/W/x15zZan92La08feAWD3sk+ROkU6V0ay8aLZzD02mGX6ph6cbboSTAxY37EcGEOyFjuPvA3dUgu2xUtahSXx//g8ROVb0kdhfGSEiem6/qPN82B6GoOuPIc9BK3R8gwKLi/ArOs/g/o3BCVSj17KQzY4f7NuklIlDBehDiJnZAACZAACZCAtxN41Q53bx8/x0cCJEACJEACEUWA77gRRZr9kAAJkAAJRFYCFNxf4XmJb1e66Cfo3KKGvnLVxj3o5zc3MIZ7ZJ04HDcJkAAJkAAJhCeB4GK45y7TEvWrldAx3FlIgARIgARIgATChwDfccOHI1shARIgARIggZAIUHB/xdwYNXWZFtnXzB6EuLFjoZbvQGRMnxpThnXgrCIBEiABEiABEggnAnfv3cdHpVqg2efl4Fu/AjZ8tR99Rs7BxgXD9PcuCwmQAAmQAAmQQPgQ4Dtu+HBkKyRAAiRAAiRAwd3NOXD7zj007jgSx06c1i2kTpEECyf11v/LAhW76wnuP3iIuHFihYrj7r0HiBbVBzFiuBYXmYy9i8CazXuR7+PsSJEsEU6cOocLl66iUJ4PvGuQkWQ0El7r2G9/In/u7IFi6BMVx1zigkZV9zoLCbhDYOP2A+g2eHpg1XZNqmgBnuUZgTt37yNmzOjq+zTkWJNh/V4mU+8mEPQ79tqNW9jx9Q+oWqYgokRhrgmnef7sP/9i36EjyKQSSH+S811tvnzXPla/waNHcz3urNPGT3s9Q4DvuJ7hylZJgARIgARIIIAAd7iHcS7Iy8rDR4+QKjmF9qDIdn59GG16T8CeNeORLEnCEGmWqtMV77/3Job3bBZG4rzMGwm8V6gBpo3opETabJg4Zw2+2vsD1s8b4o1D9eoxNe3sh+9/PoH3Mr+OmhWKoGyxT/XLf5teE/S4Jw1t59Xj5+A8S0AE43Pn/0WalEm5SBsEdcAJgBG9mut7LqQS1u9lz3qRrdtNIOh37OGjv6Num6E4smN2qIs1dtvM/l8mMG/Flxg1ZRmyvp0RObK9he6ta+uLlqzdgbEzVuC7Lf9boCQ/EnCHAN9x3aHGOiRAAiRAAiTwagIU3F/NiFeEQuDmrTs49dc/yP5uplBf4mSnVexYMZE+bQryjMQEKLg73/myI0riai+f3k8LAFJWb9qLweMX4uHDRyicJwcFd+e7mSMwkICcIPnpl5N4I32aUJO2h/V72cAh0qRwJEDBPRxh2thU2Xo9UL54nsCTPvKbu3arwZDv4jixY1Jwt9E37JoESIAESIAESIAEQiNAwd1L58evv/+F1r3Go3jBj5QYtgcPlBBWt0pxdPGtqUfcddA0vJEhDWRXw9ff/owG1UvqHXP9/ebhq30/KHE8Bj6vXAwNapRUP+hj6d2r85Z/Cdlpc/3mLaRLnRx9O9TXL/2te47D1qV+OozEtAXrsWDVVv0iIDveO6lks2VU0tnuQ2fgnTfT635k9+LoacuxcuNubddHH7yDkb1bIGniBAiwu0KJfGr3znZta5PaZdC0Tlkv9ZQZw5KdUt/9dBy53n9bi6dvZ0qPoT2aYNaSTZi7fAvu3X+Isp99iuZ1y2nfS/nmu2MYokTWvy9cRuKE8dGwZint38adRkLCjYj4miRRfHRoVg2VSxfQdSi4m+FvK1aU/rwbzvx9CSmTJ4aPCk2wbdloNT8e6OeCJJSOHTMmBXcrgFnXkQSK1+yMvB9ng+wuv3LtJvLkyopxA1vrcGvBPV+H9WyqQkT8jAGj5+Hfqzfw6Yfv6e85eQaH9nyV02JDezRFjqxv4c+zF9BjyAwc/+OM+v6Nipzqb1OGd8Bp9feg38u//XEWXVWYHhHq5JncsXl1VCqVP/C3QDQVkuLk6X9UmK+z+Oj9d9CrfV0l6jNmvqcmovzOaatOBg7q2hhT5q9T8+UGtiweibP/XNJ+ks9lUaVeteKB350SUqTX8Fk6vKGE5yvwyfsY3c8Xk+asxfyVX0LC9knIvqplCqBn28912BgK7p7yYMS1O2jsAixbtxPx4sZGfPWfn/L5e2qh+9LlazrHxZylmym4R5w72BMJkAAJkAAJkAAJuESAgrtLuJxz8Xc//YYG7YfrWI/VyxfCngNHsG7rNzp8h8SArNasv36pk5d7+S9ntsz6R/0J9WIuL2tSeg6fidYNK6N2paJaMBBxtV61EiiSNwd2fvMjEsaPi49zvBN4TPn7n05osXVQ10bInOk1HPzhVzx6/Bgt61VAjeYDkDN7ZnRrVUuLuBNmr0bbxlW0eDtyylIV0zsxlk3tq0TfZ3Zny/IGGiqx//TZi/qlcd8XE7VQwOIZAuNmrsLMxRv1CYRiBXJpv8giy5AJi9C7fT1kfiMdRk5eqhdYJGHwH0qcqdCwl97NXKfyZ/hDCTmHDh/XQuuUeV/gXRVqROK0b9n5LeYs2xwYcoiCu2f8F5Gtrli/CwPGzIdf35ZaBJAY7gGlfd9JePzYn4J7RDqEfRlBQJ5tktulVcNKuKjEsKlKSO3SsibqVi2O4J6vH6rv3fL1e6JxrdIoWfhjrNm8T31Hf41vN09Twvj5EJ+vQZ+hlRv30UJ73w719ILXwlVfYXR/X/V8/jvwe/nhw8coWLkt3sqYDi3rV8Tegz/p7/NFk3pp0V5+C4jQ3kJ9T0uIqEFj5+MTJf4P7tbYCK7eaETA7xzZnVyxZD59+q9No8ooWKUdsr3zhvJTBbUA8rfeALFp4XAdWqlQ1fbqN1ACfd2TJ0/076LNi0Zg7ZZ9KoZ3NLyePhX+Ur+Xug2Zrp/NpYrkpuDuBZNHFsuqN++vf3vnzpEF2bNkQsIEcfXIZNOK/C5jSBkvcDSHECyBR+r3ZLWm/dBHfcd9qN4hI2OR3Ffb1UY4efeKjIVzAOr3IecAnwORew44/dlHwd3pHgzB/oAXumO75gYmyMpTvpXaoVwe9dUPd3nJfjdzBgzo3FC3EBAbVsSCTz98lpBJXt4v/nsVS6b0gezey5AuFWb6dX6ux6BxQfcqUV/iucuuq6L5ciJ69GiB1wYV3KWtd95KjwmD2urPZSGg57CZWpSVnXkiuAe1O0fxplrElx3WLJ4hIILQ5h0H8eWSUfDxeZZQTXZSZkiXUs8ZKUd+PYUx01fgh60zMVQJ8V98+TUOb53xUgK2x/7++Fld+/Ovf+K8Soq6eM1XWDChp/6xTMHdM/6LyFZFAKjSpC/2b5isF92CFgruEekJ9mUSAXm2zfLrgk9zvafN6th/Cm7dvqu/M4N7vsoC9ib1zJ08tL2+/uGjx2jUYQQWT+6tvxNDer4GfYbKM1pOF41SAmvaVMkCcQT9Xt6lFsflvty6dFTg6aT8Fdvo3fiSU0V+C8jCuSwOSJFTbHOXbdHfxyyeIRDw++zAxilIEC+O7mTX/h/VqYTxmKpOKMT//791GTgVlVWS07ffeA1t+0zAF3MH64WTF4tsnvjx2En1e+06FqnvW9msIBsauMPdM/6L6FazF22EUX1aoEShj5/rmoJ7RHuC/UU0AdkIJN+fsjiZPGkiHVZJFikjS5F384KV2+kTTLLpTHI4DOzcKNSQct7GhnOAc4BzgHPA6c81Cu5O92AI9gcnuEvCrGRJEmDsgNYvvWT//uffqNSot96hF1Qol53n88f3gPzg79isug4xE7QEfbF/okLFdB86E1t3f6svkV3zA7o01EfTgwruIqC3b1pVC/9S5Ki0CAeyw/3+g4cvCe6yUNC+aTVUL1fIS71l/7DkB+3u/T/pF/qAIn6KoRZNXjxZMG9cD336Qcrs0V2fM/4/JTDVULux/rl4Re3GelcJPMmwYsNuzB3bXYs6FNzt97VVCyi4WyXI+t5I4EXBfcaiDZitwj0c2jRVCwYvPl8DEg+nUqGZgpbOLWpiyRfPwqm9+HyVvwV9hkpImo79J+uXcREkZHFUQrAF/V5epBbOx6sTZT9ue/bMliLCrsR5Xzix50u/BSSkmJw6E7tZPEMguN9nAYkxX8xzIyfOZGf7GJUc8+cdc14yqNOAKfhy17d4X+XRkTCB8vurjgoHKL+xKLh7xn8R3SoF94gmzv5MICAhTwupUz9yqqd88bx6l/eIyUswY1RnfXo7MpQR6gSL7G5eP28o/r1yHYPHLdTDXjat70ubnbyRB+cA1JznHOBzIHLPAW94tlFw9wYvBjOG4F7oPirVHFXUbqnurWu/9JItx9HzVWijX8BFKH+xyAq7xFqXo8pBS9AX+2jqaLsUaevbH3/TP4wyZUird/gFFdylrbwfZdVxaKXs2HdY797avny0jgf+4g53Cu6en6TBCUJFqnXQcX7lx+6LRU4k7D7wE/avn/zcR7IrU+LMfrNuUuAODBGIKLh73ocR1QMF94gizX6cROBFwd23x1i9mLxxwbBgBffeI2bjpFroluTDYX2+ynVBBXf5t+REkfAjsit+wcqtWDtHkineDQwpI2JsNxUXfO/aCTpPihQ5ZZZVhS4Zo8LPvLjDnYK752ddcL/PNu84pDYsTMcPX854btODWCMnISTvzs6VY3XujIDy75UbKKxCzUiogYKfvq//LKePJMwXBXfP+zGieqDgHlGk2Y9JBOR767sjv+ErlSdIcoRJkQTCVcsW1PmivL3I+3CJWl0wonfzwBPeew8eQTt1Yi3oAro3c+Ac4BzgHOAc8IZnHAV3b/BiMGMIeKGTcDAS/1N2T0nSU9lFLvHRX3zJliYqNuytjrU/0i9vUuenX05h//fH9IubHH9fpXa+DenWBJ/lz4k96kv/zt37Oua37Jw/smM2vtrzvU7CKsf9fHx84NtjDBIliKd31AcV3GWFXmLVThzSTh9x76SO3l+9fhNfKcH9+yMnKLjbMCeDE9xHTVmGhau3qQWTLjocjMSHlXjsslAScPxdjq1LDHdJ9ia7T2Ruye5JCYsgvpXd7ZPnrqXgboNPPdVlcIK7hBGSWNGdB07R8YXH9G+NmCqBX8BLkqdsYbskYAoBEcLlu7J6ucL4au/3GKhioctipSRCDe75Kkmnm3XxUzlT6qBa2UK4phaqv9jytUqGmR2X1E42eY6++HyVfwcV3CUZuQgPb6ucKRJSRL6L5dkr92DA9/KNm7chi6eyQ1CSpcoLuyyKBsT5puAe8TMoOME9YCffZ/lzoV/H+oCK7Lbv4M86D44I6OLDgp9+oDdMyHN18twv0FklpZcNCRIOSH53ff3dUR2er1HN0hTcI96tHuvxRcFd8utIIvu1W/bqZ8ueNRNUHP+oLy3UeMwgNkwCHiZw/OQZVFWx24OGaTt15rzOe7J61kC882Z6yL8lSbkkmJZQbnLKy5uKnIK7rBKqBz15LAv5Dx48wuwxz04Xy0Kt7HzPr343ZFInnLypcA4AnAN8DkT2OeAtzzQK7t7iyRfGEfBCF0OJXg8fPtKfdlUJSwPCuMhLdu6cWfQLW0CRMCAS61XigQYUCePSr1MDHeNdjq7vO3RUfyQvfEO7N0UaFTe2bpshWnCXGO7t+03SO+6kiAgwbmBrJcqnRM2WA5FTJWgTG27fuYeW3cfqY+9SJAHUnDHd9A8oEdzrtxv2XAx3eaHs0KyaFiVYPENg/KzVKrHuT1gze1BgBw/UvOk7cg42bj8Q+LeMKjyQ7NiUIolvpy/c8L+5Ur4w+qgEq/XaDtXijxQR4I8e/xPzxnXXJyRELJLjoHLCYdKctdimhClJ5MviHAInTp2DJGsMGn84IL5e0FF08a0ZKXYhOcdztNSTBOTZFvT7VuIty840EcKCe76KLbIQLnkxAr4z5btwwfieeDNj2mCfryLEBn2GyveqPF+liNhQo0IR/Z1++KiI78++l+Xk2Zadh3QyzYB+qqtntRZ1VXnxt4AcX5cjzAwp47nZEtzvHOlNEs13GTRVb1yQIr+zBnVtjAol8mphSXwo4YOkSH4VSZoq80dCF0mR8G+SC6BWxaJacA/6HfvinPDc6NhyeBN4Jri3VDHcP9JNy290uW+Dljy5sr6UYym87WB7JBBRBBp2GA6fKD6BwrL0K4vI8j4rp8IWr9muc0nJyZ7LV2/ir3MX1AntXvo90htKgNi8cobkW3tdD0nyaNX2HaRzYmV5KwMknNiRX/+A3Ps71PdDmaKfeFWyc86BZ2Iz5wCfA5F5DnjD81zGQMHdWzz5wjgCBHd54b52/ZY+Sh7W3abyQidhYSR+u4gFQYuIsNeu/6c/C6492Xkjx5zjxY2NuHFihUpX+pC+giZ781J3OHpYsnv50uXrKjlfPCXqPO9TEXAuXb6GpEkS6h3NAUWul/mRTP2dhQRIgAS8nUBASJnMaqE5dqyYYd5tJ9+ZsqNdnp+SADVoCen5GvQa+Q69ob5LZfE7tCJtnTv/r/ruTvTSc9zbfeO08clvIzkxJL6KEuVZEvOAIr+vYsWKEZhsVf4uuVPkJMOL8d+dNm7aSwIkQAJCQJ5ncrpHEqVK2aM2dMnu7oDd3nIiO9PraVWOse76e1PCTvx17mKwcvwGmQAAIABJREFUIdqcSlRyq2V+41mSbPmdUE7t7n8tTQqdWLtFt9F6A5ycOJYF2T/PXlCn1Hvp08RyItkbCucAwDnA50BknwPe8CyTMVBw9xZPvjCO4I4se+lQOSwSIAESIAESsJXAizHcbTWGnZMACZAACZCAFxCQxWIJqSWhtQZ3a4wBY+ZD3nFz58iCNVv2oa0K3eajNvjMUSd99qwZHzhiEalfXLB0Ko6A/FjbV4xB7JgxkLdCa5UkvRzk77IBbojiIife5ER62c8+1cN88uSpCu/6/IKtU8fPOQDtawkHGNY5IGGE31ILNnKi3BuKq3PgqtocKifxu7WqHeYNMKZziuxzwHT/hGYfBXcney8U2yXumxwjr1ethJeOkMMiARIgARIgATMILF7zlcpvkuu5pJZmWEYrSIAESIAESMC5BCQvyscfZNEhSNv2mYAkCROgf+cGOK12dvcdNVeHKK1UKj8GdG6oQ6ItW7dDD7ZU4dxKhK7v+FNdIh4e+eUPFMmXUydjL1Wnqw77Jqfp5LfHWJXLQcLt7F49DucvXUUPld/lzN+XkDpFEjX+hmqxIptznf//lnMOhH0OSI4PmSMSiqx00dyO933AAMI6B2RhThLNy3Nh61K/MEd4MB2UK88Bb50DpvsoJPsouDvVc7SbBEiABEiABEiABEiABEiABEiABCIBARGYJ8xegy+XjAwMwyYhZ95SuU+mL9qAVRv3qNwXjXT4Fb+pyyGhUDs2r6YSkr/vFXQeqTwd+Sq20cmxZZe7lJv/3dFJs7O98wbK1uuuWKTDkO5NcOD7X5QYv1LlbyuJJnXKIGH8uF7BgHMg5DkgsfwbdxypQwMHzcu2Vp0GKZI3p160klCEknRb8v5Inh8nltDmwI3/bus8J7NHd8UnH76rhychp2QRSvI+SBHxPuNrqXXOJCeW0J4DkWUOOMlvFNyd5C3aSgIkQAIkQAIkQAIkQAIkQAIkQAKRjICElmjTe7wOKyOCYc6sbylR7T2VbPo/lKjVBSN6NUfZYs/Cqoiw+FGp5ihXPA+G92zmNaRk7M26jsYH72VCuWJ5dGJVSRjbsf8U/KwSqW5SCbUD8moFJNbetszPa3KmcQ5Az//g5oAssjTpPAqrZg7QyXWl/KROR9RpNVglFu6JRCrnwYr1u5Tgvk+diBivTknEcOR9EdIciBM7Jio37oPEKom8CO4B5fPWQyA56SS58tHjf6JB+2FqIa46GlQv6cjxi9GRfQ44yXEU3J3kLdpKAiRAAiRAAiRAAiRAAiRAAiRAApGUwNbd32HFhl14/Ngf88Z1V2FkdmLYxMU4vG1m4K7deSu+hAjOEttdkqvOVnHez6mQLI1qlXZ8kulLl69DxrfnwE/o6lsLhfJ8oBcXmtYpi2afP9v5LmElClVph6plCqKLb029E759v4kq0Wo+vSjh1N3NAVOec+DlOSAhl6RMGNRW/6/kMihTtztefy0VpgzrgNq+g3Dk11M65HC3VrUc//R4cQ6cO39Zh9PZsniEusdT6vHt3v8TWvUch3Vzh+DmrTuo13aoDjOzd80EtQARz9EMgnsORLY54AQHUnB3gpdoIwmQAAmQAAmQAAmQAAmQAAmQAAmQwHMENmzbj+4qdvn6+UORKUMa3Lh5GwUqt0W7JlXRWAnsUjbtOIgN277BvkNH0aphJfjWr+BVFPOrUDMfqVj3Y/r76nGNnrZCx7Pfo4RF2fl7QcV3X/rFDqzatAdxVPz3OWO7O37hIagDOQeAPOVboX3TaqherpBGs2bzXvQZOQc7Vo5BquRJ0FydjPjtj7P47/ZdfTpk7MDWSBAvjtfcB5JYVBbeJMeBlEdqQa5I1fYqlMwHOumyjL1Kk754O9NrOK3CzMjfJASLN5XIPgdM9CUFdxO9QptIgARIgARIgARIgARIgARIgARIgARCJSCx2mu1HKhFtLKffYpTf/2Dfy5e0UKj2uSLX3//CymSJkLqlElx7MRpvdN38tD2KqFodt3u1t3f4mcVaqJLy5qOJS27fTv2n4z3382EHEpMlR3wEsu9Ysl8kJ2w5y9dQVYV5z1KFKikktPx+5/nsHHBMD3eJ0+eonWvcejQrJqOAe/EwjkATJm/DjMXb0SLuuXxRobU6DlsJupULqZE+Ko49ONxNOowAsun98Pr6VJhydrtaFK7LL7+9mfkzvluYBgiJ/o+wGZJLFr6825qnmdEpZL58cPPJ7BaLTrsWztRx68XsT1e3NiYP76HznEgJaPidPnKDWTL8oaThx5oe2SfAyY6kYK7iV6hTSRAAiRAAiRAAiRAAiRAAiRAAiRAAiESaNhhOFo3rKximr+Jb1Ty0M07D6md7Pt1CI28H2dFHd/BOP7HGV1fdvnK7nYJNSOhZeqr0BoLVm7F5Hlf6FArPdvWcRzpb3/8DXOXb8GEwW1x9fpN7Nj3g04sm1wtMIigvvfgEbTsPlbvchdRurTa0SsJI6ctXI8fVQiew0dP6pje67Z+jV2rxiFp4gSOYxDZ50BQh63cuBvffHtM3ws+Pip0ytoJiBE9GorV6ITs774ZeAJC6vz+59+o1Ki3nvfFCnyEFMkSOc73LxosCVIlqepvf5xTc/t3HTpHQujIoprkOQgabkbqyr0hC3IS8/319KkcH2pJxhTZ54Bpk5iCu2keoT0kQAIkQAIkQAIkQAIkQAIkQAIkQAKhEhg1ZZnezd2gRkkVJiMzBo6djw+zv62FxZOn/0bFhr2VyDYS6VInx46vf8DAMfNVktVb2L5ijA6nITtir1y7ia4izFUtrnaAR9Ei9czFmzB9ZCctVJtcTp+9gDqtByNh/Lh6MeH472ewcPU2rJk1CG9mTIumnf0QO3YMHdf74uVrmL5wg06cWaFEXgzt0VSHmRk8biFSp0iik0rKKQAp9dsNQ02VmLZUkdwmD1/bFtnnQHAOEr8mS5JQCem5cOLUOZ1MdPfqcXohJqDUaD4Af549r+fOhX+vIWe2zDq5qjcUGc/kuWsxoHNDHbO9caeReC11CvTv3CBweN8fOaHneYZ0KfX4/VVi1aAnX5zOIbLPAVP8R8HdFE/QDhIgARIgARIgARIgARIgARIgARIggTATkJ2sy9ftwsHDv2qBUZKExowRHcdPnkHVpv1UvPJuyJ0jCx6qHd6FVExnCTvTs+3nOtRKkWodULl0AS2yp02VDEum9NH1VmzYjX4d64fZBjsvvHvvvgoRsgObVZz6x/5P0LdDPeR6/21tUuOOI1UC1QdYoIRUSZQq1w2ftBg7V47Vgmx/v3l6IULiXK9XMe5n+nVBLrVgMXHOGuT7OFtgO3aOLyx9R/Y5EBqjgNjm+2S3u7ovpHy193u07ztJn4LImD41zqqEwrv3/6jjnntLcuGgTCS2ect6FVBXLapJkTBKJWt3wbuZX8c4Fcte/j1fLdzlVXN+2MRFXpNcOIAB50BYniKeuYaCu2e4slUSIAESIAESIAESIAESIAESIAESIAGbCEyasxZTF6xDptfTKlHtiY7t/s26iWrneiy06T0Bf6hd8JsXjYC/+uyP0//o3cBbdh7EtBGdbLI4fLv9V8WnrtiolxLdH6qwO5lUXOvf0apBJTSvWw6nzpxH+fo9MVGFoymSL6cef0q1071+26Ho0aaOSsL6TvgaY1NrkX0OiIgueQsu/ntVhx7K+nZGFKzSDqUK50YftTgTtISWXFhCEo2dsVKFcKqkY6E7qQSEVipfPC+G9WyqFuh2YsiERdihTroE3fX/quTCG7cfQPy4cdQC1ftOGr5eSInsc8Auh1Fwt4s8+yUBEiABEiABEiABEiABEiABEiABEvAYAQkZI7vWW3Qbg36dGqB6uUI6bnO1Zv11GJWc2d7Sfd+99wAFK7dFDRVKpWOz6lijEi5WKVNAh5lxcvFXu94ljv20+etx+Njv2LNmAqJHiwqJfS5C/LKpfQOHN3fZFoyduRJ71TW/KEavv5ZK7/x3enFnDnRuUQMbvzqgFiNy6AUaJxeZA9tVfH9JFDx/5ZeYsWijSiY6IVA4F0H2VcmFx89ajUUqXNGeNeMdyePvC5chgrrsas9XsQ2a1i4D3wYVA936quTCN2/dQaEq7eFbvwKa1inruOnAOWCPyyi428OdvZIACZAACZAACZAACZAACZAACZAACUQAgVN//YM3MqTRArqIhxLDOWjMar9py/XOVxGkr9+8heI1O2PHyjE62ao3lEePHqtY1VeRPm1KveP1g88aY/n0fnrHsxQZc8HK7fRig8TEl5AjEv96dD9fbxi+HoMrc0Di9+cu0xLdW9dGpVL5vYbBtAXr9a5uWUyS8ljFLn9VcmGJ/1+0WkcM7NIosJ5TgUj4nKETFuq8BgEhdl6VXFjG2s9vLnZ+fRg7VXJhWbByconscyAifUfBPSJpsy8SIAESIAESIAESIAESIAESIAESIAHbCAwauwDfKcF92dQ+erfueRVqppgS2CWRqCQU/ea7Y2jZfQx+3jHHNhs92bHs+BZxXZLLlij0se6q57CZetyyyCDx3ss36IUyRT/R4We8sbxqDsgCxQfFmugTANmyvOGNCPSYXpVcWBLqtu45XidY3bRwuONPfATnyFclF5aFGrkfAsIvedtk4BzwnEcpuHuOLVsmARIgARIgARIgARIgARIgARIgARIwiIAkUG2kEopK2JTdq8eh2+BpOH/pGtbPG6KtXLhqm/5v2zK/QFGypQpJ075ZNZ101RvKjn2H0aH/JDSqWRqliuRG5cZ9VOz6jjrsiJQcxZvCr09LFM2fUyeVHDV1GQ6pxLRLlQAtSWmdXl41BwJE1m83T0PcOLHw3+27aNVjHDK/ke6l2OdOZvGq5MKHj55E3TZDsGhSL+TI+iz8kreVVyUXrtlyIHzUyRhJquyNhXPAc16l4O45tmyZBEiABEiABEiABEiABEiABEiABEjAQAJXr/+Hy1dvoEqTvs/tZB4wZj4uqTAaU4Z1wNbd36HLoKn4LH8uDFcJFwPCUBg4HJdNkkSY/iqkiCSQfazCzMwf30O3cefufXxcugU2Lhimw4+07D4Wx06cxnSVTPbjHN6RTDUAVkhzQBYkug+dju+2TNcJZSXmffx4cTB7TDfIrm9vKiEllo0dKyZKf94Nb2ZMp3d3e2sJLbmwhJGR+2P9/KHIpEJSeWuJ7HPAU36l4O4psmyXBEiABEiABEiABEiABEiABEiABEjAaAInTp3D25leC7SxfrthyJ4lk/73nGWb0atdXdSuVBQSiqW/3zzsPXREx3aXBKuNa5U2emxhMe7GzdsQ8T1l8sT68oCksmvnDEbjjiOQOFECzPLrghTJEunPWvcar1nkyfUeurWqjYzpU4elG6OveXEOzFy8EV/u+hYt6pVHpwFTUFqF1xmkYphL8kxvnAPBJZZdtXHPs9jlK8cGzg2jnWjBuOCSC0tzRaq2R9F8H6J/5wYWWndG1fCaA7KAseGr/cidM0tgjghnEAh/Kym4hz9TtkgCJEACJEACJEACJEACJEACJEACJOBAAhLfXEKIxIgeTQvNEsNbQpBUaNhL7Qh/gukjO2nB2bfHWNSpXAztm1Z14ChDNnnj9gMqzM50nTRVEob26VBPx3WX3f4d+09GF9+aKFU4N6bOX4c1W/Zi3xcTkTB+XK9i0GPoTHy5+1vt9wGdG6Jq2YKRYg4EJJa9d/8B8lZogwbVS6Jdkype5dvQBhM0ufCMRRswVSWZlbBT3ja/Q2Pg7hyQ0yJ/X7iMZl38kDRxAv3/q5QugH6dvH+xIiSeFNwjzaODAyUBEiABEiABEiABEiABEiABEiABEgiNQI3mA/TH00Z2ROKE8fX/l92+A8fOVyJ0VL3bvVWDSti84yAmzlmDPWvGexXQPQeOoH2/SeivhDJJIivl6dOnSoBtDREkkyVJiCHdm6qY3m/qv8kJAEmw6k1l3MxVWLFhF2aP7oosb2WIdHNAxNIBo+dj0tB2YYrZf/afS2jedTSWTumLRAnjecVUmL5wgzrdER/VyxUK03jWbN6L7ft+0KGovKG4OgdmLdmEsTNW6pBLXy4dBTk5IydH8n6U1RtwuDUGCu5uYWMlEiABEiABEiABEiABEiABEiABEiABbyQgAnMUlSgxoLTuOR5xYsfUu7uHjF+EAz/8gtfTpcKjx4+xZvYgr0MgiVJ9fP43fhFUS9XppsOLfHfkNwwauwAfZs8MEedFlP7kw3e9nkFkmwOuOFTCMH1/5ATixY2t7wu5T3K9/7YrTTj62rv37kNOxkjJmS2zvjc+r1JMPTNiOXpcrhi/cuNuHW4pIMfB6lmD1EmgG/j9z7/x3tuv6xBNDWuUQnR1ciiyFArukcXTHCcJkAAJkAAJkAAJkAAJkAAJkAAJkIDLBHqPmK0SqV7HTL/Ouu6RX0+h1/BZaFK7DCqWzOdye06rIOEiClRqC4nrnvmNdDrmu4SUkV3+W9Vu1qCLE04bW1jtjWxz4OjxP/HTL3+oEx2f6fBCIZV9h46iRbfROvGwhBIZPH6hXoiRkx9yGsLJZfys1ShfPM8r8xSMmLwUssN9RK/m+OvcRRWKZh36dqzv+JMfYZ0DsuAgIYga1iiJ1g0rY8fXP6BYgVw62XL7PhNx4d9rWojftmz0cwt5Tp4bYbGdgntYKPEaEiABEiABEiABEiABEiABEiABEiCBSEngz7MXUFHFcG9Rr4KKa10iUu1cDXC4JA/98dhJTB7aPjDMyosnAbx5clidA/sO/Yy2SnxMmyqZEiUroWThj43GJQlix05fif3fH9Nx7D9VSXJfLJLToEi1DiqBblYM69lUfyz5Dz4t64uJg9uiSL6cuH7zFhIliOfIRRnx2YDR81Dw0w/QoVk1vYP/xSKhV0rU6oIRvZuj7Gef6o9v37mnFuiuYdTUZYgVMyZKFcmNEoU+MtrfwRkXljkg9YZOWIx1W7/GvrUTECNG9Oea+uHn31Gv7VDMGdsNuXNkcRwDKwZTcLdCj3VJgARIgARIgARIgARIgARIgARIgAS8nsDxk2fQptd4vVvz7UyvYdGkXmES3mU3fOoUSZEiWSJHMxJxVQTEhau2IWGCuDqOfZ3Kn71yTBKeZvf+H7X46vTizhyQHc8Sgufg4V/Rs20dJTz7YM7STepkgF+oO8dNYXXqzHn0USc8YseKqRNgpk+bItC0eSu+xJjpK/Ru9oB8Bwd/+BWNO43EF3MH462M6dRCVW98nOMdNfbPTRmSS3Y89vfHolVfYe7yLWrBrTxqlC/y3C7tpp39cPnqDT3egPLV3u8hC1R1qxRHmlRJMWH2GpRWortTE4iGNgfO/vOvCjfVFX59W+qFhaBFFuTK1O2uFpmSB54Ocgm+wy+m4O5wB9J8EiABEiABEiABEiABEiABEiABEiCBiCEgiQBlB6vEaX5VkdArEoolZfIkaFyrNAp8kj1QmHxVXVM/lx3MPx49iQ/ee1ML768qi9d8pXfALpjQUy9UBLdL+FVtmPa5K3PgyrWbehe4LFi0VCckmn1eViffDS1Mi2njFXt2fn1Y+XERPlOhQto2royHDx+jQOW2OmzMxgXD9OKT3Bc1Ww5ENDU+EaA3bj+AboOn67HGVDufi+TNiV7t6yJBvDgmDjFUmyQJ6MgpS/Upj4FdGuGjD96BLMBUbdoPK2f0x7uZX9f1A3b4y5i7taqFWhU/w68n/4IkYz6wcYojxx4A5sU5ID5v22cC/rlwBatnDXyJnySb7uc3V4WS8dMnOyJboeAe2TzO8ZIACZAACZAACZAACZAACZAACZAACbhNQEItJIz/arF5wuzVamfsl6hYIi8O/XgcZ/6+hNljVJLRnM5OMiqiYlhEU7lOkknKtZJg9uZ/d/Qu4TaNKrvN3pSKYZ0DC1Zuhd+05SoUTweMnbECXVrW1OFZ2vedpETbt3FYLV4UUiFLyqlY4aaXR4/9MU/t9JawISdVMkwJuSIJMSXWe4US+bBj3w+4qEKpbFwwXC0yJdaLTRXU3O/UooZOqjpu5irMG9cdceM4N5moJAEdNWUZxg9qoxMpy78lr0FAWbtlHwaqEw1Lp/RBv1FzcfX6TdSoUESP3emCu4wx6ByoX60EZCHijorh/qKgHpBItnq5wjqJbmQsFNwjo9c5ZhIgARIgARIgARIgARIgARIgARIgAZcJiNBavn5PVC1bEM0/L/dSzOKABiXJarGandCnQz1UK1sIEl5BdsP6+PjoHbFOLjMWbVAJUw9hcPfGyPp2xhCH0t9vnk6guHPVOESPFlUJtEfx5MkTFRP7fScPX9vesMNwHZtcQqUkTxp8uCBZYChUtT1861dA0zplnxuzJBbtMWyGXoRYNXNAYFx8J4CRMDkSKmTq8A7Inzs7VqqdzCK2p1G7mGWswkMEZjndIOFmZCd0QPniy68xYMx8xIgeTcexl13gQT93wvhDs3H1pr1q7Cux74uJ+jIJLyO7vNOnTakTy8riRDsVy18E6XwfZ1Ox4as/F6bH6eOXxYhsWd7Q41y9aY/y/wS9MBEZCwX3yOh1jpkESIAESIAESIAESIAESIAESIAESMAtAvfuP8T0heuxfts3esfyi7GLpdE2vSfgj9N/Y/OiEYEJI7sOmqZ3xEq4DQm/MXbGSrX7t7ojBUeJTd9n5By8+XpaHZtcQosELRL3WRYmApJnBnwmSTRb9RiHYydOI8ubGdBSCbSF8nzglh/srrRu6zc6hnmN8oW1oB5dichBi/CR+PUBCw5BP5PY4EWrddSnHSThppOKLB5JrPbgEqnKOGSXu4xtUNdGqFy6QODQhk9aguXrd2HSkHZIlSIJ5H6QElw4EifxCGqrzG851dFRCekNapTUHz169BjXbtzCdz/9hm5DpuvFuqplCmLx2u1q4eog1s8bitdfS+XUIT9n9+79P6nnwmw9Xgmh1LpRJa8YlzuDoODuDjXWIQESIAESIAESIAESIAESIAESIAESiNQEJIHqoLHzIbvZh3RvgnfeTK95SJznz1sP0TuAC3zybDf3nbtqR2vFNpAwDO2bVtWJNJet24mOzatr0Trvx1l17GsnFRFeZcey7GauVbGojlMfIDrX9h2EJ+pz2dUbUE6fvaBjfOfOmQV92tfD7gM/QXbBOznMzt17DzBl/hdaOO3WqjZKFPpID/eP0/+gQsNeKpRM+2AXFGYt2aSSaa7GLrX7P2niBE5y+yttXaFE9QUque6G+UMDF5v+vnAZJWp10budc73/Dvqqkx8yf4rV7Kx3gydJFP+V7TrlAgkT1Lyrn15Ik/tfkgtL/oJPyvqicN4cGN6zWeBQfHuM1eL72+rZIWJ1xZL5HB1yRwYWEHZm4pw1ekFNhPfIWCi4R0avc8wkQAIkQAIkQAIkQAIkQAIkQAIkQALhQuCHn3/XuzrzfpRVhxiRcBsixr+WJgXGDWytBdVaSmi+ev0/bF0yCrILtmy9HjqkRpQoUbBtz3coVTi343Y6B8CT8BiT5qzFl7u/xbQRnZBR7dbtOGAK2jepgkxqMSGgdOg3SYnsR9TCgg96tKmDSqXyo2P/yYgdKyaG9mgaLr6wq5ELl66qUCnzlI9vYf74HjgiITU274Vf35YvmSS7fwtVaadj2b8YasYu+8O7X9nBH3QBaekXOzBl3hfYvmKMPh0iuQ1y53hHhxn6bst0LcTLwpXMpYzpU4e3ORHeniRM3rLzEI4e/1OHzfnjr39QrVl/LJzYCzmzvRVoj4xXhPlNasFmtIr1L0l25dRM3arFn7NZckBIomJJPuuUIs87+S9ojHun2B4edlJwDw+KbIMESIAESIAESIAESIAESIAESIAESCDSEpDduifVrmYR2PqOmoNty/wwYdZqbNx+QDORJJJThnXQu+DrthmKh0qQWz69n/5MRLZbKsHo8ZNn8e+V68j/SXZkypDGcSz/uXhFxzUPKSnmR6Wao1e7ungzowpDM2wWHqtEqrLzXxKGdlaJNQ8f/V0J1afwkRJi38v8euDuaCeBOHHqnN7NHFx58uSpiuEfBd2HzsA33x4NNtSMk8bqiq0S87+f3xzs3zBFx/MXcX3w+IWIHTMGRvZpgZmLN+qTElHVYowswAzo3FAvSEnZe/CI+nwTpo/s5Nh44AFx75eoZKrvv5spRHTffHcMrXuN16J77UpF9XVyXxVXJwFG9/MNZOIKe15rDwEK7vZwZ68kQAIkQAIkQAIkQAIkQAIkQAIkQAJeRmC8EtlFUPRtUFGPTHazy47mjK+l1mKrJMuUMBISx/2tjOn0NRKWpJPaEX7k1z+QJ1dWlWj0MMoU/QSDuzX2KjpFqnVAPRVSp0H1Z7GtJQb6iMlLVNiZflixYRfmLtuiwo28jV9//0snmZwzthsSxo/rFQwCkmU2rFkKklhy0tB2KJwnh1eMLSyDkDAjn1XvqJLDplex3RsHJpqVhaqRiseClVu1oCwheTZtV+F5VKxzOS2RP3c2tRB1Rs2P3ejXsX5YujL2muZdR+Pob39iuhqXnPyIESMa9qrnQaeBU+GvTgRIElU58bB+236c/fuSDrUkpWlnP1y+ekM/M2TnvOR+aN2wEuLFjW3sWGkYQMGds4AESIAESIAESIAESIAESIAESIAESIAEPEwgIFFm/tzZnxPTW3QbrUNrSFiVCiXy4k8V67yiiv89d2x3fJg9s4etirjm16gQK/1Hz8OoPi1RrEAuvQAhgutCFe97xOSlGNO/lRZcZQGibpshOrSIhGQJ2BkecZZ6pifZ5S1hZ+7df4B1c5+NLzIVWXzqPGAqDh7+FalV0tSxA1ojszoNICcfXgyvIyGKShT+SC2+nFGhWQ5q8d3pRRYdZLFl2bodaid/VOxePU7vXC9dJDfqq0UoCS0lO/1l/kueBxHfJZRMow4j9GmYrG9nhCzoLVq9DXvWjHdksmWn+9AV+ym4u0KL15IACZAACZAACZDVlJqxAAAPX0lEQVQACZAACZAACZAACZCAGwREOF6pdnKXVPHaEyZ4tnP7xs3byFuhNZrXLacTkKZIlhhD1M52SS7ar1MDlP3sUzd6MreK7GoX0V1KcSW6j+jdXO98/jD728/FsD/7z78q7Mg1JFHx7ys16o3iBT/SImS61MnNHVwYLJMdytMWrMfspZuwQ8UzT540URhqedclkt/guDrFUCRfTsjO/zqtBusFCAk1FLSI8FywclvUqFBEhxzypiKx22PFjIlsRRrqeR9wn/upOO7LVTLlPWsmqM9jKEG+E95Xsdtl9/9FdT8UrdYRA7s0QpUyBbwJh1eOhYK7V7qVgyIBEiABEiABEiABEiABEiABEiABEjCdgAjLpep0xaFNU3Xs6sVrvsJYFctaYrzLDtikiRMqgXYdJDHrJx++qxONJkuSMHBYsjNewm44qchO/5+O/YHEieLrWPU5ijdFbxXbPTgRUTj8qETZpWt3YOc3hzFpSDsU+OT9wOFKjPz4ceOg4Kf/+5sTWEjs+pBi3TvB/vCyUfIXFKzcDkO6N0HFkvmeazao+Hzzv9sYNG6BPh1QoUQ+fRJEEg4HlJu37jgy/NCMRRv0rvXyxfPijQypdRz7gJMui9ds1yGXdq4cq+/51j3Hq9Mv57Fp4XBH5jcIrznjlHYouDvFU7STBEiABEiABEiABEiABEiABEiABEjAqwg8evQY+Sq2QaOapfUudyk3/7uDr787qmM6SzgJCTHjW78C9n9/TO0IPqVinvfViTlPnv5bhZ7pjQUTejo69MznrYfgP5U0ds3sgYimQm0EFAnB8te5C2qh4T3kyPomZi3ZhLnLt2D/+snPOCmRtVCV9pqNhN9wqujqVRPajcFMVQtKU+evU36siMxvpMOHKo7/nTv3UEyFWwkQnxt3GonzKnmo7HYXkTrLmxkwTSVRlXwJf6hkxRVUCKbFk3vjA7Ub3GlFwsZ89+NvmL/yS6ROmQzr5z27H2QhokXd8vq5cPjoSR1madGkXupeeMtpQ4yU9lJwj5Ru56BJgARIgARIgARIgARIgARIgARIgARMIPDdT7+hmUqo+MF7mVCuWB68m/l1vPNmegydsBhrt+zFyhkD8PprqbSpvUfM1jGeJbb57v0/Iou6VuJhO7n8feGyDisi4ml+tXu9fPE8ege87HCWxKKSTNbHxwfZ382Eb5U4KacBpPTzm4udKsHszlXj8OjRIy1QSkLOkoU/djKOSGn73oNHMH/FVtxRoVYWT+qNVj3H4vyla1p8liIhluQkw0y/zjoMU7n6PfSueDntcPX6fzjwwy8opUI1RY3q41h+cloledKE+t4foMIubVUx3SW0TDQ1ptKfd1Mhd9Jh4uC2jh1fZDOcgntk8zjHSwIkQAIkQAIkQAIkQAIkQAIkQAIkYBSBS5evY96KL7HnwE/o6lsLhfJ8gNxlWurQGT3bfh5oq4QikfAae5RAOWziYhV2ZjySqNAsTi8S23zLzkNKXD+FLi1roHnXMcj6TkZ0a1VLD01iv/ccNlMn12xRrzxO/fUPyjfopQVIiQU+fNIStTixD3vXTkDMGNGdjiNS2//bH2dRpUlffZIj0+tpVailGDhx6hyqN++P0kU/wTCVXPjM35f0IlRAUtF9X0z0ivtAHC/JVYtUbY/+nRqiaP6cWLVxz7PFJRVaJmXyxJF6bjhp8BTcneQt2koCJEACJEACJEACJEACJEACJEACJBApCEhs8x6ta6N6+cLPjfe2CreRv1JbHUZFwqlIHOxz5//Fe2q3ewwvEZtlJ78sPswa3VWHzxk6YREkXvsetcAQPXo0vePZR8XwXjKlDwLi4I/s0wJllCDL4nwCIrCL32UeZM/yhr4Hjp04jdq+g9SCTE3UrVockoQ4aFJR54/6fyMQ0V1OfEhy1bwV2qBB9ZJo16SKNw3R68dCwd3rXcwBkgAJkAAJkAAJkAAJkAAJkAAJkAAJOI2AiI1bd3+rkiSOQIpkiQLNHzxuITbvPKjFZ9kNLOKzCO3+KhlpjzZ1UKti0cBrJd51IRWWRWJjO6lIbPsug6bpRKlS/P2fYEz/VihR6CMdRqZN7wlYP3+oTrrauONIXL95S8WAH+SkIdLWMBBYvWkv+o6ao0IFNUI5lVhUchokT5pIzQVflWD4f0lFEyWMh7nLtuhTEm+p0CufVymGbEqod3qRcEsDRs/HpKHteHLDYc6k4O4wh9FcEiABEiABEiABEiABEiABEiABEiAB7ycgYVZ6DJ2pRfe0qZKhX6cGSJMyKcrW64FxA1ujWIFcOs77vkNHsHnRCBw6fFzFgvcL3AH8WAnwdXwHo0qZAi/tkncSPQm1s0UlUF0+vV9guI2i+T5E/84NcOD7X9Ck8yismjkAWd7K4KRh0dYwEtilchUMU/P8H5U0VWK0zxvXXcczD5pUtG2fCeo+OIqOzarp0x4ixs8Z2w25c2QJYy+8jATClwAF9/DlydZIgARIgARIgARIgARIgARIgARIgARIINwIXLh0Fb/+fkbFKs+Bem2H4f6DhyqRan/d/uGjv6Num6EICKeyY99hPHn6RIvxo6etQOXS+ZExfepws8WuhmTxIFrUqJAd+1MXrFex68chXpzYKFazEz56/x2M6N3cLtPYbwQRuHz1BmLGjIEE8eI8l1T0oEqY2qLbGB3zPWBXe6cBU3Sopfnje0SQdeyGBJ4nQMGdM4IESIAESIAESIAESIAESIAESIAESIAEDCcgcZ079p+sE4dKotRjv53WyVUXrNyKEZOXYnQ/X5Qs/LEexe79P6FVz3FYN3eI2g2c1vCRhd286Qs3ILEae/VyhbBw1TaMmroMu1aNQ9LECcLeCK90NIEXk4q27zsJf569gPXzhgSOS06GnDh1VocZOvvPJZWEdzSWTukLCT3DQgIRQYCCe0RQZh8kQAIkQAIkQAIkQAIkQAIkQAIkQAIkEE4ElqzdgbEzVmDtnMFIlzo5RirB/YutX2P/+smQ3eCFq7RHwU8/wOBujfH06VP89MsfiBc3to5v7Q1FRNePS7fQSWMleSxL5CIQkFRURt20s5+K654QQ3s01RAk0Wjhqh1QtWxBHV6pfrth+P7ICb1I9VqaFDrPgTfEd49cHnfeaCm4O89ntJgESIAESIAESIAESIAESIAESIAESCASE3jy5Cl6DZ+FL1V895oViqj41T/rpIqrZw3ErCWbMGH2auxbO1HFPH+sQs4M+f/411GRWO3wnTeuB9KnTeF4eqfOnFfjSIno0aI6fiwcgPsEVmzYrUPMLJnSRy0opcXnrYfg9LmL+GqZH46fPKvCzYzGwok9leCeAPOWf4lNOw5gy+KRSJYkofudsiYJvIIABXdOERIgARIgARIgARIgARIgARIgARIgARJwIAHZub55x0Hc/O8OurWurUdQqEo7dGpRA/WrlUDlxn10zHcJpxFfxb5u2GE4rt+8/Vz4DQcOmyaTwHMExs1chTnLNsPf/4neyT5paHtkfTsjilTrgDy5smJYz2e73yURcc7iTfXJkMxveMdpD04FMwlQcDfTL7SKBEiABEiABEiABEiABEiABEiABEiABFwi0G3wdHx35De1u3c0jvz6h06oKnGs3870mm7nu59+Q4P2w/HL7nn639dv3kKiBPEQJUoUl/rhxSRgGgER2y9evobUKZLCxycK5q34EmOmr8CeNePVyY742lwJxTR80mIc2T6bc940B3qZPRTcvcyhHA4JkAAJkAAJkAAJkAAJkAAJkAAJkEDkJHDw8K+IET06cmZ7S4fPmLpgHQ5tmhoIY9KctZixeAN+3jFH/61iw97I8lYGdG1VM1CUjJzkOGpvIvDo0WN8XKYl2qoEww1rltJDk9jueSu0QcMaJdG2cRVvGi7HYiABCu4GOoUmkQAJkAAJkAAJkAAJkAAJkAAJkAAJkIAVAptUqJkeQ2dgx4oxKqlkIvx59gKqNOmLyqXyo0+Heti4/QBkR7zEsr5y7SYyvZ5WhZ7pg7hxYlnplnVJwAgCEuM/Q7qUiBb1WYz/oRMWYd3Wb1RugwmIofIdsJCAJwlQcPckXbZNAiRAAiRAAiRAAiRAAiRAAiRAAiRAAjYQeOzvj6pN+uH2nbsoVeQTLFu3Q8dx37hgOKJG9UGBSm1RuXQBdGtVC//dvosG7YYhXZrkmDCorQ3WsksS8ByBs//8i1J1usKvb0t1L+T2XEdsmQT+nwAFd04FEiABEiABEiABEiABEiABEiABEiABEvBCAhJaQ3b17v/+F7z5eho0qFEKcWLHhCSZXLzmKx3fOk7sZzvae4+YrcJuPMCY/r5eSIJDiswE5D6QEx8VS+aLzBg49ggkQME9AmGzKxIgARIgARIgARIgARIgARIgARIgARKwk4AklixarSMGdW2kd7hLuXbjFgpVaYeBXRpRlLTTOeybBEjAKwhQcPcKN3IQJEACJEACJEACJEACJEACJEACJEACJPBqAivW78KCVduwYf5QRIkSRVeQWO7fHfkNXy0brcPNsJAACZAACbhPgIK7++xYkwRIgARIgARIgARIgARIgARIgARIgAQcR0Diuwckkzx+8gyqNu2HWX5d8Gmu9xw3FhpMAiRAAqYRoOBumkdoDwmQAAmQAAmQAAmQAAmQAAmQAAmQAAlEEAHfHmPx4MEjzB7TNYJ6ZDckQAIk4N0EKLh7t385OhIgARIgARIgARIgARIgARIgARIgARIIkcC9+w9x7/4DJEkUn5RIgARIgATCgQAF93CAyCZIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgII75wAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJhAMBCu7hAJFNkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAFd84BEiABEiABEiABEiABEiABEiCB/2vHDmkAAAAYhvl3PRODNXDQHI0AAQIECBAgQIDAICC4D4gmCBAgQIAAAQIECBAgQIAAAQIECBAgQICA4O4DBAgQIECAAAECBAgQIECAAAECBAgQIEBgEBDcB0QTBAgQIECAAAECBAgQIECAAAECBAgQIEBAcPcBAgQIECBAgAABAgQIECBAgAABAgQIECAwCAjuA6IJAgQIECBAgAABAgQIECBAgAABAgQIECAguPsAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYBAT3AdEEAQIECBAgQIAAAQIECBAgQIAAAQIECBAIVkkaOvtjTY0AAAAASUVORK5CYII=",
+ "text/html": [
+ " "
]
- ],
- "sequential": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "sequentialminus": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ]
- },
- "colorway": [
- "#636efa",
- "#EF553B",
- "#00cc96",
- "#ab63fa",
- "#FFA15A",
- "#19d3f3",
- "#FF6692",
- "#B6E880",
- "#FF97FF",
- "#FECB52"
- ],
- "font": {
- "color": "#2a3f5f"
- },
- "geo": {
- "bgcolor": "white",
- "lakecolor": "white",
- "landcolor": "#E5ECF6",
- "showlakes": true,
- "showland": true,
- "subunitcolor": "white"
- },
- "hoverlabel": {
- "align": "left"
- },
- "hovermode": "closest",
- "mapbox": {
- "style": "light"
- },
- "paper_bgcolor": "white",
- "plot_bgcolor": "#E5ECF6",
- "polar": {
- "angularaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "bgcolor": "#E5ECF6",
- "radialaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- }
- },
- "scene": {
- "xaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- },
- "yaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- },
- "zaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- }
- },
- "shapedefaults": {
- "line": {
- "color": "#2a3f5f"
- }
- },
- "ternary": {
- "aaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "baxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "bgcolor": "#E5ECF6",
- "caxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- }
- },
- "title": {
- "x": 0.05
},
- "xaxis": {
- "automargin": true,
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": "",
- "title": {
- "standoff": 15
- },
- "zerolinecolor": "white",
- "zerolinewidth": 2
- },
- "yaxis": {
- "automargin": true,
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": "",
- "title": {
- "standoff": 15
- },
- "zerolinecolor": "white",
- "zerolinewidth": 2
- }
- }
- },
- "title": {
- "text": "F1 Metrics for single-label (averaged and per label)"
- },
- "xaxis": {
- "anchor": "y",
- "autorange": true,
- "domain": [
- 0,
- 0.2888888888888889
- ],
- "range": [
- -0.5,
- 2.5
- ],
- "type": "category"
- },
- "xaxis2": {
- "anchor": "y2",
- "autorange": true,
- "domain": [
- 0.35555555555555557,
- 0.6444444444444445
- ],
- "range": [
- -0.5,
- 2.5
- ],
- "type": "category"
- },
- "xaxis3": {
- "anchor": "y3",
- "autorange": true,
- "domain": [
- 0.7111111111111111,
- 1
- ],
- "range": [
- -0.5,
- 5.5
- ],
- "type": "category"
- },
- "yaxis": {
- "anchor": "x",
- "autorange": true,
- "domain": [
- 0,
- 1
- ],
- "range": [
- 0,
- 0.5263157894736842
- ],
- "type": "linear"
- },
- "yaxis2": {
- "anchor": "x2",
- "autorange": true,
- "domain": [
- 0,
- 1
- ],
- "range": [
- 0,
- 0.7894736842105263
- ],
- "type": "linear"
- },
- "yaxis3": {
- "anchor": "x3",
- "autorange": true,
- "domain": [
- 0,
- 1
- ],
- "range": [
- 0,
- 1.0526315789473684
- ],
- "type": "linear"
+ "metadata": {},
+ "output_type": "display_data"
}
- }
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAFoCAYAAABNITkUAAAgAElEQVR4XuydB5gUxbaADzkLIiiIopj1Yg6YMGEAIwYUAyqiSFAUBVEkoyBBRZAkQcSEIhhIoqIIJtSLARQVFRUkB1GSwMLrU7yeu7ts6JmanqmZ+et977v3sl1Vp//TvbPzd/WpIju9JjQIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASsCBRBuFvxozMEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAwBBAuHMhQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4cw1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOJAAOEeB4gMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAuHMNQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4cw1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOJAAOEeB4gMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAuHMNQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4cw1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOJAAOEeB4gMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAuHMNQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4cw1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOJAAOEeB4gMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAuHMNQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4cw1AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABOJAAOEeB4gMAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBAuHMNQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiQADhHgeIDAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQLhzDUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE4kAA4R4HiAwBAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEC4J+Aa2Llzp2zbtl1KlCguRYoUScCM4U6xectW2bptm5QrW1qKFysW7mTZRp8951uZ89UC2bBhsxxYs5rcem39hM2d30QbNm6WrB07pGKFcqHG8vIbM2TN2r/lrtuujOs8vy1eLhOnzpJzTj9OTjj6sKjGnvXZN/LlNz/KzY0ukiqVK0bVN7+DYznPv9ZvkNHjpkrRokWl9a0NzX1GC0bgp1+XyOR3P5ELzzlZah9eK1inBBz13PjpsnXrNrnjxksTMJv9FDb30a9/LJM3ps2Wc884Xo6vfah9MN4Is+fMky++XiA3XX2h7F2lkvzy+1J58+2PZM+KFaRp4wZxmYNBIAABCEAAAhCAAAQgAAEIQAACEMibAMI9yitj1MtT5Ynhr+bb6+zTjpUhvdvm+Pnk9z6VDo8Ml/5dWkqD8+oEnvGYerdJVtYOOfrIg2Tc0C679cseyzP92skZJ9cOPLYe+O6sL+XDT7+RFjdfLvtVrxq4b6uHnjT9nujWWi7yRF0iWp/BL8tYT8L5rXy5MjJnytBETF3gHCc3uFM2bf5XPp08RPYoXza0eBrc+ID88edK+W7mmLjO8f5Hc+XuTgOlddMrpdUtV0Q1due+o42sf2V417jJ2ljO84Gew2TKjM/kwbtukCbXXBjVOWT6wW94Evbhx0ZKxzY3yo1XXeAMjtMvby36YO+rd0Y4E1NBgdjcR9Nnfi73dRsi995xTdweMPR8cqyMe/N9eXFwJznuP4eYz5HmD/SXz/77vTzetZXUP/eUlOBKkBCAAAQgAAEIQAACEIAABCAAgVQkgHCPMmsjXpwsA0a8Zlb0Vt9nr916n3XqsUZc7tixU2Z89F9ZsPB3GfnSFCM8YhXuOsn4Z7rJUYcdGJlPxz+z4V2y/u+N5t+G9blf6tY5Oqqz6TXwBXlx4nsydmBHOfGY4Kub+w0ZJ+9/PFe6tWsqdY4/Mqo5Yzl40+YtcnKDFlKyZAkZM+BBOcZ7ALF67XqpulelWIaLa58bWvWUdev/kQkje0jZMqXjOnb2wWIR0UGCsRGFLgj3b77/RTQHF51zivcAqFWQU+aYbAQQ7vG5HGzuo0QIdz1LfWPgnGvuNZ9FH7w2wPt9VSo+J88oEIAABCAAAQhAAAIQgAAEIAABCOQggHCP8oLwhXthK0J11bOufs7ebIR77pXz096fI+16/G+FdyKFe5TIrA//8ZfFclWzzpLX2wPWg6fIAAj33ROlD50uadJB/ly+Wma8+oQTD2BS5HKKhIlwj0/GUkG465lOnTFH2vccat4E0TdCaBCAAAQgAAEIQAACEIAABCAAAQjEnwDCPUqmQYW71m1XUazthQnvyutejd5YhHuNalWk4h7lZd6CX+Wdcf1F/7e2y299WBYvXSn1zjxBVL7nFu666rrnk8/LZ3O/M6vgdUX+NZee7a2+byjFihWVZ8dNk2HPvyVag9yfQ8dtel0DubheHVMCZ/mqtTLqiQfk5ddnyEefz5N/NmySx70yMu97K/ffePtj6dPpTjmoZvUIwZ8X/Sla+uW7nxaZcWvW2Mcb61S5xavxrfXev/7uZ3nymfHy/U+/yb/eakuN6fSTahdY0kbP+/7uQ4xU1TIyOqa2Tvc2kWOPOtgr57JFeg180Stx87Ws/esfqb53ZWlYv6608mp5Fy26q16+Pvy45Z7ecspxR0izGy6RMa9Mk6/m/2zqrj/d6558rwA9/yeHj5dPvpwv6//ZaObX1fXNrr9ETvbG0vZQrxEmDy88/bD533Pn/SS9B73k1U6+wCsBs8LkfcWqdeZcVXDlLim0bOVa6db/Wfn86x/MCtSaNfaWQw/aT5atWCsDH2ljzkdbfsJdS6kMf36S/LZ4mZfXYnL4wftLzwduk0Nr7Rfoys5LFH7+1Q/Sb+g4E7/mUa+XA/evLs1vulQuPf+0yLj+CnctLTTpnU+8+vrfm7wec+TB0s8rn+TH7nf44ec/5JEBz3vXx2+Rc73vzmvlgrNOiowZzYMFXx7qdd3de9sie9M3IPQa/unXxSZ3uqpXc3Dd5eeash1a513fPunS71k55fgjpH3Lxjn663k3bdtHau1fTfp2bmF+tj0rS54e/bqpea550+vhjJOPlq733eLdo7tq+Pv5v82rk13Luzde8cp6LPDOWx8WNbr0nEJjyh7EixPfNfepzqVvd5x7+vHy+5LlZqw2za6OHFrYve4fqPtI9B3ysim/o78TKleq4NX33lM0L4U9QNQxNB59I2bVmr/MPaXnr3XftRSKlr3ym5Z+mvTup/LQ3Tea85/p3ZvKU69J/Z2h12j2NnfeQnn0qedNHHqtHXvUIfLN9z+b67mwkjI+7+sbnicLvd8/U71z09zrfdSl7S1y2kn/yTFXEFZ+/I93bSn6O015LVm6yvxOUfZ5NZv7yF/hrtel/j6bPvOLyDnk9RZRkPsod0mZ7DGffdU9ZvyP33xaKlUsH+j3BAdBAAIQgAAEIAABCEAAAhCAAAQgEJwAwj04K3NkUOGefdghY96Qwd7/xyrcO917szRv31+uuvgsI1NVXN/Y+hEjqlXmqtTNLtxXrv7LrPxVKaYi8MhDDvDE+/cmpCsuOkN6PXSHDBo90dtocpoRn3pM6VIlzc/v8mp56zznX3ufEX0qTfU//fb66EeMRMteH1h/phtotnzwSXOYisZSniBcuGiJEZ3PPvmg7FGhrFx9+6469CreKnj1zn/4+XcT48P3NJEbrqyXZyb+++1PXo3xp4wgVOm45/8Lor6dWhjhftEN7Q2DfaruacZVNir3tLyOMtGmwvX0y1qbEgrbvXj0nLXpePkJPRVfF13fPiLxD/DEq8o3FVXZV9rnFsS+PPNPRufUUjPaT9tbYx6Vgw+sYf77Uu8hQn2vNrsvg/Vhggpijd8c+1wvOfiAfc1/z0tE614CWsdfm254+ufyVYaFtne9hzP7/v/DmTzB/v8/5iUKVTjqgxMV1BqTslDJp03l8yXeQxRtvnD3x9ccrPM2MFW+KmNnvz7QMNaW+/ooU7qUefCSe8xohHvbrk/LOx9+KS8N6WyuhexNc3VF04dNzg+qua8R7N8u+MWwvrJBXXmkQzPZtj1LTrm4hYlX9wPQmP32kveQSSVws+svFn0ooA/Qrr2zu4lZpfBpJ/4n8pBEz/vdcY+bf/fzr//m50LH1AdLHVpfX2hM/vzdn3hOXn3rAzOm3r/btm+PPMDLfm0Hudd1TI1f7z99CKg5Ocy7V9asWx+5t4MI9zsfeNw8eFOZraJ+5ep1Zl8BjXHy2MfMv+d1Xeh1pNeQL+k/8kRvieK7NlvWvSB0Twht/oO/H3/5w+SpoPvT55T7fvMffPiltrLvLxCUlX9dazz6oM9v7Vs1znejZpv7KPc56HWoTP1z0HJVRxxSM6r7qCDhriXR9HOsz8N3yqUX/O8BWo4biP8BAQhAAAIQgAAEIAABCEAAAhCAQMwEEO5RovOFu4o8lcbZW+0jasnAnm12G9FWuE97sW9EgOuqxAd7DfdWXX/nCc1BZiVybuF+b5enzYaoHdvcZER2kSJFZOOmLXJB4/uNxJkx/gmpVrWytzI8/xruvnDXVbAdWt8gJx57uLeJ4b9GivX1ZGx24e7XBtaxhz7WVrSOvTads78X39XeCuQJU2YZgZhdWqkEfHP6x7KPJ+9yr0TNDlGl+81tenmbOp5vzslv/qaxF559krcRYGuzol3FnorRRX8sM6vzTz3hqIhw134qZlt6q/yPPLSmx2JDRH7nTtqM2XOlTeeBRpSO6N8u8mNdjavy2X9AkJ9wV24ak66e1uaz9gWu/tsd7fqb1fN3Nrksx4plfXChgrog4a7nd+nND5kHDeOf6S577bmHmef5196Rx55+yaxE19XEhbW8RKE+CChStGiOFep63k3uflRO8q6D5556yAzri0kVwI90uN0Iel1F3cTLlb6ZoG8hXN+wnhHbZ1/Vxlx72eWhL8WV1ew3BpkxoxHudS5p6e2VsEO+mDZ8t9PU6+D3JSu8PB8Q+dlf3sOAcxu19WRulnw7Y7T5d19s537oo2+Q/PLbn/KeV6pGHzqNnzzTexNhjOi19pgnKvWBkkphfRik0vixjs3lsgtPjwh3HVtX3uvDK71ntvy71awoDxKTXl8qx1UeTxjRI7JXxK9ezi/zcp5duAe913VzW82Xri7XtzH8/QZ0xbpem0GEu8p6PZfsDyZ0xf/QsW/m2PDTvy70XtM3HbSPXgON7uhqHsKNfrKD2ftB3xg49+p7zUMt/b1Zr+4JJif672dcfpds9a6lwla4+7JaczSg592RzXsfH/aq90Bxao6HY0FZ+fGr9NY3Cc7z3iIq4z2Q1AcA/n2W+4KzuY/yOwdfjOubDfomTjT3UUHC/adfl8iVt3UK/DuisN8h/BwCEIAABCAAAQhAAAIQgAAEIACBnAQQ7lFeEb5wVxmj0i1701IaKnlzt3gId5XqnfqMMiVJtISMX0ZD/y27cNe61kef19RIsVneCuOinmz3m4q1VyfNlCG92xoRFUS4q/DyVyn74+SWOXO+WiC3eeU3Cqqx7s+lZTVU7uUes6A05CfcGzbtZATe++OfNOLZbzM/+VpadxwQWcnsr3DXTWd189kgzV95q6vmNaf5ibb8hLuW2dASEX5TAd24ZY/I5p7Z8/TppCGR8jd6vNbm1xwXJNyfGjlBnnlhkpHa11xydmSev72yP2dd2UYO2G8fmfpCH2/F/BJ5zZPFuW578+BDVxkXVHtaV+Xriu7l3qp5XQ2tclWl+ocTnzLD5bdpqn89qEBVkfrlNz+akj4qLp/omnNj00uaPGhWEX/59jNSpnTJqIT7f8651QjkiaN65ptSFe/zf/hNlq5YbUqh6Op9Fbwq+FWAq1RXua5vZUwe29uM4z/MUGGsq+e1NWrezbDQnNTcd9dKbm3vf/yV3NdtcORhUPbyIHoN5NUKi0nfPhk29i1TquZarwSO33TF/HneAwNfuEdzrze5u5cpd+M/GPDHjKWG+2+Ll5v7Tle4L1j4h/n94785U9B1oaWPBo6aID3a3yZXX3KWeSij90T2By5+XKdf3tp7wLc1sHDPfb9p3zqXtDC/o/WBTDSs/OtaN2j2S0fle4H518FHc72HLwOltfeGkG6anb0Vdh/lt2mqnsNJ9Zub3+X6BkY091FBwl3LPp1w4R3mrZjnB3Us7NT4OQQgAAEIQAACEIAABCAAAQhAAAJREkC4RwksGSVldIW7rm48/bJWpiyDNr+ee27hriUeVAIX1PyVx4UJ95WeoPRXAmcfL7fM8ctvaOkNXcGdV5v/4yK5zlt5rk0fVujDibp1jvE277sgsto2v5jzE+66Ka2WiMm9CtYXk74w9YV79tXZhaU9N28V7ycfd7jc6tW49+vo6xhBhbufF3+1qv+/dQV+7oc0QYS7rr7XVfj5NX0DQ0Wj1p9+oOew3Q77Ytowwz0v4a5C+p7Og4ygzd2CCHftX7fh3aYMhq5o1zcbdCV5QW3ai31M+ZqgK9z1wcJpl7YyEn+QV+s+d9NV0r292v76JkZeTR8a6Llo81ezT/KEu+5JoOV0VMw/0a2VeUCiTVfT+6V+8hrPz2t+8lT7BI3Jz232twG0f27hHs29rgJb3zDwHzT45xCNcNd7uPVDAyLlkbJz0NX9KvO15fcgxr8O/N8//kNEv8RP9vFshbuO5dcqn/f+s7Jk2arAvxfzi7+g69fmPiromsl+DvrgLOh9VJBw1/M43hPu+laAPpSjQQACEIAABCAAAQhAAAIQgAAEIBBfAgj3KHkmS7hrmP4KUS3ZoqVbtOUW7n45CpUpN3ublebVzji5timlEi/hPvKlKWYzVC33omVf8msqCLUczaw535hyHNp0pfvL3ipiv0ZxXn3zE+7H1LstsoI1ez9f+Por2mMR7jqe9us/9BWvTvgXOWSrbtCpbxhoCyrctUzLBY3bmY0vtTyEv7I6r1X3QYR7s/v6mrr8t15bP8fqfp9DubJlzCpilay//P5nLqxF5Pjah5hSQ3mJwgu9OHXVuT6w0GvoEO9aqbpXJTnnmntlD6+MUmEr3LV0yxlX3CX+ufmlf3Rltpboyatp6RVdyRtUuPs59VfR5x6z++NjzNscKtVbe5tdHnX4gaaMkm6kqtyyC3e/XMyNV11gNrY9zXuwpeVM9KFEcW/jTm16rek1q3XY82p6P+l9VZA8DRpTiw6Py+w58yT3Cuvcwj2ae13jz2sT0qDC3exd4G22qU0FuW50q28F6CakN7TqacrpFCbcX5v8oXT1Ngj2hfuYV942JbGUeZNrLsyBNZ7Cff4Hz5ra9VqmJ8jvxXgJ96D3URDhruege27ovg1B7iOEe74fQ/wAAhCAAAQgAAEIQAACEIAABCAQOgGEe5SIkyncdYWtbr56jSdS/Y03cwt3XQGvK791A0NdGV9Q84W7X1M5+7Fawz3oCndf2mr5Cy2DEaRpSYqnRkyQDz75KlIeJ79++Ql3X87qSm5d0e233OVbYhXu2ePRciTjPYGr/FXaaW1vbbEKdz9Putr/q3dGmlX/fgsi3P3c6epuXeUda8st3PU8z/Hqamc/R39sXRUbRLj7/P068n6Jn8ZXnCed295cYKhBhbsOoiVl/FX0uQfVFfb64OWjNwd5G+1WiPzY3/gzu3DXXJx6aUvz8OZxr+SN1tDPvV/AxTd1MPXXP586TMqVLZ3vORQkT4PGpJu16lsjd912pbS8+X/lSXIL92judX9PhrleiajspbCCCnfda6Fj7xGiJaG6tbs1cv5+Hf5YhLvP6hbvoc4DuR5k2Ap3LZuivwc195rraFjFQ7hHcx/ld83oGxFa+qVihXLmzYRo7qOChLvus3DcBbdTUibWX5r0gwAEIAABCEAAAhCAAAQgAAEIFEIA4R7lJZJM4Z5XqLmFux7jS0vdNFOlZ/Y2e863cthB+5tV0VonWutFZ1+x7R8bjXBfufovOddb/azSWOup+6U6dCytO1zNE9Rff/eznHLckbJ3lUqRcL6av1BuuutROfrIg2Tc0C75ZiI/4e6fe+76zW27Pu2tSv9Sunhy9zpP8sYi3DVuFZMam990c9iTPImnK52/mznG/HOswl37+hLXr9WtdaZneg8gHvLEpj5cKaiGuy/KtbyNlkLJLlH1fD/77/deOZSTC726cwv3BQt/l2u8zS1zP7DxV1MHKSnT6qEnzUaijz54uzSsf6YpQaKro/X6mDz2MTO231QqvuXJXF3hnhfPgk5Ay7xo0/rWuZu/Il03Ga5Usbz5sQr4a5t3lWUr1+ZY4a4/05Xvk9/71Dy4UTnrl7jxx/UFZvZa5f7PdDPTv7yV3loTuyDhHjQmX6zqQ4/XvE1TNf416/6WPt5muFoiKPumqUHvda0vrrnOvjmsXse64lxLuxS2aar/FkvuhyYvvzFDHhnwfEwr3P/4c4V3/3Qwm8POePVJU8Nfm779cWWzznmuyM+d5/x4+/tmZC9XE5RVPIR7NPdRfufgl+q6pN6p0rdzi6juo4KE+y+/L5XLb+ko/riF/pLgAAhAAAIQgAAEIAABCEAAAhCAAASiIoBwjwqXSFDhriJRpY+2jz+fL1r/WEWZltnQDTi1fEVhTQWdCtWCVqrnJdznzlsoTe5+1AyvJUxOPOYwTzKu8UppLDAy68XBneS4/xwin375ndzerp8p69Lk6gtky7/bzLEqaqMR7jqPX/daheX1DeuZlaUzP/3aCPdnn3xQho59Qz7/6gez6auWM1n/zyaZOOVDIz8H97pXzjn9uHxx5CfcdRVpPW8lvopDXXl75KE15cPPvjGyVzdi/GDCAFMSJBbh7gvGU44/Qk478T9SqlRJeW/Wf01d8+yrn22Eu5YN0fIh2jQHWd4145fa0X8rSLjrz7WUxzff/2KEpW6cWsEr9/KttxHlhx732ofXimz4WdB1llu460OFOl5tdP3P42sfav7/+4W/GYGvLS/hrgL9Yk8KlvfK2Lw760sTk8rid8Y9HtkMdujYN82mqyrdr/bk+gH7VfM2dF1srhEte5PfA4yCYvdrnb82oruX+wNyHKqbtOq1p/fP+XVPNBu/vjf7ywjf7CvctaO/Kl//e16r5rVmvD40UC66UeuFZ58suoparwedx98ssyDhHk1MV3nCWcugaPMfAvgnmF24B73Xs++hoPeg5krfLtGHIdoKE+7Z+2sZn/2qVZVPvN8f+qaKtlhWuGs/fzNXvV7OO/NEs2HtJ1/Oj9wTufdnyH09+Lz1/rnQK3NTfZ+9TC61bJBeax+8NiCy4XFQVvEQ7tHcR/45aEmlKy46U/arXkW++/E38wBIm75No3y0Bb2PChLu/sMI/4FYQfcYP4MABCAAAQhAAAIQgAAEIAABCEAgegII9yiZBa1XvnnLVjmp/q5NBHM3lcFaIqCwFo1wf6ZfO1ND2m8qAh9+bKRo3fTsTTfp7O1tbuivNB8w4jXRVar+hpD+xqcFCXdd0ap9dFW6vwJcHzDow4ihz72ZQxprHfDHu7WWDz7+Sp4a+VqOWugqxFo0uVxaeTW2C2p6LirmtM6z1nvO3vLayFGF6eDe95qa3dr8DTaj2TRVJX+nPrvz0/ItfTu1iKzGzS3cVTjf2+Vpyb3qftmKNXL+dfdL7prj+hBi+AtviZbmUDl8yfmnmgcjKsKzb3CZV6kVXYk9cNQEr/zIezmYq4DXuuVBHur4wv3u266SFjdfbnh9/MV8uevhp4xc9tsNV9aTV7zNT/0SHfrv3fqPEa1/rtezrh73m/If1uc+U/c9e9Ma3n0GvxTZ+Fd/pteAvoXR66E7zKHRlJSZ9M4n8mCvZySvUjXKWx866QMdv+m1v8oTzPrQadbrAyMi1v+5X3YlPxGpY3XpOzoihP1+Wt6p0z1NRB/O5Jd/PTaamFTm674IH30+zzyI0Qd1+hZA8/b9PSl7RoSXjhv0Xtea9lpH3m+aN32YpKvmCxPu2ueZFyZ59/CESH99EKAryF+c+J5cfuEZ3u+VXTn0r4vxz3QzcfttwpRZ0qXfaFN2SstPadOV+7ofgS/u9d90TJXQeW2InOOC8v5HdlmdfVNbfQj09KP3REpv+f2CsMov/t8ndxoAACAASURBVNxzZ//fNveRf83ofasPn/ymAl7vI33olb0FuY/y+h3tj3Feo7ZmA97cG+gWdH78DAIQgAAEIAABCEAAAhCAAAQgAIHgBBDuwVml5JEqZbV0Q9kypWXfantFNoHMfjI7d+6URYuXm/rc2cvBxHLCOtZyT0xu3LTFm69KjtrqOp5usqgbcuoKWxXMJUoUj2Wa3fosX7XWCM1a+1ePlBCJx8CbNm+RxUtXmaH237eq4Rh2K+hhR15zG+aeQFv3198e06pmxbtt0wdG/marB3mbYxZ23spe36LYf9+9dxPtuWPxr4GqlSuZBz+6eWssTd8GUEGvuX9nXP/IAxZ/LC3Ro+eg16LGpW+WxKPpwyV9kKUiXHln3z+gsPFtYpo+8wu5r9tgadPsarmzyWW7TRXkXleRr3K70h7lvZXUVQsLd7ef64a4WkJHZbBuplu0aGy5yz2wXj+62v6QWvtFHmYFCS77GwW6wa/+btmr0h6F3gNBWAWZv7Bjor2PlO9vS7zfxV7d9lr7Vyvw3ojlPtJV81o+KfceBYWdBz+HAAQgAAEIQAACEIAABCAAAQhAIDgBhHtwVhwJgbgSUHH5krc6+MxTjpaa++0jG7267S96q9V15ba/4WhcJ0zDwfxSMLp6fdQTD6TNGWrpkIoVynsrxA8wm2YuWPiHdH9ijHlDZPrL/WKS5WkDJ9uJFFTCJx3P1+actLSWPswrWnRXqZ1oHhTZzEtfCEAAAhCAAAQgAAEIQAACEIBAphFAuGdaxjlfZwho7W+t6527Heqt8lV5HK8V2c6ccEiB+PsY3OKtcH6g9fUhzZLYYRs17ybf//TbbpN2ureJ2SOBtosAwj3YlaBvNlx3Z3fzdsOgR9p49fJPCNaRoyAAAQhAAAIQgAAEIAABCEAAAhCImgDCPWpkdIBAfAioBNMa7rp56Pq/N5hSLIcetJ/oam1acAK66vs1bwNebTd4Mlo30Ez1pmWgvvj6R6/W9lrJ2rHDlEo6+bgjZJ+qe6b6qcU1/iXLVnmb4f7X3DO6dwAtbwK6Ga1uKK1vS2iNfBoEIAABCEAAAhCAAAQgAAEIQAAC4RFAuIfHlpEhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAggwgg3DMo2ZwqBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIhEcA4R4eW0aGAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBDCKAcM+gZHOqEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgEB4BhHt4bBkZAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEMogAwj2Dks2pQgACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQHgEEO7hsWVkCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQyCACCPcMSjanCgEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAuERQLiHx5aRIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAIIMIINwzKNmcKgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCIRHAOEeHltGhgAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQwigHDPoGRzqhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIBAeAYR7eGwZGQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABDKIAMI9g5LNqUIAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEB4BBDu4bFlZAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEMggAgj3DEo2pwoBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAALhEUC4h8eWkSEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQCCDCCDcMyjZnCoEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQiERwDhHh5bRoYABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIEMIoBwz6Bkc6oQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAQHgGEe3hsGRkCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQyiADCPYOSzalCAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAeAQQ7uGxZWQIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhDIIAII9wxKNqcKAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC4RFAuIfHlpEhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAggwgg3DMo2ZwqBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIhEcA4R4eW0aGAAQgAAEIQAACEEghAps2b5GtW7dLxT3KSZEiRVIockKFAAQgAAEIQMCWwIKFv8vUGXOk0WXnSM0aewcebv6Pi2T6B19I44bnSY1qVQL3y+/AkS9NkT3Kl5VrLz/XeiwGgAAEkkMA4Z4c7swKAQhAAAIQgAAEIOAYgevu7C76pfm9Vx6X6vvs5Vh0hAMBCEAAAhCAQJgEXn3rA+n+xHMyrM99UrfOMYGnenHie9Jr4Asysn97Oe2k/wTul9+BdS5pKVX3qiSTx/a2HosBIACB5BBAuCeHO7NCAAIQgAAEIAABCDhGoOeTY+W/3/4ko554QPbacw/HoiMcCEAAAhCAAATCJIBwD5MuY0Mgswgg3DMr35ytgwR27tzpxGvrmRZH0PMNepyDlxYhQQACEICARyCv3+PJ+N2ejDnzugASFUfQeYIex8UMAQhAAAKZSSDI50SQY4LQS7Rwzy9uVrgHyRbHQMBtAgh3t/NDdClMYMbsuTJo9ERpcfPl8sbbs+WTL7+TYsWKyUXnnCyPdGgmb0z7SEa9PEX++HOllC9XRu5r3kiuu+K8yBn3H/aKVz/uM1m9dr1kZe0w9WQvOucUaesdp/Xc/LY9K0uGjHlDpr0/R/5cvtqMdcpxR0rrpg3l0Fr7SbP7+prX4jWOUV4tuPk//ibH1z5UOra5UbRWbQ9vNd8HH38lGzZuln2q7im3XFtfbml0UaHkdT49v2Ur13r1brdJyZIlpM7xR0j7VtfLwQfsa/7t+lY9Te27J7vflWO8ufMWSg/vVb2brr5Arrn0bPOzN97+SIY//5bhoWOd4MXYvX1T2a96VfNzn+cjDzaTHxb+Ie/N/lJWrVkvfTvdKa97fYOw2rT5X+k7+GWZ9sEcc76VK1WQow47UFasWpdjNeO27VkyYMR4mfzup4a/Mq1/7inSofX1UrZM6ULZcAAEIAABCCSHwPJVa6XFA0/IFRedYT4TJ737ifl9f+xRB8tTPe+WJctWyWODXpIFP/9uArz8wjOkW7tbpbj3+axt4KgJ8v5HX8mEkT28z+yi5t/4nI3/56x+tuor+5/99zvvb5F/pUrlinL7DZeYvwuonZ+ce4dZIQABCLhAwP8cv7heHfM5/u6sL2X93xvl4ANrSP8uLeWwg/aLhBnks2TAiNdk5idfy4uDO8nocVNlztwF5nN93NAueZ5uXsI9yPdyv6SMfl/88LNvRL/vZnnznHnK0d731Rbm+6TfgsSNcHfhaiQGCNgRQLjb8aM3BPIl4H/o6gEqy0885nBZ8NNvRlCXLVPKfMFUIb6/J6Q//PRrI9W/mDYsInSvatZZtm7bLsf95xDzAa2vuH/v9T/1hKOMHNamT8Sv9erN6r8ffvD+csLRh8kvv/8pn3/1g9xx46Vy7x3XyMkN7pR/Pfmt42vTsXTe5556SBrc+ID5Q+asU4+VQ7w/YmZ89F/5fckKufGqC4yQL6j1GzpO3pr+sZzsyX0V9Ys9Uf7BJ1+Zc/tw4kDzn83u7+t9mf5e3nj2ETOn3+7uNNATGnNNTbpaNavLUyMnyDMvTDKcVH4sXLTE9NNYZ054SsqULik+T5XxvuDX8bRO3qNPPV8oqx07dkrD2zrJL7/9aYT+peefZmT6x1/MM2yy1+v1a/jqH3Zne2z0jybtd/pJtWVE/3Zc9RCAAAQg4CiBRX8sk0tvfshEp8K8zvFHyT8bN8m8Bb+a3/36+aFy99j/HCxffvOj+RKfvU5rm84DzQPer98bJSWKF+NzNoTP2bV//SP1rr3P5EL/pjnUkydT3vtU9N/bt2ost3oP/mkQgAAEIJCZBLJ/juvn9kned+jvflpkPq/1c/2Ttwab74hBP0taPfSk9137m8j3b/2Oqt+Nv50xOk/AeQn3IN/Lc3/3P+bIg8yCO/2eebT3333BHzRuhHtmXv+cdXoRQLinVz45G4cI+B+6Kq/1Sbf+gaAf7irAtY0Z8JAnyA81//1NT1x37D1CnujW2qyA16arrPXLfvZ29e1d5Ief/zB/IOh4uir84cdGytmnHStDereNHKp/qKxc85cnGo4086ncV/musegfGdr8PyZ8Ma//pn8QXOmJfpXLhW0Yl1d8uoJgxIuTZezAjt4DhsNk9px50qLD42YVe/d2Tc286//ZKKdf1lpqH15LXhneVZZ6wv+Cxu3MA4OJo3pGzkF3Zn/ymfHS9b5bzO7sPk8V94893FyOOKRm5NggrCZOnSWd+442rJ7q2SbCVmX9S6/PiJyvrmrv8Ohwadq4gbRrcV1kjqZtHzMPMqa92DeqHesduiQJBQIQgEDaE/C/qOtnzDP92pkHudr8B6kPeJ/H/ltcK1f/Jedec2+Oz6jcwp3P2V2XTDw/Zx/s9YxMeucTGfX4A3LqiUeZ8XW14ckNWkjJEsVlzpShaX+dcoIQgAAEIJA3Af9zXBeS6QPxcmVLiy6c6tJvtLw+bbbcd+e10uz6iyXoZ4kv3C+pd6ro3wD60L2glpdwD/IZ6H9X1e/WbZpdLUWLFjFv2DVu2UP0nPTNOf3+GjRuhDt3CARSnwDCPfVzyBk4SiC/ncp1VbmurP5i2vBI5D8v+lOuaPqwkQD6h4A2/cNi+szPZdZn33qrzpebPvqKnUpxfbKvEuG+bkPMMQM9gVyv7gl5klDhXqNaVbPKPHvz+3448akcf3i8OmmmdH98jPTr3FL0Vb6Cmr4q97ZXnuXHXxZ75V3+Mv+vcv/xrq1MCRZdgX/GFXeZPza+9M5XVymMefVt6TdkXOQYX2bo6nH/i7fOuWzFGnn5jRlyw5X15OF7mkSEe147vwdh1eGR4TLZW0GnDyZUuvstt3B/oOcwmeKV8rn1uvpeyZn/bZg3y1vlrqshn+51j5x7+vGOXnWEBQEIQCCzCfhf1PV3ePuWjSMwdDPUcW++7z007eM9NN0n8u/HX3iH7L/v3vLWmEfNv+UW7nzO7kIVz8/Zug3vNg/f77n9mhwX69jx0yN/H/mLAzL7aubsIQABCGQegfw+xz+b+70plarfMfW7ZtDPEl+4z//g2UAly/IS7kE+A/P77v/E8Fe9MrJT5dEHb5eG9c8MHDfCPfOufc44/Qgg3NMvp5yRIwTy+9C9/NaHPZm8Oodw17rlKuKbXHOhPHjXDUZaN733Ma/e+iKzIl3rjKsQ0FqnWpLGF+7+ivfspWhyn35+wt3vO+/9Z80TeL+pWG754JNmRbw+oc+vPfb0S/L8a++YlfZHHnKAHLh/NfNAQKW0L9y1r5aK0ZIx/h8Z53uvkesX7c8mDzV9/VXxep4lvJVtudtVF59lVprnxzMoK391Y25WuYV7o+bdTIkef1Vk7nj0PBDujtxkhAEBCEAgF4H8vqjr/h3PeUI3t3DXz8h9qlY2Jc605RbufM5K4L9JgnzOVtu7stQ+d9cbb/l9zk55/jHZs2IFrm0IQAACEMhAAvl9jv+1foNZyHWKt2fY6Cc6BP4ssRXuQb9r5vdddfrML7xFcoPNPmy6Mj/oZyDCPQMvfk457Qgg3NMupZyQKwRshLv/wdzgvDqmfIq/mVunPqPMq3S+cPf/gHh+UEdTvz2vlp9wV6mucl3ryWldOb/pa976qlvPB24Tld15Na2hd/rlrb2V81Xk1eHdpFLF8uawqTPmSPueQ3MId/+PIy0Z0/X+W+UGbyNV/WNDXwfUpuVcVHpnL6eT15yF/RFTGKu7Oj5lasy/NKSz2TzPb7mFu8/008lDcmxO68p1RRwQgAAEIJA/gWiFe+4vtLmFO5+z4r1Jt0sWxOtzVv8uqVihnLz36hNcyhCAAAQgAIEcBPL7HNeNT1t3HCBXNqgrj3RoZsqmBvkssRXuQT8D8/uu6r/N3bdzC9GyNkHjRrhzY0Ag9Qkg3FM/h5yBowRshLv/6lnusi5aD13rovvCfciYN2Sw9/+5NznVWqhLl68xtcbzE+5+3xY3Xy5333ZVhOKdDzwuH30+L1JnLi+8c75aILe17RP5g8c/Rle868r37Cvc9We+wFDpruVnPnhtgOxdpZLpphvZaW277JvJ+OPpigJdDV/dWxFX2Gt6hbHS2vK6mv6Ki84w4r+UV95GN63R89UV7X7N+uHPT5KBoyZI61sbSivv/7M3XcG/R/mykY1tHb30CAsCEIBAxhKIt3Dnc1Yk6N8kQT9nm9zdS+bO+ymy30v2i/VXr87tQd5m6jQIQAACEMhMAvl9jvsLz/xFYUE/S2yFe9DPwPy+q95yT2/zBrj/hl3QuBHumXn9c9bpRQDhnl755GwcImAj3GfMnmsktW7qctPVF5izmuRt5qmbmWrzhfvGTVvknKvvMa9733jV+d5GpYfL4qUrTakXffqvZWHyE+5aV73ulW28mvBZZmOXww7az6vH/rnZwFVrqetmZvk1FdVaN09LwmgZnH332cuT9PPNinltuYW71npvcveu+rhaq31E/3Y5hvb/ENKNZK5vWM/I8Hk//CrjJ3/o1Xi9Wm69tn6+wj0oq02bt8jZV+1ipbXktUSPz1OD8YX75i1bpd61bUVX8V90zily3pnHy0aP1Rf6h9L7c+T10Y8YVjQIQAACEHCPQLyFO5+zIvH+nP3p1yVy5W2dIn9DHOO9Zbd46Sr58NNvTCm9r94Z4d6FRUQQgAAEIJAQAv7nuJYdu+mqC6Sqt0jry69/NHtx6SKs6S/3N58fQT9LbIV70M9A/7u/vnV+1cV1ve+cW+S5V6fLn8tXywVnnSQDetxl+AWNG+GekMuNSSAQKgGEe6h4GTyTCfilUlRcZ98MtGHTTt4H76ocNdyXLFslF13fXm72Nk3t8P+bpj4+7FV5YeK7snXrNoPx0Fr7mT8ufvj5D/lkkrdpqvc6trZffl8qDz76jFml7bfKlSpIr4fukLp1jjHCXeXyxFE9d0uHrjZv+eATsmLVusjPdEPRvp1aSPlyZQpMn24sqjVxdTNXbXp8nROONF/Mn+jWysjq7E1rt2v9+Wf6tZMzTq6d42cquZ8ePVGen/CO2RTWb7pC/5EOt3sPEg6LlJ7JzVOPDcpq5eq/pPegF8yq+vLlyho+K7xV63oun08dJuXKljZT60r2bv2fNW8TZG/6B5T+sbTXnv/bTDWTr3HOHQIQgIBrBH5bvFwuafKgNG3cwOz/4TfdrFs37Z72Yl/z9pff9Aut1nDPb9NUPY7P2fh/zn41f6F07D1CdA8bv+nfOJeef5r5+4UGAQhAAAKZScAX7rq/ly6U8puWBH2q591Sda9db0lrC/JZErVwnzRTuj8+Rob1ud/7rni0mSfId03/u78+KNCFW34778wTpI9XIrZsmV3fM4PGnfvvk8y8GjhrCKQ2AYR7aueP6NOcwLbtWUak711lT/NEv6Cmf5CouFcZHK0QVhG9bOUaOeTAGhHpHBStPgDQzU71FfAiRf63+WrQ/tmP27lzpye715kV5ftW2yuq0i3RsMo+51XNOssiT9DktaJOS/Ms8VbdaatRvaqUKF4sltOiDwQgAAEIpAEBPmeD/00S9HNWmeoiBH0Ivo/3t072TdzT4JLhFCAAAQhAIEoC2d9U07ewdWFYlcp7FPi9MBGfJdF819RFZstWrJGDD9g33w3CFUsi4o4SP4dDAAJxJIBwjyNMhoIABNwmoLX/dGXjoV5JmCLe/2mJGH09UcvYdLq3idvBEx0EIAABCEDAcQJ8zjqeIMKDAAQg4DiB/ErDOR424UEAAhDYjQDCnYsCAhDIGALnNWqbo3yOnri+5vdYx+ZRr+zPGGicKAQgAAEIQCAgAT5nA4LiMAhAAAIQyJMAwp0LAwIQSBcCCPd0ySTnAQEIFEpA6+H/tGiJrFn7t/daYimp5ZXB0Y1paRCAAAQgAAEI2BPgc9aeISNAAAIQyGQC+jnynVdStfo+e0k1b48VGgQgAIFUJYBwT9XMETcEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQg4RQDh7lQ6CAYCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAARSlQDCPVUzR9wQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgFAGEu2U6lq7ZbDkC3SEAAQhAINUJ7LNnaSlWtEiqn4bT8a/fuE02btnudIwEBwEIQAAC4RIoV7q4VCxXItxJMnz0rB07ZcW6LRlOgdOHAAQgAIF99yoDBAsCCHcLeNoV4W4JkO4QgAAE0oAAwj38JCLcw2fMDBCAAARcJ4BwDz9DCPfwGTMDBCAAgVQggHC3yxLC3Y4fwt2SH90hAAEIpAMBhHv4WUS4h8+YGSAAAQi4TgDhHn6GEO7hM2YGCEAAAqlAAOFul6WMFe7r/94o27ZvlyqVK1oRZIW7FT46QwACEEgLAgj38NOIcA+fMTNAAAIQcJ0Awj2+Gdq5c6dsz9ohJYoXiwyMcI8vY0aDAAQgkKoEEO52mcs44b5h42a5vV0/mbfgV0OuRrUqMnZQR6lWtXKeJN+c/rF07D1it599+fYzUqZ0SVa4211/9IYABCCQFgQQ7uGnEeEePmNmgAAEIOA6AYR7fDP00usz5MlnXpUvpg1HuMcXLaNBAAIQSHkCCHe7FGaccO8/7BUZP2mmvD6qp5QrW0Yat+wutWpWlyG92+ZJ8o23P5Iu/UbLhJE9cvz8kANrSJEiRRDudtcfvSEAAQikBQGEe/hpRLiHz5gZIAABCLhOAOEenwz98tufckPrR0QXo5UtUwrhHh+sjAIBCEAgrQgg3O3SmXHC/bxGbaXBeXWkfcvGhtyEKbOMUJ//wbNGoOduKty7P/GcfPXO7qvc9VhKythdgPSGAAQgkA4EEO7hZxHhHj5jZoAABCDgOgGEe3wytG17lqxYtVYmvfuJjH55KsI9PlgZBQIQgEBaEUC426Uz44T7MfVuk2733ypXXXyWITd33kJpcvej8tGbg2TPihXyFO4PPzZSzjzlaClVqoSccVJtueqSsyN17hDudhcgvSEAAQikAwGEe/hZRLiHz5gZIAABCLhOAOEe3wyNnzxT+g5+GeEeX6yMBgEIQCAtCCDc7dKYUcJdN4WpfW5T6de5pVxcr44ht2Dh73LNHV1l2ot9pWaNvXej+eU3P4qucq9Usbz88ecKmTF7rlx49knyZPe7zLH/bN5ulwF6ZxwB7zIUvRZpbhLQF13yetvFzWiJyhUCZUsVk2JFd39LypX40iGOWIR7ESEnruZ+pyTmc5BrwNUrwPtbiGvA3eQkKLJYrgGEe3yTk59w3/RvVnwnSpPRdu6I5ap1+OS9P5OK5vGWv8MRExoEIJBAAhXKFE/gbOk3VUYJd02frnDv3q6pXNmgrsmmv8L94zefNlK9sPbc+OlmFcDX740yq9z/2bStsC78HAI5CGzavEMmTi4ia9cigly7NEqV2iFXXy5SpXJR10IjHscJlC1dHOEeco5iEe7FFn4jJSY/H3JkDB8LgW0XXCtZtU+JpWtUfYr9Ml9KvDUmqj4cnBgC2867SrKOPT30yYotWiAl3hgV+jxMED2BbWdfLlkn7HrrOGhDuAclFey4fIX7FhaV5UVw6b+bpN2Kj2Vt1tZggB0/qkPl4+TcijUcj5LwIACBZBGoULZEsqZOi3kzTrhrDfeL650q7VpcZxL42uQPpWv/Z/Ot4Z47y9NnfiH3dRtsXrvTDWYoKZMW90FCT2Kr9/fZyDHFZfnyhE7LZAEIlC0r0urO7bLH7tWlAvTmkEwmQEmZ8LMfk3CfO0tKjegZfnDMEDWBf1s/mhjh/s0nUmpY16jjo0P4BP5t0T0xwn3+51Jq8MPhnxAzRE3g3zs6I9yjphbfDpSUiY7n6qwtUn/pW7Isa1N0HR09emK1+lKndDVHoyMsCEAg2QQoKWOXgYwT7v2GjjOSfeKonlKuTGm5vlUPqVWzugzp3daQHDDiNZk+83NTYkbbkDFvSO0jasmJxxwua9atlzsfeFxKlCghb4151Pwc4W53AWZib4S7u1lHuLubG9cjQ7iHnyGEe/iMEzkDwj2RtN2cC+HuZl4SGRXCPZG0c86l5S03b9kqr0+bZb7/fjhxoHl7u0SJ4pLllU1ZsW5L8oJzeGaEu8PJITQIQCDuBBDudkgzTrhv2LhZmt3XV+b/uMiQq753ZXn+6U7mP7U91GuETJnxqXw7Y7T53536jPL+EJkdoax13lXOq6TXhnC3uwAzsTfC3d2sI9zdzY3rkSHcw88Qwj18xomcAeGeSNpuzoVwdzMviYwK4Z5I2jnn+v6n36RR8245/vH0k2rLiP7tEO4FpAXhnrxrlpkhAIHEE0C42zHPOOHu41r71z+ydds2qVZ1l2gvqG3a/K8sX7VW9ihf1qvtXDHHoQj3wujx89wEEO7uXhMId3dz43pkCPfwM4RwD59xImdAuCeStptzIdzdzEsio0K4J5J28LlY4Z4/K4R78OuIIyEAgdQngHC3y2HGCnc7bP/rjXCPF8nMGQfh7m6uEe7u5sb1yBDu4WcI4R4+40TOgHBPJG0350K4u5mXREaFcE8k7eBzIdwR7sGvFo6EAATSmQDC3S67CHc7fpSUseSXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3hLKiiAAAIABJREFURNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mHeHubm5cjwzhHn6GEO7hM07kDAj3RNJ2cy6Eu5t5SWRUCPdE0g4+F8Id4R78auFICEAgnQkg3O2yi3C344dwt+SXid0R7u5mPVHCfedOkSV/imze7C6LTI2sSNEist++ImXKeEmKoiHco4AV46EI9xjBOdoN4e5oYhIYFsI9gbAdnQrh7mZiEO4I94KuzNVZW2Tev6vdvHijjGrPYqXkuFJVo+zF4RDIHAIId7tcI9zt+CHcLfllYneEu7tZT5Rw37FDZNRzxWTx4iLuwsjQyEqUEGnTKksqVkS4u3YJINxdy4hdPAh3O37p0Bvhng5ZtDsHhLsdv7B6I9wR7gVdW9M3/SG3rXw/rMsvoeOeWbq6vFLtooTOyWQQSCUCCHe7bCHc7fgh3C35ZWJ3hLu7WUe4u5ubREWGcE8U6ejnQbhHz8zlHgh3l7OTmNgQ7onh7PIsCHc3s4NwR7gj3N28N4kKAokmgHC3I45wt+OHcLfkl4ndEe7uZh3h7m5uEhUZwj1RpKOfB+EePTOXeyDcXc5OYmJDuCeGs8uzINzdzA7CHeGOcHfz3iQqCCSaAMLdjnjGCvf1f2+Ubdu3S5XKFa0ILl1DEWYrgBnYGeHubtIR7u7mJlGRIdzjT3rHjp2ydMVq2adqZSlRvFjgCVau/sscu3eVSuY/Ee6B0aXEgQj3lEhTqEEi3EPFmxKDI9zjn6Zov+Nu2LhZ/t26Tfbac49IMAh3hDvCPf73JiNCIBUJINztspZxwl3/qLi9XT+Zt+BXQ65GtSoydlBHqeaJgMJa576jZeLUWfLxm09LpYrlzeEI98Ko8fPcBBDu7l4TCHd3c5OoyBDu8SU97f050uHR4ZKV5W1c4LW2zRvJ7Tdcku8kKucfH/aKvPTGDNnqCYBixYrKtzNGm+MR7vHNTbJHQ7gnOwPJnx/hnvwcJDsChHv8MhDtd9w/l6+W+7sPke9/+s0EsV/1qtLroTvkuP8cIgj3/POiG4bWX/qWLMvaFL/kJXGkidXqS53S1aKKgBruUeHiYAikNAGEu136Mk649/e+yI+fNFNeH9VTypUtI41bdpdaNavLkN5tCyQ5dvx06TP4ZXMMwt3uosv03gh3d68AhLu7uUlUZAj3+JHetHmLnHppKyPYW97SUKa896k8/NhImTy2t/nczat16jNKpsz4TO648VJpdOnZZtWdSgBtCPf45caFkRDuLmQhuTEg3JPL34XZEe7xy0K033Gb3ddX1q3/R8YN7SJFvYfbbToNlBWr1smEkT0Q7gWkBeEugnCP333LSBBwnQDC3S5DGSfcz2vUVhqcV0fat2xsyE2YMku69Bst8z94VooUKZInzVmffSN3PfyUdG57s3TrPwbhbnfNZXxvhLu7lwDC3d3cJCoyhHv8SE+dMUfa9xwqc98ZIaVKljADn355a7npqguk1a0Nd5to2Yo1cv5198sDra+XWxpdtNvPEe7xy40LIyHcXchCcmNAuCeXvwuzI9zjl4Vov+M2uPEBqVljHxne934ThC4uGzR6onwxzXsrzXvbbMW6LfELLo1GQrgj3NPocuZUIFAoAYR7oYgKPCDjhPsx9W6TbvffKlddfJYBM3feQmly96Py0ZuDZM+KFXaDtXDRErn69i7yeNdWpvxMo+bdEO5211zG90a4u3sJINzdzU2iIkO4x4/0yJemyOhxU+WTtwZHBm3csocccmANeaRDs90menP6x9Kx9wi54KyT5KdfF0tJLxmNLjtbbvQEvTaEe/xy48JICHcXspDcGBDuyeXvwuwI9/hlIdrvuJPf/dSUfDv2qIPlhivPl16DXpDmN14mt15XH+FeQFoQ7gj3+N21jAQB9wkg3O1ylFHCfefOnVL73KbSr3NLubheHUNuwcLf5Zo7usq0F/t6T/n3zkFzzbq/5eKbOshtjS+WO5tcZmrc5Rbua//ZapcBemccgS1bdsqQkUVl+fKMO3XnT1iFe5tWWVK5UtFQY92+facMHVVEFi/O+62aUCdn8AIJqHBve9cOqbJXdLmpWK6EFCsaXZ90T4W+3j7VKw/z/vgnI6fatO1jUr5cWRn0SJvdTn/Ic2/K4GdflybXXCi1D68l839cJM+/9o508d4uu+6K82TD5u2ydfuuWvBBW9acD6TEMz2DHs5xCSSw7e5eUuy4U0OfMevL2VJiaNfQ52GC6Als8x7AFTvpzOg7Rtkj6+vPpIS3XxPNPQLbmneWYnXOjSqwksWLSvkyxaPqk+4HR/sdV3ks+mOZ3HjXI3LwATXkm+9/9vZMKSYvPv2wHHXYgUa460Nu2u4Elm/dJOcvfjNtari/Ub2B1K2wb1Spfmv9Imm64v2o+rh68Jmlq8vr+zeQovlUOnA1buKCQKIIVK5QMlFTpeU8GSXcNYP69L97u6ZyZYO6JqH+Cvfsddn9TL82+UPp2v9ZufT808w/rV63Xj777/dSr+4J0vS6BnJ87UNly9astLwwOKnwCGzYtEMGDBWEe3iIYx5Zhfv9d++UfaoUi3mMIB3/3bpTBgzbgXAPAivBx6hwb3/PTtl3n+iugRKeAEC450xWtCvcVbi//Pp7MvuNQZGB7mjXXzZv+Vde8CTAZu/zNtpHGhtmz5Diw3sk+CpiuiAEstr0knKnnBHkUKtjNn7yoRQb0sVqDDqHQyCrdQ8pd9rZ4QyebdSNn38sxQYi3EMHHcME2+/sIuXr1ouq507v6DIlo/uMjmqCFD04mu+4eopagub8uidKxzY3yfp/Nsq9XQbJf7/9yZSBK1KkqGyL8gF3imKLOuwlmzfKWYteTxvhPqnGxXJ+5f2i4vDqql/kluUzourj6sEq3KcddIkU9/YxoEEAArsTKM3nrdVlkXHCXf+4uLjeqdKuxXUGnC/V86rhrqvfJ3ubvPlt1eq/zGZujb2Vdtd4m7kdeegBsnTNZqsE0DnzCFBSxt2cU1LG3dwkKjJKysSPdF413Otc0tLUZ8+rhvu09+dIux5D5et3R0qJErtWL95yT2/ZsmWrvDK8KyVl4pcaJ0aipIwTaUhqEJSUSSp+JyanpEz80hDNd9y/N2yS07xNzR/r2Fwuu/B0E8TceT95ZVZ7mc/bIw89kBru+aSGkjKUlInfXctIEHCfACVl7HKUccK939BxRrJPHNVTypUpLde36iG1alaXIb3bGpIDRrwm02d+bkrM5G55lZRBuNtdgJnYG+HubtYR7u7mJlGRIdzjR3rT5i1ycoMW0vymy6TVLVfIpHc/kc59R8vksb3N5+5f6zfIFU0fltZNr5RrLztH1v+9Uepeebdc7e2x8vC9TWTO3AXSvH1/adPsalPWjRru8cuNCyMh3F3IQnJjQLgnl78LsyPc45eFaL/j6gNw3Z9sRP/2Xqm3MtLF+3z+5Mv58sGEAWaFO5um5p0bhDvCPX53LSNBwH0CCHe7HGWccN+wcbM0u6+vqQ2rrfreleX5pzuZ/9T2UK8R3ir2T+XbGaMR7nbXFr3zIYBwd/fSQLi7m5tERYZwjy9pfUuswyPDI4Pec/vVRsBr031SzrqyTUSo67/NmD1X2nZ7WrKydtVqv+icU6Rv5zu9V32LIdzjm5qkj4ZwT3oKkh4Awj3pKUh6AAj3+KUg2u+4X81fKP2GjPPqt//i1W8vKocfXFM6tL5eTjr2cDZNLSAtCHeEe/zuWkaCgPsEEO52Oco44e7jWvvXP7J12zapVnWXaI+1scI9VnKZ2w/h7m7uEe7u5iZRkSHc409a5fnipSu9uvh7ScmSXpH8Qtr2rCxZsnSVVKlc0ay68xsr3Asjl1o/R7inVr7CiBbhHgbV1BoT4R7/fEX7HVfLy2zbtl322nOPSDC6aSor3PPODcId4R7/u5YRIeAuAYS7XW4yVrjbYftfb4R7vEhmzjgId3dzjXB3NzeJigzhnijS0c+DcI+emcs9EO4uZycxsSHcE8PZ5VkQ7m5mB+Gef14Q7gh3N+9aooJAOAQQ7nZcEe52/Ng01ZJfJnZHuLubdYS7u7lJVGQI90SRjn4ehHv0zFzugXB3OTuJiQ3hnhjOLs+CcHczOwh3hHtBV+b0TX/IbSvfd/PijTKqM0tXl1eqXRRlLw6HQOYQQLjb5RrhbscP4W7JLxO7I9zdzTrC3d3cJCoyhHuiSEc/D8I9emYu90C4u5ydxMSGcE8MZ5dnQbi7mR2EO8Id4e7mvUlUEEg0AYS7HXGEux2/qIW77gP3z3rLSekeGoHyFUSKFw9teDMwwj1cvjajI9xt6KVHX4S7u3lEuLubm1giQ7jHQi29+iDc0yufsZwNwj0WauH3KUi4r8naLJt2ZIUfRAJmKOLNsV+J8lHNREkZSspEdcFwMARSnADC3S6BCHc7flEL982bi8gzo4rKmrX6EU9ziUDFijulxR07pFzZnaGGhXAPFa/V4Ah3K3xp0Rnh7m4aEe7u5iaWyBDusVBLrz4I9/TKZyxng3CPhVr4fQoS7pM3/iZ3rpoZfhAJmKFBuQNkZNVzo5oJ4Y5wj+qC4WAIpDgBhLtdAhHudvwQ7pb8XOqOcHcpG8mJBeGeHO4uzYpwdykbOWNBuLubm1giQ7jHQi29+iDc0yufsZwNwj0WauH3QbjnzxjhjnAP/w5kBgi4QwDhbpcLhLsdP4S7JT+XuiPcXcpGcmJBuCeHu0uzItxdygbC3d1s2EeGcLdnmOojINxTPYP28SPc7RmGMQLCHeFe0HXFpqlh3HWMCQE3CSDc7fKCcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhLtL2UC4u5sN+8gQ7vYMU30EhHuqZ9A+foS7PcMwRkC4I9wR7mHcWYwJgdQjgHC3yxnC3Y4fwt2Sn0vdEe4uZSM5sSDck8PdpVkR7i5lA+HubjbsI0O42zNM9REQ7qmeQfv4Ee72DMMYAeGOcEe4h3FnMSYEUo8Awt0uZwh3O34Id0t+LnVHuLuUjeTEgnBPDneXZkW4u5QNhLu72bCPDOFuzzDVR0C4p3oG7eNHuNszDGMEhDvCHeEexp3FmBBIPQIId7ucIdzt+CHcLfm51B3h7lI2khMLwj053F2aFeHuUjYQ7u5mwz4yhLs9w1QfAeGe6hm0jx/hbs8wjBEQ7gh3hHsYdxZjQiD1CCDc7XKGcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhLtL2UC4u5sN+8gQ7vYMU30EhHuqZ9A+foS7PcMwRkC4I9wR7mHcWYwJgdQjgHC3yxnC3Y4fwt2Sn0vdEe4uZSM5sSDck8PdpVkR7i5lA+HubjbsI0O42zNM9REQ7qmeQfv4Ee72DMMYAeGOcEe4h3FnMSYEUo8Awt0uZwh3O34Id0t+LnVHuLuUjeTEgnBPDneXZkW4u5QNhLu72bCPDOFuzzDVR0C4p3oG7eNHuNszDGMEhDvCHeEexp3FmBBIPQIId7ucIdzt+CHcLfm51B3h7lI2khMLwj053F2aFeHuUjYQ7u5mwz4yhLs9w1QfAeGe6hm0jx/hbs8wjBEQ7gh3hHsYdxZjQiD1CCDc7XKGcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhLtL2UC4u5sN+8gQ7vYMU30EhHuqZ9A+foS7PcMwRkC4I9wR7mHcWYwJgdQjgHC3yxnC3Y4fwt2Sn0vdEe4uZSM5sSDck8PdpVkR7i5lA+HubjbsI0O42zNM9REQ7qmeQfv4Ee72DMMYAeGOcEe4h3FnMSYEUo8Awt0uZwh3O34Id0t+LnVHuLuUjeTEgnBPDneXZkW4u5QNhLu72bCPDOFuzzDVR0C4p3oG7eNHuNszDGMEhDvCHeEexp3FmBBIPQIId7ucIdzt+CHcLfm51B3h7lI2khMLwj053F2aFeHuUjYQ7u5mwz4yhLs9w1QfAeGe6hm0jx/hbs8wjBEQ7gh3hHsYdxZjQiD1CCDc7XKGcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhLtL2UC4u5sN+8gQ7vYMU30EhHuqZ9A+foS7PcMwRkC4I9wR7mHcWYwJgdQjgHC3yxnC3Y4fwt2Sn0vdEe4uZSM5sSDck8PdpVkR7i5lA+HubjbsI0O42zNM9REQ7qmeQfv4Ee72DMMYAeGOcEe4h3FnMSYEUo8Awt0uZwh3O34Id0t+LnVHuLuUjeTEgnBPDneXZkW4u5QNhLu72bCPDOFuzzDVR0C4p3oG7eNHuNszDGMEhDvCHeEexp3FmBBIPQIId7ucIdzt+CHcLfm51B3h7lI2khMLwj053F2aFeHuUjYQ7u5mwz4yhLs9w1QfAeGe6hm0jx/hbs8wjBEQ7gh3hHsYdxZjQiD1CCDc7XKGcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhLtL2UC4u5sN+8gQ7vYMU30EhHuqZ9A+foS7PcMwRkC4I9wR7mHcWYwJgdQjgHC3y1nGCvf1f2+Ubdu3S5XKFQsluD0rS5avXCs7duyUGtWqSLFiRSN9lq7ZXGj/7Ads3lxEnhlVVNasLRJVPw4OnwDCPXzGrs+AcHc9Q+HHh3APn3GsM6zfuE02btkeVfdic2dJqRE9o+rDwYkhgHBPDGeXZ0G4u5ydxMSGcI8/52i+4/qzb926TZauWCPV99lLSpUsIQh3hDvCPf73JiNCIBUJINztspZxwn3Dxs1ye7t+Mm/Br4acCvSxgzpKtaqV8yQ54sXJMmDEa5GflS1TSob1uV9OPOYw828Id7sL0KXeCHeXspGcWBDuyeHu0qwId5eykTMWhLu7uYklMoR7LNTSqw/CPb3yGcvZINxjoZZ3n2i/4+ooP/26RO7tMkh+X7LCDHrP7VdL85suQ7gXkJbVWVuk/tK3ZFnWpvglL4kjTaxWX+qUrhZVBNM3/SG3rXw/qj6uHnxm6erySrWLXA2PuCCQdAIId7sUZJxw7z/sFRk/aaa8PqqnlCtbRhq37C61alaXIb3b5knypddnSOVKFeTMU46W7duz5Lb7+sj2rB3y1phHzfEId7sL0KXeCHeXspGcWBDuyeHu0qwId5eykTMWhLu7uYklMoR7LNTSqw/CPb3yGcvZINxjoZZ3n2i/4/65fLVc2LidnHL8EXL7DZfK8bUPkU2b/zVvf7PCPf+8INxFEO7xu28ZCQKuE0C422Uo44T7eY3aSoPz6kj7lo0NuQlTZkmXfqNl/gfPSpEihZd5adr2MVNa5rmnHkK42117zvVGuDuXkoQHhHBPOHLnJkS4O5eSSEAId3dzE0tkCPdYqKVXH4R7euUzlrNBuMdCLe8+0X7HfbDXMzJ95hfyxbRhUrxYsRyDItwR7gVdmQj3+N23jAQB1wkg3O0ylHHC/Zh6t0m3+2+Vqy4+y5CbO2+hNLn7UfnozUGyZ8UK+dJ8ceK7MuW9z+S3Jctl6GP3ybFHHWyOXbFuS1QZ2OS9fTZsJDXco4KWoINVuLdqvlPKl9sZ6oxbt+6U4aOLy/LloU7D4DEQUOF+V4vtUnGPwh++xTB8pIu3LYSMGFNUFi8Odx6bGDO1rwr3e1pnyZ6VoiNQpWIpKVaUfEZHLbqjEe7R8XL9aIS76xkKPz6Ee/iMXZ8B4R6/DEX7Hbduw7tNvfa9q+wpK1evkyMOOUAeaH291Kyxt1nhvnr9v3kG99Y/i6T5qpnxCzyJIzUod4CM3vvcQIvu/DBXeSVlLlzyZtqUlHm9WgM5rWx0JWWmbvg9rUrKjN+3vvAXfBJvRKZ2msA+e5Z2Oj7Xg8so4b5z506pfW5T6de5pVxcr47JzYKFv8s1d3SVaS/2NX9g5Ne69R8jn3+9QNas+1v6PHynnHP6ceZQ/YMkmrb2ryzpP2gHm6ZGAy1Bx6pwb9+mqFStnHOVR7yn/2eDdw0M3olwjzfYOIynwr39PSL77l08DqPlP8Tmf3fI44OzEO6hUo5tcBXuHbwKY/tXj/4aQLjHxjxoL4R7UFKpcRzCPTXyFGaUCPcw6abG2Aj3+OQplu+4/znnVjn4wBpyfcPzpKT3x8/Q596QTVv+lZmvDZBixfP/G+i5ZT9Ks+UfxCfwJI9ysSfcJxx0kZQoXjRwJL9v3CBn/jIxbYT75P0ulvpVawY+fz3wpeUL5eZlM6Lq4+rBWsP9nUMvk5JRXAOungtxQSAMAny/taOaUcJdUenT/+7tmsqVDeoacv4K94/ffFoqVSxfKM2+g1+Wl998X756Z4Q5lhruhSJLmQMoKZMyqQotUErKhIY2ZQampIy7qUK4u5ubWCJDuMdCLb36INzTK5+xnA3CPRZqefeJ9juuCvdeD90hV1x0hhlw4aIl0rBpJxk3tIscdXitfN/inrzxN7kzjVa4j6x6blRJoIY7NdyjumA4GAIpToCSMnYJzDjhrvXtLq53qrRrcZ0h99rkD6Vr/2cD13B/fdps6dRnlHwzY5Spd4dwt7sAXeqNcHcpG8mJBeGeHO4uzYpwdykbOWNBuLubm1giQ7jHQi29+iDc0yufsZwNwj0Wann3ifY7rh5/+YVnyL13XGMG/P6n36RR825mn7Ljjz4M4Z5PahDuCPf43bWMBAH3CSDc7XKUccK939BxRrJPHNVTypUpLde36iG1alaXIb29GgJeGzDiNW8Dmc9NiRltPZ8cK+edeYLZuX3ZyrXSssMTUrp0KXlrzKPm5wh3uwvQpd4Id5eykZxYEO7J4e7SrAh3l7KRMxaEu7u5iSUyhHss1NKrD8I9vfIZy9kg3GOhlnefaL/j6nfe58ZPlwkje0jFCuWka79n5eMv58vH3r5mpUqVQrgj3PO9ONk0NX73LSNBwHUCCHe7DGWccN+wcbM0u6+vzP9xkSFXfe/K8vzTncx/anuo1wiZMuNT+XbGaPO/W3R4XGbPmRehrHXeVc6rpNeGcLe7AF3qjXB3KRvJiQXhnhzuLs2KcHcpGzljQbi7m5tYIkO4x0Itvfog3NMrn7GcDcI9Fmp594n2O+6/W7eZ77mff/WDGbBsmVIyuFdbOeX4I8weZSvWbclzIkrKbJH6S99KmxruE6vVlzqlo9s0FeEev/uWkSDgOgGEu12GMk64+7jW/vWPbN22TapV3SXaC2r6B8nS5aulQvmyUqVyxRyHItwLo5c6P0e4p06uwooU4R4W2dQZF+Hubq4Q7u7mJpbIEO6xUEuvPgj39MpnLGeDcI+FWsF9ovmOqyP9tX6D/L1hk+y/b1UpUqSIGRzhnj9jSspQUib+dy0jQsBdAgh3u9xkrHC3w/a/3gj3eJFM/jgI9+TnINkRINyTnYHkz49wj38Odngr5ZauWC37eA+4SxQvFvMECPeY0TnZEeHuZFoSGhTCPaG4nZwM4e5kWhDuBaQF4Y5wd/N6jigXAAAgAElEQVSuJSoIhEMA4W7HFeFux4+SMpb8XOqOcHcpG8mJBeGeHO4uzYpwj282pr0/Rzo8OlyysnaYgds2byS333BJoZP8tni5XH5rR7Oh2yMdmpnjEe6FYkupAxDuKZWuUIJFuIeCNaUGRbi7mS5WuOefF4Q7wt3Nu5aoIBAOAYS7HVeEux0/hLslP5e6I9xdykZyYkG4J4e7S7Mi3OOXjU2bt8ipl7Yygr3lLQ1lynufysOPjZTJY3tH9kHJa7b1f2+US29+UPS1+Csb1EW4xy8lTo2EcHcqHUkJBuGeFOxOTYpwdyodkWAQ7gj3gq5Mari7ed8SFQTCIIBwt6OKcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhHv8sjF1xhxp33OozH1nhJQqWcIMfPrlreWmqy6QVrc2zHOibduzpHGL7rJvtSry9z8bvZqyeyPc45cSp0ZCuDuVjqQEg3BPCnanJkW4O5UOhHuAdLDCnRXuAS4TDoFA2hBAuNulEuFuxw/hbsnPpe4Id5eykZxYEO7J4e7SrAj3+GVj5EtTZPS4qfLJW4MjgzZu2UMOObBGRKLnnu3+7kNk4aI/ZcKI7nJ7u34I9/ilw7mREO7OpSThASHcE47cuQkR7s6lxATECvf884JwR7i7edcSFQTCIYBwt+OKcLfjh3C35OdSd4S7S9lITiwI9+Rwd2lWhHv8stF/2CsydcZn8v74JyODNm37mJQvV1YGPdJmt4mGjn1Txrzytkx7sa9UrlRBbrmndw7hvnlrlhSJMrwNs2dI8eE9ouzF4YkgkNWml5Q75YzQp9r4yYdSbEiX0OdhgugJZLXuIeVOOzv6jlH22Pj5x1JsYMcoe3F4Ighsv7OLlK9bL6qpdnpHlykZ+wbcUU2WoQcj3PNPPMId4Z6hvxY47QwlgHC3SzzC3Y4fwt2Sn0vdEe4uZSM5sSDck8PdpVkR7vHLRrQr3Otc0lJqeKVkDq21nwli5qdfS+lSJeWSeqfKA62vlw2bt8vW7bs2Xw3asuZ8ICWe6Rn0cI5LIIFtd/eSYsedGvqMWV/OlhJDu4Y+DxNET2Cb98ZLsZPOjL5jlD2yvv5MSgxCuEeJLSGHb2veWYrVOTequUoWLyrlyxSPqg8HR0cA4Z4/L4Q7wj26u4mjIZDaBBDudvlDuNvxQ7hb8nOpO8LdpWwkJxaEe3K4uzQrwj1+2cirhrtK9VsaXZRnDXcV9OvW/xMJ4K3pH3ur4cvI1ZecbTZeXb9xm2zcsj2qAIvNnSWlRiDco4KWoIMpKZMg0A5PQ0kZh5OToNAoKZMg0FFOg3BHuBd0ybBpapQ3FIdDIIUJINztkodwt+OHcLfk51J3hLtL2UhOLAj35HB3aVaEe/yysWnzFjm5QQtpftNl0uqWK2TSu59I576jZfLY3lKrZnX5a/0GuaLpw9K66ZVy7WXn7DZx7pIyCPf45caFkRDuLmQhuTEg3JPL34XZEe4uZGH3GBDuCHeEu5v3JlFBINEEEO52xBHudvwQ7pb8XOqOcHcpG8mJBeGeHO4uzYpwj282Jr/3qXR4ZHhk0Htuv9oIeG1r1v0tZ13ZRto0u1rubLLr37I3hHt8c+HaaAh31zKS+HgQ7oln7tqMCHfXMrIrHoR7/nmhpAwlZdy8a4kKAuEQQLjbcUW42/FDuFvyc6k7wt2lbCQnFoR7cri7NCvCPf7ZyMraIYuXrpR999lLSpYsEfMErHCPGZ2THRHuTqYloUEh3BOK28nJEO5OpgXhXkBaEO4IdzfvWqKCQDgEEO52XBHudvwQ7pb8XOqOcHcpG8mJBeGeHO4uzYpwdykbOWNBuLubm1giQ7jHQi29+iDc0yufsZwNwj0WauH3YYV7/owR7gj38O9AZoCAOwQQ7na5QLjb8UO4W/JzqTvC3aVsJCcWhHtyuLs0K8LdpWwg3N3Nhn1kCHd7hqk+AsI91TNoHz/C3Z5hGCMg3BHuBV1XbJoaxl3HmBBwkwDC3S4vCHc7fgh3S34udUe4u5SN5MSCcE8Od5dmRbi7lA2Eu7vZsI8M4W7PMNVHQLinegbt40e42zMMYwSEO8Id4R7GncWYEEg9Agh3u5wh3O34Idwt+bnUHeHuUjaSEwvCPTncXZoV4e5SNhDu7mbDPjKEuz3DVB8B4Z7qGbSPH+FuzzCMERDuCHeEexh3FmNCIPUIINztcoZwt+OHcLfk51J3hLtL2UhOLAj35HB3aVaEu0vZQLi7mw37yBDu9gxTfQSEe6pn0D5+hLs9wzBGQLgj3BHuYdxZjAmB1COAcLfLGcLdjh/C3ZKfS90R7i5lIzmxINyTw92lWRHuLmUD4e5uNuwjQ7jbM0z1ERDuqZ5B+/gR7vYMwxgB4Y5wR7iHcWcxJgRSjwDC3S5nCHc7fgh3S34udUe4u5SN5MSCcE8Od5dmRbi7lA2Eu7vZsI8M4W7PMNVHQLinegbt40e42zMMYwSEO8Id4R7GncWYEEg9Agh3u5wh3O34Idwt+bnUHeHuUjaSEwvCPTncXZoV4e5SNhDu7mbDPjKEuz3DVB8B4Z7qGbSPH+FuzzCMERDuCHeEexh3FmNCIPUIINztcoZwt+OHcLfk51J3hLtL2UhOLAj35HB3aVaEu0vZQLi7mw37yBDu9gxTfQSEe6pn0D5+hLs9wzBGQLgj3BHuYdxZjAmB1COAcLfLGcLdjh/C3ZKfS90R7i5lIzmxINyTw92lWRHuLmUD4e5uNuwjQ7jbM0z1ERDuqZ5B+/gR7vYMwxgB4Y5wR7iHcWcxJgRSjwDC3S5nCHc7fgh3S34udUe4u5SN5MSCcE8Od5dmRbi7lA2Eu7vZsI8M4W7PMNVHQLinegbt40e42zMMYwSEO8Id4R7GncWYEEg9Agh3u5wh3O34Idwt+bnUHeHuUjaSEwvCPTncXZoV4e5SNhDu7mbDPjKEuz3DVB8B4Z7qGbSPH+FuzzCMERDuCHeEexh3FmNCIPUIINztcpaxwn393xtl2/btUqVyxUIJbtueJctWrJGqe1WSMqVL5jh+6ZrNhfbPfsDmzUXkmVFFZc3aIlH14+DwCSDcw2fs+gwId9czFH58CPfwGcc6w/qN22Tjlu1RdS82d5aUGtEzqj4cnBgCCPfEcHZ5FoS7y9lJTGwI9/hzjuY7bn6zI9wR7gj3+N+bjAiBVCSAcLfLWsYJ9w0bN8vt7frJvAW/GnI1qlWRsYM6SrWqlfMk2W/oOBnzytuRn51w9GEyoMddsteee5h/Q7jbXYAu9Ua4u5SN5MSCcE8Od5dmRbi7lI2csSDc3c1NLJEh3GOhll59EO7plc9YzgbhHgu1vPtE+x03+yid+46WiVNnycdvPi2VKpYXhDvCHeEev3uTkSCQygQQ7nbZyzjh3n/YKzJ+0kx5fVRPKVe2jDRu2V1q1awuQ3q3zZPkqJenykEHVJc6xx8pv/6xTJrc3UtuaXSR3HvHNQh3u2vPud4Id+dSkvCAEO4JR+7chAh351Lyf+ydB3gVRffGX0LvvSOIKIoCCqIovUjvvUnvoffeO4Tee+9NuiAdpVhQBEVEREAp0qWXwH/O8E++AEnIvZubnb1553l8vo/cnZkzvzO79+47M+cEGkTB3VzfuGMZBXd3qHlXHQru3uVPd0ZDwd0dasHXcfUdN6CVBSu3YsTkpfqfFNxf7Y8r/vdR8vx6XPC/++qLHXDFmlQlkTtWKpcs3Xr3LBr9u9OlOqZenC9WaixPVcJU82gXCdhOgIK7NRdEOsG9SLUOKFUkN7q0rKnJrd60F31HzcGxXXMRJcqrw7z49hiLvy9cwfp5Q3R97nC3NgFNqk3B3SRv2GMLBXd7uJvUKwV3k7zxvC0U3M31jTuWUXB3h5p31aHg7l3+dGc0FNzdoRZ8HXfecfcePILWvcajT4d66O83j4J7GNxBwR2g4B6GicJLSMBLCFBwt+bISCe4Zy/aCP07NUDl0gU0ucNHT6pd60Pw9bqJSJwwfqg0Hz16jDzlW6FEoY8xuFtjCu7W5p5xtSm4G+eSCDeIgnuEIzeuQwruxrkk0CAK7ub6xh3LKLi7Q8276lBw9y5/ujMaCu7uUAu+jqvvuCdP/40qTfpidD9fHWK1WrP+FNzD4A4K7hTcwzBNeAkJeA0BCu7WXBmpBPenT58ia+GGGNWnJUoXza3JHT95BlWb9sOWxSORPm2KEGlK3VY9x+Hrb49i61I/pE7xLOa7xLhzpVy74Q+/iU+YNNUVaBF0rQjuXdr6IHmSqB7t8dZtNQcmP8XFix7tho27QUAE9y7tgDQporlRO+xV7j14gtGT/XHu3KtP1YS9VV4ZHgREcO+mIoy9ltr1ORDVh/4MDx+E1AYFd0/Sjfi2KbhHPHPTeqTgbppHIt4eCu7hw9zVd9yr1/9D6c+7oVHN0mhetxx+/f2vlwT3kCybf+EEGl/cFT6G29xK6bgZsPqNEogezSfMlpy5cxv5Tq3xmpAyG9OVRsnk6cM8frlwycWTqHdhh0t1TL1YQspse6scYrgwB0wdC+0iAU8Q4PutNaqRSnAXVLL6P6BzQ1QqlV+TC9jhHhCzLiScg8YuwMqNuzF3bHd8mD1z4GWXrt93yQN3Vbi3abN8KLi7RC1iLhbB3bfZU8SL69oiiqvWPXz4FNPnRKPg7iq4CLheBPfWLR4jYQLPCqf+/sDMeT4U3CPAp652IYJ7u1b+SJzItZrJEsYEf5C4xszVqym4u0rM7OspuJvtn4iwjoJ7RFA2uw8K7uHnH1fecVdt3IN+fnNR9rNPtQFXrt/EwR9+RdH8OdGwRilkf/dNXLn5IFjj1t86jWaXd4ef4Ta2VEoJ7nNSFA5TWNkAMy+rGO7F/17nNYL72lSl8Gkc12K4b759xqtiuK9MUxKeffOzcZKzaxKwSCBl4lgWW4jc1SOd4C7x7UoX/QSdW9TQng/4wRFSDHd//yfoOWwmtuw6hPnjeyBH1reemzGM4e49NxBDyniPL90dCUPKuEvOe+oxpIy5vqTgbq5v3LGMgrs71LyrDgV37/KnO6Oh4O4OteDruPKOKye8N24/ENjQ5Ss3sGnHQdSsUARVyxZE5kzpEdKmso13/kJzLxLcZyUv7JITGFKGIWVcmjC8mAQcToAhZaw5MNIJ7qOmLtMi+5rZgxA3dizU8h2IjOlTY8owFUNAlXEzV2Hr7m91iBkpLbqNxr5DRzGmvy/ezJgukHb6NCkQPXo0Jk21Nv+Mqk3B3Sh32GIMBXdbsBvVKQV3o9zxnDEU3M31jTuWUXB3h5p31aHg7l3+dGc0FNzdoRZ8HVffcYO2ElxIGQruwXOm4E7BPfzuWrZEAuYToOBuzUeRTnC/feceGncciWMnTmtyEot94aTegTHZewydqVb4D+DnHXP057nLtITUebF8MXcw3lICPHe4W5uAJtWm4G6SN+yxhYK7PdxN6pWCu0neeN4WCu7m+sYdyyi4u0PNu+pQcPcuf7ozGgru7lALvo6r77gU3AEJKcMd7iWRO5ZrIWW23j3rVSFllqcqEX43IlsiAS8jQMHdmkMjneAegOvajVt4+OgRUiV/lvzU3ULB3V1y5tWj4G6eTyLaIgruEU3cvP4ouJvnkwCLKLib6xt3LKPg7g4176pDwd27/OnOaCi4u0Mt9Drh8Y7r/+QpQ8qEgJk73LnDPfzvWrZIAuYSoOBuzTeRVnC3hu1/tSm4hxdJ+9uh4G6/D+y2gIK73R6wv38K7vb7ICQLKLib6xt3LKPg7g4176pDwd27/OnOaCi4u0PN83UouIfMmII7BXfP34HsgQTMIUDB3ZovKLhb48eQMhb5mVSdgrtJ3rDHFgru9nA3qVcK7iZ543lbKLib6xt3LKPg7g4176pDwd27/OnOaCi4u0PN83UouFNwD22WMaSM5+9B9kACphCg4G7NExTcrfGj4G6Rn0nVKbib5A17bKHgbg93k3ql4G6SNyi4m+sN65ZRcLfO0OktUHB3uget20/B3TpDT7RAwZ2COwV3T9xZbJMEnEeAgrs1n1Fwt8aPgrtFfiZVp+BukjfssYWCuz3cTeqVgrtJ3qDgbq43rFtGwd06Q6e3QMHd6R60bj8Fd+sMPdECBXcK7hTcPXFnsU0ScB4BCu7WfEbB3Ro/Cu4W+ZlUnYK7Sd6wxxYK7vZwN6lXCu4meYOCu7nesG4ZBXfrDJ3eAgV3p3vQuv0U3K0z9EQLFNwpuFNw98SdxTZJwHkEKLhb8xkFd2v8KLhb5GdSdQruJnnDHlsouNvD3aReKbib5A0K7uZ6w7plFNytM3R6CxTcne5B6/ZTcLfO0BMtUHCn4E7B3RN3FtskAecRoOBuzWcU3K3xo+BukZ9J1Sm4m+QNe2yh4G4Pd5N6peBukjcouJvrDeuWUXC3ztDpLVBwd7oHrdtPwd06Q0+0QMGdgjsFd0/cWWyTBJxHgIK7NZ9RcLfGj4K7RX4mVafgbpI37LGFgrs93E3qlYK7Sd6g4G6uN6xbRsHdOkOnt0DB3eketG4/BXfrDD3RAgV3Cu4U3D1xZ7FNEnAeAQru1nxGwd0aPwruFvmZVJ2Cu0nesMcWCu72cDepVwruJnmDgru53rBuGQV36wyd3gIFd6d70Lr9FNytM/RECxTcKbhTcPfEncU2ScB5BCi4W/MZBXdr/Ci4W+RnUnUK7iZ5wx5bKLjbw92kXim4m+QNCu7mesO6ZRTcrTN0egsU3J3uQev2U3C3ztATLVBwp+BOwd0TdxbbJAHnEaDgbs1nFNyt8aPgbpGfSdUpuJvkDXtsoeBuD3eTeqXgbpI3KLib6w3rllFwt87Q6S1QcHe6B63bT8HdOkNPtEDBnYI7BXdP3FlskwScR4CCuzWfUXC3xo+Cu0V+JlWn4G6SN+yxhYK7PdxN6pWCu0neoOBurjesW0bB3TpDp7dAwd3pHrRuPwV36ww90QIFdwruFNw9cWexTRJwHgEK7tZ8RsHdGj8K7hb5mVSdgrtJ3rDHFgru9nA3qVcK7uHvjSdPnuL8pStImTwJokeL+soOrt+8hXv3HiBNqmTPXXvzziPcuf/4lfWDXhD18F7EnDnIpTq8OGIIUHCPGM4m90LB3WTvRIxtFNwjhrOrvVBwp+BOwd3Vu4bXk4B3EqDgbs2vFNyt8aPgbpGfSdUpuJvkDXtsoeBuD3eTeqXgHr7e2LLzELoNmQ5//ye64Q7NqqFJ7TLBdnLx8jVUbtwHN/+7oz9Pkig+WtaviNqViup/U3APX9/Y3RoFd7s9YH//FNzt94HdFlBwt9sDwfdPwT1kv1zxv4+S59fjgv9dM53nolVrUpVE7lipXKq19e5ZNPp3p0t1TL04X6zUWJ6qhKnm0S4SsJ0ABXdrLqDgbo0fBXeL/EyqTsHdJG/YYwsFd3u4m9QrBffw88bde/fxSVlfLbCLcL5p+wH0Gj4LGxcMQ8b0qV/q6MKlq1i4ahtqV/4M8ePGwaS5a7B8/S4c3DgFcWLHouAefq4xoiUK7ka4wVYjKLjbit+Izim4G+GGl4yg4E7BPbSZScHdzPuWVpGAJwhQcLdGlYK7NX4U3C3yM6k6BXeTvGGPLRTc7eFuUq8U3MPPG5t3HEKXQVNxeNtMxIwRXTecp3wrfF65GHwbVHxlR6fPXkDZej0wY1Rn5P0oKwX3VxJz1gUU3J3lL09YS8HdE1Sd1SYFdzP9RcGdgjsFdzPvTVpFAhFNgIK7NeIU3K3xo+BukZ9J1Sm4m+QNe2yh4G4Pd5N6peAeft6YtWQT5izbjP3rJwc2WrPlQLz5eloM7tb4lR3NX7kVIycvxe7V45A8aSL8d/cR7j3wf2W9oBdE+X4PYjCGu0vMIurih62H4Gm23B7vLsqP3yDGtH4e74cduE7gYcsBePpBXtcrulgjytFDiDGpl4u1eHlEEHjYtA+e5iroUlexY0ZFgjjPFnFZPEOAgnvIXBlSBuAOd8/cd2yVBEwkQMHdmlcouFvjR8HdIj+TqlNwN8kb9thCwd0e7ib1SsE9/LzhN205Nu84iJ0rxwY22rDDcMRT4WImDm4bakfHTpxGbd9BqF6uMHq3r6uvvf/QXyVd9XHJwBu7v0LUaQNdqsOLI4bAk3bDkPDTfB7v7Oa+XfCZ3Nfj/bAD1wk8aTUICfMXcr2iizVuHvgaPuN7uFiLl0cEAf8WfZGoUDGXunrs/xQxo7v2XeBSB7wYFNxDngQU3Cm48xFBApGJAAV3a96m4G6NHwV3i/xMqk7B3SRv2GMLBXd7uJvUKwX38POGuzvcJZRM5SZ9kSv725g2oiOiRn0mrDBpavj5xoSWGFLGBC/YawNDytjL34TeGVLGBC+8bAMFdwruoc1M7nA3876lVSTgCQIU3K1RpeBujR8Fd4v8TKpOwd0kb9hjCwV3e7ib1CsF9/DzRnAx3HOXaYn61UqEGMNddrbXbTMU+XNnw9j+rQPFdgru4ecXU1qi4G6KJ+yzg4K7fexN6ZmCuymeeN4OCu4U3Cm4m3lv0ioSiGgCFNytEafgbo0fBXeL/EyqTsHdJG/YYwsFd3u4m9QrBffw88bde/fxUakWaPZ5OfjWr4ANX+1Hn5FzsHHBMGRMnxo3bt5GhYa90KphJRU6phCOHv8TEuP94xzvoHc7FUYmShRtTHwVgiZFskTc4R5+rjGiJQruRrjBViMouNuK34jOKbgb4YaXjKDgTsGdgruZ9yatIoGIJkDB3RpxCu7W+FFwt8jPpOoU3E3yhj22UHC3h7tJvVJwD19vbNx+AN0GTw9stF2TKlqAl3L1+n8oUKkt2jauguZ1y2Hlxt3o7zfvJQPy5MqKmX6dKbiHr2tsb42Cu+0usN0ACu62u8B2Ayi42+6CYA2g4E7BnYK7mfcmrSKBiCZAwd0acQru1vhRcLfIz6TqFNxN8oY9tlBwt4e7Sb1ScA9/b/j7P8G58/8iTcqkiBEjutsdMIa72+iMrEjB3Ui3RKhRFNwjFLeRnVFwN9ItTJoailuYNJVJU828a2kVCXiGAAV3a1wjreB+8787ePT4MZIlSRgmgk+fPsVjJRpEjxb1uevPX70XpvoBF927FwUzZvvg6rVnR+VZzCFAwd0cX9hlCQV3u8ib0y8Fd3N88aIlFNzN9Y07llFwd4ead9Wh4O5d/nRnNBTc3aEWeh1X3nEfPfbHhUtXkTxpIsSOFSOwYe5wD5kxBXcK7uF/17JFEjCXAAV3a76JdIL77Tv30KTzKB0rVkraVMmwYGJPpEqeJFSSS9buwNgZK/Ddlv8djZcKFNytTUCTalNwN8kb9thCwd0e7ib1SsHdJG88bwsFd3N9445lFNzdoeZddSi4e5c/3RkNBXd3qAVfx9V33FFTl2He8i8DG8uZLTPGDWyNpIkTcId7KG6h4E7BPfzuWrZEAuYToOBuzUeRTnD3m7YcKzfsxtrZgxA3TmyVoG2ATt42ZViHYEme+usf1G41GPIjJk7smBTcrc03o2tTcDfaPRFiHAX3CMFsdCcU3M11DwV3c33jjmUU3N2h5l11KLh7lz/dGQ0Fd3eoBV/H1Xfc2Us3440MqZE7Rxb8efYC6rYZivrVSqB906oU3Cm4hzoxt949i0b/7gy/yWtjS/lipcbyVCVstIBdk4DZBCi4W/NPpBPci1TrgFJFcqNLy5qa3OpNe9F31Bwc2zUXUaK8HOZFjtpdunwNG77ajznqhwl3uFubcCbXpuBusncixjYK7hHD2eReKLib6x0K7ub6xh3LKLi7Q8276lBw9y5/ujMaCu7uUAu+jqvvuC+24ttjLP6+cAXr5w2h4E7BnYJ7+N2abIkEHE2Agrs190U6wT170Ubo36kBKpcuoMkdPnpSregPwdfrJiJxwvgh0ly5cTdGTl5Kwd3afDO6NgV3o90TIcZRcI8QzEZ3QsHdXPdQcDfXN+5YRsHdHWreVYeCu3f5053RUHB3h1rwddx9x5XWHj16jDzlW6FEoY8xuFtjCu4U3Cm4h9+tyZZIwNEEKLhbc1+kEtwl8WnWwg0xqk9LlC6aW5M7fvIMqjbthy2LRyJ92hQuC+73H/q75IHrN59g3JSnTJrqErWIuVgE946toqjYhT4e7fD2XTUHpgIXL3q0GzbuBgER3Du1eYqUyZ5PjuxGU6FWefDwKcZNe4Jz55g8ObzZWm1PBPcu7Z4iTUrX5kD0aD6I6kN/WuUfWn0K7p6kG/FtU3CPeOam9UjB3TSPRLw9FNzDh7mVd1yp26rnOHz97VFsXeqH1CmSaMH90eMnwRq3+N+TaHJpV/gYbnMrpeNmwPIMxRAtatjf/f6+dwcFTq/FBf+7NlsfPt1vSFsanyVJ51JjKy6fQv2LO1yqY+rFElJmyxtlXJoDpo6FdpGAJwjEiuHaO7EnbHBym5FKcBdHyer/gM4NUalUfu23gB3u36ybhEQJ44Xoy5B2uF+79dAl/9+6/RRTZkSh4O4StYi5WAT3Ni2eIkF8z4pm9++rOTDLh4J7xLjVpV5EcG/r648kicL+w9ulDv7/4sePn2Lq7CgU3N2B5+E6Irh3aP0EyZK69hxIGDc6BXcP+4aCu4cBR3DzFNwjGLiB3VFwN9ApEWwSBffwA+7uO+6gsQsg77lzx3bHh9kza4NEcJfv3ODKmhun0PTf3eFnuI0tieA+P3VR+LiwYeLiw7v47Nw6rxHcv0hdCvnjp3HJC+tvnkbDS94Tw33ta6XgE0xoYZeg8GIS8FICSeLH8NKRRcywIp3gLvHtShf9BJ1b1NCEV23cg35+c0OM4R7gBoaUiZgJaWcvDCljJ30z+mZIGTP8YKcVDCljJ/3Q+6bgbq5v3LGMgrs71LyrDgV37/KnO6Oh4O4OteDruPqO6+//BD2HzcSWXYcwf3wP5Mj6VmDDIrhfun4/2I423vkLzS97h+BeSgnus5IXdskJV/zvo+T59V4juK9JVRK5Y6VyiQGTptl+uHQAACAASURBVLqEixeTgKMJMKSMNfdFOsF91NRlWmRfM3sQ4saOhVq+A5ExfWpMGdZBkxw3cxW27v5Wh5iRIsfs7t1/iLVb9urP9qyZgOjRoiJ69Gj68/NX77nkgXv3omDGbB/ucHeJWsRcTME9Yjib3AsFd5O9EzG2UXCPGM7u9ELB3R1q5tah4G6ubyLKMgruEUXa3H4ouIefb1x9x23RbTT2HTqKMf198WbG/4UUSZ8mBXyiRqXgHoJrKLgDFNzD775lSyRgOgEK7tY8FOkE99t37qFxx5E4duK0Jidx6hZO6q3/V0qPoTOxaccB/Lxjjv73r7//hWrN+j9HOU+urJjp11n/jYK7tQloUm0K7iZ5wx5bKLjbw92kXim4m+SN522h4G6ub9yxjIK7O9S8qw4Fd+/ypzujoeDuDrXg67j6jpu7TEtInRfLF3MH440MaSm4h+AaCu4U3MPvrmVLJGA+AQru1nwU6QT3AFzXbtzCw0ePkCr5M6Hd3ULB3V1y5tWj4G6eTyLaIgruEU3cvP4ouJvnkwCLKLib6xt3LKPg7g4176pDwd27/OnOaCi4u0Mt9Drh8Y7LkDIhM6bgTsE9/O9atkgC5hKg4G7NN5FWcLeG7X+1KbiHF0n726Hgbr8P7LaAgrvdHrC/fwru9vsgJAsouJvrG3cso+DuDjXvqkPB3bv86c5oKLi7Q83zdSi4U3APbZYxpIzn70H2QAKmEKDgbs0TFNyt8WNIGYv8TKpOwd0kb9hjCwV3e7ib1CsFd5O88bwtFNzN9Y07llFwd4ead9Wh4O5d/nRnNBTc3aHm+ToU3Cm4U3D3/H3GHkjACQQouFvzEgV3a/wouFvkZ1J1Cu4mecMeWyi428PdpF4puJvkDQru5nrDumUU3K0zdHoLFNyd7kHr9lNwt87QEy1QcKfgTsHdE3cW2yQB5xGg4G7NZxTcrfGj4G6Rn0nVKbib5A17bKHgbg93k3ql4G6SNyi4m+sN65ZRcLfO0OktUHB3uget20/B3TpDT7RAwZ2COwV3T9xZbJMEnEeAgrs1n1Fwt8aPgrtFfiZVp+BukjfssYWCuz3cTeqVgrtJ3qDgbq43rFtGwd06Q6e3QMHd6R60bj8Fd+sMPdECBXcK7hTcPXFnsU0ScB4BCu7WfEbB3Ro/Cu4W+ZlUnYK7Sd6wxxYK7vZwN6lXCu4meYOCu7nesG4ZBXfrDJ3eAgV3p3vQuv0U3K0z9EQLFNwpuFNw98SdxTZJwHkEKLhb8xkFd2v8KLhb5GdSdQruJnnDHlsouNvD3aReKbib5A0K7uZ6w7plFNytM3R6CxTcne5B6/ZTcLfO0BMtUHCn4E7B3RN3FtskAecRoOBuzWcU3K3xo+BukZ9J1Sm4m+QNe2yh4G4Pd5N6peBukjcouJvrDeuWUXC3ztDpLVBwd7oHrdtPwd06Q0+0QMGdgjsFd0/cWWyTBJxHgIK7NZ9RcLfGj4K7RX4mVafgbpI37LGFgrs93E3qlYK7Sd6g4G6uN6xbRsHdOkOnt0DB3eketG4/BXfrDD3RAgV3Cu4U3D1xZ7FNEnAeAQru1nxGwd0aPwruFvmZVJ2Cu0nesMcWCu72cDepVwruJnmDgru53rBuGQV36wyd3gIFd6d70Lr9FNytM/RECxTcKbhTcPfEncU2ScB5BCi4W/MZBXdr/Ci4W+RnUnUK7iZ5wx5bKLjbw92kXim4m+QNCu7mesO6ZRTcrTN0egsU3J3uQev2U3C3ztATLVBwp+BOwd0TdxbbJAHnEaDgbs1nFNyt8aPgbpGfSdUpuJvkDXtsoeBuD3eTeqXgbpI3KLib6w3rllFwt87Q6S1QcHe6B63bT8HdOkNPtEDBnYI7BXdP3FlskwScR4CCuzWfUXC3xo+Cu0V+JlWn4G6SN+yxhYK7PdxN6pWCu0neoOBurjesW0bB3TpDp7dAwd3pHrRuPwV36ww90QIFdwruFNw9cWexTRJwHgEK7tZ8RsHdGj8K7hb5mVSdgrtJ3rDHFgru9nA3qVcK7iZ5g4K7ud6wbhkFd+sMnd4CBXene9C6/RTcrTP0RAsU3Cm4U3D3xJ3FNknAeQQouFvzGQV3a/wouFvkZ1J1Cu4mecMeWyi428PdpF4puJvkDQru5nrDumUU3K0zdHoLFNyd7kHr9lNwt87QEy1QcKfgTsHdE3cW2yQB5xGg4G7NZxTcrfGj4G6Rn0nVKbib5A17bKHgbg93k3ql4G6SNyi4m+sN65ZRcLfO0OktUHB3uget20/B3TpDT7RAwZ2COwV3T9xZbJMEnEeAgrs1n1Fwt8aPgrtFfiZVp+BukjfssYWCuz3cTeqVgrtJ3qDgbq43rFtGwd06Q6e3QMHd6R60bj8Fd+sMPdECBXcK7hTcPXFnsU0ScB4BCu7WfEbB3Ro/Cu4W+ZlUnYK7Sd6wxxYK7vZwN6lXCu4meYOCu7nesG4ZBXfrDJ3eAgV3p3vQuv0U3K0z9EQLFNwpuFNw98SdxTZJwHkEKLhb8xkFd2v8KLhb5GdSdQruJnnDHlsouNvD3aReKbib5A0K7uZ6w7plFNytM3R6CxTcne5B6/ZTcLfO0BMtUHCn4E7B3RN3FtskAecRoOBuzWcU3K3xo+BukZ9J1Sm4m+QNe2yh4G4Pd5N6peBukjcouJvrDeuWUXC3ztDpLVBwd7oHrdtPwd06Q0+0QMGdgjsFd0/cWWyTBJxHgIK7NZ9RcLfGj4K7RX4mVafgbpI37LGFgrs93E3qlYK7Sd6g4G6uN6xbRsHdOkOnt0DB3eketG4/BXfrDD3RAgV3Cu4U3D1xZ7FNEnAeAQru1nxGwd0aPwruFvmZVJ2Cu0nesMcWCu72cDepVwruJnmDgru53rBuGQV36wyd3gIFd6d70Lr9FNytM/RECxTcKbhTcPfEncU2ScB5BCi4W/MZBXdr/Ci4W+RnUnUK7iZ5wx5bKLjbw92kXim4m+QNCu7mesO6ZRTcrTN0egsU3J3uQev2U3C3ztATLVBwp+BOwd0TdxbbJAHnEaDgbs1nFNzDyO/mf3fw6PFjJEuS8Lka56/eC2MLzy67dy8KZsz2wdVrUVyqx4s9T4CCu+cZm94DBXfTPeR5+yi4e57xq3p48uQpzl+6gpTJkyB6tKiBl9+88wh37j9+VfXnPo96eC9izhzkUh1eHDEEKLhHDGeTe6HgbrJ3IsY2Cu4Rwzm0XoJ7x6XgHjKxK/73UfL8elzwv2u/88LBgjWpSiJ3rFQutbT17lk0+nenS3VMvThfrNRYnqqEqebRLhKwnQAFd2suoOD+Cn6379xDk86jcPT4n/rKtKmSYcHEnkilhAApFNytTUCTalNwN8kb9thCwd0e7ib1SsHdXm9s2XkI3YZMh7//E21Ih2bV0KR2Gf3/Kbjb65vw7p2Ce3gTdV57FNyd57PwtpiCe3gTDXt7ob3jUnAPmSMFd4CCe9jvM15JAk4nQMHdmgcpuL+Cn9+05Vi5YTfWzh6EuHFio2bLAciYPjWmDOtAwd3a3DOuNgV341wS4QZRcI9w5MZ1SMHdPpfcvXcfn5T11QJ7y/oVsWn7AfQaPgsbFwzT37sU3O3zjSd6puDuCarOapOCu7P85QlrKbh7gmrY2gztHZeCOwX30GYRBfew3WO8igS8gQAFd2tepOD+Cn5FqnVAqSK50aVlTX3l6k170XfUHBzbNRdRokThDndr88+o2hTcjXKHLcZQcLcFu1GdUnC3zx2bdxxCl0FTcXjbTMSMEV0bkqd8K3xeuRh8G1Sk4G6fazzSMwV3j2B1VKMU3B3lLo8YS8HdI1jD1Gho77gqshsuXb8fbDsb7/yF5pd3h6kP0y8qFTcDZiUv7JKZ3OHOHe4uTRheTAIOJ0DB3ZoDKbi/gl/2oo3Qv1MDVC5dQF95+OhJ1G0zBF+vm4jECeNTcLc2/4yqTcHdKHfYYgwFd1uwG9UpBXf73DFrySbMWbYZ+9dPDjSiZsuBePP1tBjcrTEFd/tc45GeKbh7BKujGqXg7ih3ecRYCu4ewRqmRkN7x00QPx4F9xAoUnCn4B6mG4wXkYCXEKDgbs2RFNxD4ff06VNkLdwQo/q0ROmiufWVx0+eQdWm/bBl8UikT5vCZfpXrvtj6Wp//HfL5aqs4GECceICtatERcqk/0vS54ku/7vtj0Wr/HH9uidaZ5tWCMSI8RS1q/ogbcpnu2s9Ve49eIKFKx/h8mUmT/YUY3fbjapu/9pVoyB9GtfmgBy/jupDf7rLXerJ8fbNOw5i58qxgc007DAc8eLGwcTBbfHg0RPEjO7jUhdXvj0En/XzXarDiyOGQJRStZA4b36Pd3bl++/h88Ucj/fDDtwgULwakhRwbXepG73g6o8/Isrqme5UZR1PEyhSEUmKFHepF3e+C1zqIBJc/Kp33LSpk4f4m+aLC39h5PUfvYJS7pgpMTLDJypBe9h/W/x15zZan92La08feAWD3sk+ROkU6V0ay8aLZzD02mGX6ph6cbboSTAxY37EcGEOyFjuPvA3dUgu2xUtahSXx//g8ROVb0kdhfGSEiem6/qPN82B6GoOuPIc9BK3R8gwKLi/ArOs/g/o3BCVSj17KQzY4f7NuklIlDBehDiJnZAACZAACZCAtxN41Q53bx8/x0cCJEACJEACEUWA77gRRZr9kAAJkAAJRFYCFNxf4XmJb1e66Cfo3KKGvnLVxj3o5zc3MIZ7ZJ04HDcJkAAJkAAJhCeB4GK45y7TEvWrldAx3FlIgARIgARIgATChwDfccOHI1shARIgARIggZAIUHB/xdwYNXWZFtnXzB6EuLFjoZbvQGRMnxpThnXgrCIBEiABEiABEggnAnfv3cdHpVqg2efl4Fu/AjZ8tR99Rs7BxgXD9PcuCwmQAAmQAAmQQPgQ4Dtu+HBkKyRAAiRAAiRAwd3NOXD7zj007jgSx06c1i2kTpEECyf11v/LAhW76wnuP3iIuHFihYrj7r0HiBbVBzFiuBYXmYy9i8CazXuR7+PsSJEsEU6cOocLl66iUJ4PvGuQkWQ0El7r2G9/In/u7IFi6BMVx1zigkZV9zoLCbhDYOP2A+g2eHpg1XZNqmgBnuUZgTt37yNmzOjq+zTkWJNh/V4mU+8mEPQ79tqNW9jx9Q+oWqYgokRhrgmnef7sP/9i36EjyKQSSH+S811tvnzXPla/waNHcz3urNPGT3s9Q4DvuJ7hylZJgARIgARIIIAAd7iHcS7Iy8rDR4+QKjmF9qDIdn59GG16T8CeNeORLEnCEGmWqtMV77/3Job3bBZG4rzMGwm8V6gBpo3opETabJg4Zw2+2vsD1s8b4o1D9eoxNe3sh+9/PoH3Mr+OmhWKoGyxT/XLf5teE/S4Jw1t59Xj5+A8S0AE43Pn/0WalEm5SBsEdcAJgBG9mut7LqQS1u9lz3qRrdtNIOh37OGjv6Num6E4smN2qIs1dtvM/l8mMG/Flxg1ZRmyvp0RObK9he6ta+uLlqzdgbEzVuC7Lf9boCQ/EnCHAN9x3aHGOiRAAiRAAiTwagIU3F/NiFeEQuDmrTs49dc/yP5uplBf4mSnVexYMZE+bQryjMQEKLg73/myI0riai+f3k8LAFJWb9qLweMX4uHDRyicJwcFd+e7mSMwkICcIPnpl5N4I32aUJO2h/V72cAh0qRwJEDBPRxh2thU2Xo9UL54nsCTPvKbu3arwZDv4jixY1Jwt9E37JoESIAESIAESIAEQiNAwd1L58evv/+F1r3Go3jBj5QYtgcPlBBWt0pxdPGtqUfcddA0vJEhDWRXw9ff/owG1UvqHXP9/ebhq30/KHE8Bj6vXAwNapRUP+hj6d2r85Z/Cdlpc/3mLaRLnRx9O9TXL/2te47D1qV+OozEtAXrsWDVVv0iIDveO6lks2VU0tnuQ2fgnTfT635k9+LoacuxcuNubddHH7yDkb1bIGniBAiwu0KJfGr3znZta5PaZdC0Tlkv9ZQZw5KdUt/9dBy53n9bi6dvZ0qPoT2aYNaSTZi7fAvu3X+Isp99iuZ1y2nfS/nmu2MYokTWvy9cRuKE8dGwZint38adRkLCjYj4miRRfHRoVg2VSxfQdSi4m+FvK1aU/rwbzvx9CSmTJ4aPCk2wbdloNT8e6OeCJJSOHTMmBXcrgFnXkQSK1+yMvB9ng+wuv3LtJvLkyopxA1vrcGvBPV+H9WyqQkT8jAGj5+Hfqzfw6Yfv6e85eQaH9nyV02JDezRFjqxv4c+zF9BjyAwc/+OM+v6Nipzqb1OGd8Bp9feg38u//XEWXVWYHhHq5JncsXl1VCqVP/C3QDQVkuLk6X9UmK+z+Oj9d9CrfV0l6jNmvqcmovzOaatOBg7q2hhT5q9T8+UGtiweibP/XNJ+ks9lUaVeteKB350SUqTX8Fk6vKGE5yvwyfsY3c8Xk+asxfyVX0LC9knIvqplCqBn28912BgK7p7yYMS1O2jsAixbtxPx4sZGfPWfn/L5e2qh+9LlazrHxZylmym4R5w72BMJkAAJkAAJkAAJuESAgrtLuJxz8Xc//YYG7YfrWI/VyxfCngNHsG7rNzp8h8SArNasv36pk5d7+S9ntsz6R/0J9WIuL2tSeg6fidYNK6N2paJaMBBxtV61EiiSNwd2fvMjEsaPi49zvBN4TPn7n05osXVQ10bInOk1HPzhVzx6/Bgt61VAjeYDkDN7ZnRrVUuLuBNmr0bbxlW0eDtyylIV0zsxlk3tq0TfZ3Zny/IGGiqx//TZi/qlcd8XE7VQwOIZAuNmrsLMxRv1CYRiBXJpv8giy5AJi9C7fT1kfiMdRk5eqhdYJGHwH0qcqdCwl97NXKfyZ/hDCTmHDh/XQuuUeV/gXRVqROK0b9n5LeYs2xwYcoiCu2f8F5Gtrli/CwPGzIdf35ZaBJAY7gGlfd9JePzYn4J7RDqEfRlBQJ5tktulVcNKuKjEsKlKSO3SsibqVi2O4J6vH6rv3fL1e6JxrdIoWfhjrNm8T31Hf41vN09Twvj5EJ+vQZ+hlRv30UJ73w719ILXwlVfYXR/X/V8/jvwe/nhw8coWLkt3sqYDi3rV8Tegz/p7/NFk3pp0V5+C4jQ3kJ9T0uIqEFj5+MTJf4P7tbYCK7eaETA7xzZnVyxZD59+q9No8ooWKUdsr3zhvJTBbUA8rfeALFp4XAdWqlQ1fbqN1ACfd2TJ0/076LNi0Zg7ZZ9KoZ3NLyePhX+Ur+Xug2Zrp/NpYrkpuDuBZNHFsuqN++vf3vnzpEF2bNkQsIEcfXIZNOK/C5jSBkvcDSHECyBR+r3ZLWm/dBHfcd9qN4hI2OR3Ffb1UY4efeKjIVzAOr3IecAnwORew44/dlHwd3pHgzB/oAXumO75gYmyMpTvpXaoVwe9dUPd3nJfjdzBgzo3FC3EBAbVsSCTz98lpBJXt4v/nsVS6b0gezey5AuFWb6dX6ux6BxQfcqUV/iucuuq6L5ciJ69GiB1wYV3KWtd95KjwmD2urPZSGg57CZWpSVnXkiuAe1O0fxplrElx3WLJ4hIILQ5h0H8eWSUfDxeZZQTXZSZkiXUs8ZKUd+PYUx01fgh60zMVQJ8V98+TUOb53xUgK2x/7++Fld+/Ovf+K8Soq6eM1XWDChp/6xTMHdM/6LyFZFAKjSpC/2b5isF92CFgruEekJ9mUSAXm2zfLrgk9zvafN6th/Cm7dvqu/M4N7vsoC9ib1zJ08tL2+/uGjx2jUYQQWT+6tvxNDer4GfYbKM1pOF41SAmvaVMkCcQT9Xt6lFsflvty6dFTg6aT8Fdvo3fiSU0V+C8jCuSwOSJFTbHOXbdHfxyyeIRDw++zAxilIEC+O7mTX/h/VqYTxmKpOKMT//791GTgVlVWS07ffeA1t+0zAF3MH64WTF4tsnvjx2En1e+06FqnvW9msIBsauMPdM/6L6FazF22EUX1aoEShj5/rmoJ7RHuC/UU0AdkIJN+fsjiZPGkiHVZJFikjS5F384KV2+kTTLLpTHI4DOzcKNSQct7GhnOAc4BzgHPA6c81Cu5O92AI9gcnuEvCrGRJEmDsgNYvvWT//uffqNSot96hF1Qol53n88f3gPzg79isug4xE7QEfbF/okLFdB86E1t3f6svkV3zA7o01EfTgwruIqC3b1pVC/9S5Ki0CAeyw/3+g4cvCe6yUNC+aTVUL1fIS71l/7DkB+3u/T/pF/qAIn6KoRZNXjxZMG9cD336Qcrs0V2fM/4/JTDVULux/rl4Re3GelcJPMmwYsNuzB3bXYs6FNzt97VVCyi4WyXI+t5I4EXBfcaiDZitwj0c2jRVCwYvPl8DEg+nUqGZgpbOLWpiyRfPwqm9+HyVvwV9hkpImo79J+uXcREkZHFUQrAF/V5epBbOx6sTZT9ue/bMliLCrsR5Xzix50u/BSSkmJw6E7tZPEMguN9nAYkxX8xzIyfOZGf7GJUc8+cdc14yqNOAKfhy17d4X+XRkTCB8vurjgoHKL+xKLh7xn8R3SoF94gmzv5MICAhTwupUz9yqqd88bx6l/eIyUswY1RnfXo7MpQR6gSL7G5eP28o/r1yHYPHLdTDXjat70ubnbyRB+cA1JznHOBzIHLPAW94tlFw9wYvBjOG4F7oPirVHFXUbqnurWu/9JItx9HzVWijX8BFKH+xyAq7xFqXo8pBS9AX+2jqaLsUaevbH3/TP4wyZUird/gFFdylrbwfZdVxaKXs2HdY797avny0jgf+4g53Cu6en6TBCUJFqnXQcX7lx+6LRU4k7D7wE/avn/zcR7IrU+LMfrNuUuAODBGIKLh73ocR1QMF94gizX6cROBFwd23x1i9mLxxwbBgBffeI2bjpFroluTDYX2+ynVBBXf5t+REkfAjsit+wcqtWDtHkineDQwpI2JsNxUXfO/aCTpPihQ5ZZZVhS4Zo8LPvLjDnYK752ddcL/PNu84pDYsTMcPX854btODWCMnISTvzs6VY3XujIDy75UbKKxCzUiogYKfvq//LKePJMwXBXfP+zGieqDgHlGk2Y9JBOR767sjv+ErlSdIcoRJkQTCVcsW1PmivL3I+3CJWl0wonfzwBPeew8eQTt1Yi3oAro3c+Ac4BzgHOAc8IZnHAV3b/BiMGMIeKGTcDAS/1N2T0nSU9lFLvHRX3zJliYqNuytjrU/0i9vUuenX05h//fH9IubHH9fpXa+DenWBJ/lz4k96kv/zt37Oua37Jw/smM2vtrzvU7CKsf9fHx84NtjDBIliKd31AcV3GWFXmLVThzSTh9x76SO3l+9fhNfKcH9+yMnKLjbMCeDE9xHTVmGhau3qQWTLjocjMSHlXjsslAScPxdjq1LDHdJ9ia7T2Ruye5JCYsgvpXd7ZPnrqXgboNPPdVlcIK7hBGSWNGdB07R8YXH9G+NmCqBX8BLkqdsYbskYAoBEcLlu7J6ucL4au/3GKhioctipSRCDe75Kkmnm3XxUzlT6qBa2UK4phaqv9jytUqGmR2X1E42eY6++HyVfwcV3CUZuQgPb6ucKRJSRL6L5dkr92DA9/KNm7chi6eyQ1CSpcoLuyyKBsT5puAe8TMoOME9YCffZ/lzoV/H+oCK7Lbv4M86D44I6OLDgp9+oDdMyHN18twv0FklpZcNCRIOSH53ff3dUR2er1HN0hTcI96tHuvxRcFd8utIIvu1W/bqZ8ueNRNUHP+oLy3UeMwgNkwCHiZw/OQZVFWx24OGaTt15rzOe7J61kC882Z6yL8lSbkkmJZQbnLKy5uKnIK7rBKqBz15LAv5Dx48wuwxz04Xy0Kt7HzPr343ZFInnLypcA4AnAN8DkT2OeAtzzQK7t7iyRfGEfBCF0OJXg8fPtKfdlUJSwPCuMhLdu6cWfQLW0CRMCAS61XigQYUCePSr1MDHeNdjq7vO3RUfyQvfEO7N0UaFTe2bpshWnCXGO7t+03SO+6kiAgwbmBrJcqnRM2WA5FTJWgTG27fuYeW3cfqY+9SJAHUnDHd9A8oEdzrtxv2XAx3eaHs0KyaFiVYPENg/KzVKrHuT1gze1BgBw/UvOk7cg42bj8Q+LeMKjyQ7NiUIolvpy/c8L+5Ur4w+qgEq/XaDtXijxQR4I8e/xPzxnXXJyRELJLjoHLCYdKctdimhClJ5MviHAInTp2DJGsMGn84IL5e0FF08a0ZKXYhOcdztNSTBOTZFvT7VuIty840EcKCe76KLbIQLnkxAr4z5btwwfieeDNj2mCfryLEBn2GyveqPF+liNhQo0IR/Z1++KiI78++l+Xk2Zadh3QyzYB+qqtntRZ1VXnxt4AcX5cjzAwp47nZEtzvHOlNEs13GTRVb1yQIr+zBnVtjAol8mphSXwo4YOkSH4VSZoq80dCF0mR8G+SC6BWxaJacA/6HfvinPDc6NhyeBN4Jri3VDHcP9JNy290uW+Dljy5sr6UYym87WB7JBBRBBp2GA6fKD6BwrL0K4vI8j4rp8IWr9muc0nJyZ7LV2/ir3MX1AntXvo90htKgNi8cobkW3tdD0nyaNX2HaRzYmV5KwMknNiRX/+A3Ps71PdDmaKfeFWyc86BZ2Iz5wCfA5F5DnjD81zGQMHdWzz5wjgCBHd54b52/ZY+Sh7W3abyQidhYSR+u4gFQYuIsNeu/6c/C6492Xkjx5zjxY2NuHFihUpX+pC+giZ781J3OHpYsnv50uXrKjlfPCXqPO9TEXAuXb6GpEkS6h3NAUWul/mRTP2dhQRIgAS8nUBASJnMaqE5dqyYYd5tJ9+ZsqNdnp+SADVoCen5GvQa+Q69ob5LZfE7tCJtnTv/r/ruTvTSc9zbfeO08clvIzkxJL6KEuVZEvOAIr+vYsWKEZhsVf4uuVPkJMOL8d+dNm7aSwIkQAJCQJ5ncrpHEqVK2aM2dMnu7oDd3nIiO9PraVWOse76e1PCTvx17mKwcvwGmQAAIABJREFUIdqcSlRyq2V+41mSbPmdUE7t7n8tTQqdWLtFt9F6A5ycOJYF2T/PXlCn1Hvp08RyItkbCucAwDnA50BknwPe8CyTMVBw9xZPvjCO4I4se+lQOSwSIAESIAESsJXAizHcbTWGnZMACZAACZCAFxCQxWIJqSWhtQZ3a4wBY+ZD3nFz58iCNVv2oa0K3eajNvjMUSd99qwZHzhiEalfXLB0Ko6A/FjbV4xB7JgxkLdCa5UkvRzk77IBbojiIife5ER62c8+1cN88uSpCu/6/IKtU8fPOQDtawkHGNY5IGGE31ILNnKi3BuKq3PgqtocKifxu7WqHeYNMKZziuxzwHT/hGYfBXcney8U2yXumxwjr1ethJeOkMMiARIgARIgATMILF7zlcpvkuu5pJZmWEYrSIAESIAESMC5BCQvyscfZNEhSNv2mYAkCROgf+cGOK12dvcdNVeHKK1UKj8GdG6oQ6ItW7dDD7ZU4dxKhK7v+FNdIh4e+eUPFMmXUydjL1Wnqw77Jqfp5LfHWJXLQcLt7F49DucvXUUPld/lzN+XkDpFEjX+hmqxIptznf//lnMOhH0OSI4PmSMSiqx00dyO933AAMI6B2RhThLNy3Nh61K/MEd4MB2UK88Bb50DpvsoJPsouDvVc7SbBEiABEiABEiABEiABEiABEiABCIBARGYJ8xegy+XjAwMwyYhZ95SuU+mL9qAVRv3qNwXjXT4Fb+pyyGhUDs2r6YSkr/vFXQeqTwd+Sq20cmxZZe7lJv/3dFJs7O98wbK1uuuWKTDkO5NcOD7X5QYv1LlbyuJJnXKIGH8uF7BgHMg5DkgsfwbdxypQwMHzcu2Vp0GKZI3p160klCEknRb8v5Inh8nltDmwI3/bus8J7NHd8UnH76rhychp2QRSvI+SBHxPuNrqXXOJCeW0J4DkWUOOMlvFNyd5C3aSgIkQAIkQAIkQAIkQAIkQAIkQAKRjICElmjTe7wOKyOCYc6sbylR7T2VbPo/lKjVBSN6NUfZYs/Cqoiw+FGp5ihXPA+G92zmNaRk7M26jsYH72VCuWJ5dGJVSRjbsf8U/KwSqW5SCbUD8moFJNbetszPa3KmcQ5Az//g5oAssjTpPAqrZg7QyXWl/KROR9RpNVglFu6JRCrnwYr1u5Tgvk+diBivTknEcOR9EdIciBM7Jio37oPEKom8CO4B5fPWQyA56SS58tHjf6JB+2FqIa46GlQv6cjxi9GRfQ44yXEU3J3kLdpKAiRAAiRAAiRAAiRAAiRAAiRAApGUwNbd32HFhl14/Ngf88Z1V2FkdmLYxMU4vG1m4K7deSu+hAjOEttdkqvOVnHez6mQLI1qlXZ8kulLl69DxrfnwE/o6lsLhfJ8oBcXmtYpi2afP9v5LmElClVph6plCqKLb029E759v4kq0Wo+vSjh1N3NAVOec+DlOSAhl6RMGNRW/6/kMihTtztefy0VpgzrgNq+g3Dk11M65HC3VrUc//R4cQ6cO39Zh9PZsniEusdT6vHt3v8TWvUch3Vzh+DmrTuo13aoDjOzd80EtQARz9EMgnsORLY54AQHUnB3gpdoIwmQAAmQAAmQAAmQAAmQAAmQAAmQwHMENmzbj+4qdvn6+UORKUMa3Lh5GwUqt0W7JlXRWAnsUjbtOIgN277BvkNH0aphJfjWr+BVFPOrUDMfqVj3Y/r76nGNnrZCx7Pfo4RF2fl7QcV3X/rFDqzatAdxVPz3OWO7O37hIagDOQeAPOVboX3TaqherpBGs2bzXvQZOQc7Vo5BquRJ0FydjPjtj7P47/ZdfTpk7MDWSBAvjtfcB5JYVBbeJMeBlEdqQa5I1fYqlMwHOumyjL1Kk754O9NrOK3CzMjfJASLN5XIPgdM9CUFdxO9QptIgARIgARIgARIgARIgARIgARIgARCJSCx2mu1HKhFtLKffYpTf/2Dfy5e0UKj2uSLX3//CymSJkLqlElx7MRpvdN38tD2KqFodt3u1t3f4mcVaqJLy5qOJS27fTv2n4z3382EHEpMlR3wEsu9Ysl8kJ2w5y9dQVYV5z1KFKikktPx+5/nsHHBMD3eJ0+eonWvcejQrJqOAe/EwjkATJm/DjMXb0SLuuXxRobU6DlsJupULqZE+Ko49ONxNOowAsun98Pr6VJhydrtaFK7LL7+9mfkzvluYBgiJ/o+wGZJLFr6825qnmdEpZL58cPPJ7BaLTrsWztRx68XsT1e3NiYP76HznEgJaPidPnKDWTL8oaThx5oe2SfAyY6kYK7iV6hTSRAAiRAAiRAAiRAAiRAAiRAAiRAAiESaNhhOFo3rKximr+Jb1Ty0M07D6md7Pt1CI28H2dFHd/BOP7HGV1fdvnK7nYJNSOhZeqr0BoLVm7F5Hlf6FArPdvWcRzpb3/8DXOXb8GEwW1x9fpN7Nj3g04sm1wtMIigvvfgEbTsPlbvchdRurTa0SsJI6ctXI8fVQiew0dP6pje67Z+jV2rxiFp4gSOYxDZ50BQh63cuBvffHtM3ws+Pip0ytoJiBE9GorV6ITs774ZeAJC6vz+59+o1Ki3nvfFCnyEFMkSOc73LxosCVIlqepvf5xTc/t3HTpHQujIoprkOQgabkbqyr0hC3IS8/319KkcH2pJxhTZ54Bpk5iCu2keoT0kQAIkQAIkQAIkQAIkQAIkQAIkQAKhEhg1ZZnezd2gRkkVJiMzBo6djw+zv62FxZOn/0bFhr2VyDYS6VInx46vf8DAMfNVktVb2L5ijA6nITtir1y7ia4izFUtrnaAR9Ei9czFmzB9ZCctVJtcTp+9gDqtByNh/Lh6MeH472ewcPU2rJk1CG9mTIumnf0QO3YMHdf74uVrmL5wg06cWaFEXgzt0VSHmRk8biFSp0iik0rKKQAp9dsNQ02VmLZUkdwmD1/bFtnnQHAOEr8mS5JQCem5cOLUOZ1MdPfqcXohJqDUaD4Af549r+fOhX+vIWe2zDq5qjcUGc/kuWsxoHNDHbO9caeReC11CvTv3CBweN8fOaHneYZ0KfX4/VVi1aAnX5zOIbLPAVP8R8HdFE/QDhIgARIgARIgARIgARIgARIgARIggTATkJ2sy9ftwsHDv2qBUZKExowRHcdPnkHVpv1UvPJuyJ0jCx6qHd6FVExnCTvTs+3nOtRKkWodULl0AS2yp02VDEum9NH1VmzYjX4d64fZBjsvvHvvvgoRsgObVZz6x/5P0LdDPeR6/21tUuOOI1UC1QdYoIRUSZQq1w2ftBg7V47Vgmx/v3l6IULiXK9XMe5n+nVBLrVgMXHOGuT7OFtgO3aOLyx9R/Y5EBqjgNjm+2S3u7ovpHy193u07ztJn4LImD41zqqEwrv3/6jjnntLcuGgTCS2ect6FVBXLapJkTBKJWt3wbuZX8c4Fcte/j1fLdzlVXN+2MRFXpNcOIAB50BYniKeuYaCu2e4slUSIAESIAESIAESIAESIAESIAESIAGbCEyasxZTF6xDptfTKlHtiY7t/s26iWrneiy06T0Bf6hd8JsXjYC/+uyP0//o3cBbdh7EtBGdbLI4fLv9V8WnrtiolxLdH6qwO5lUXOvf0apBJTSvWw6nzpxH+fo9MVGFoymSL6cef0q1071+26Ho0aaOSsL6TvgaY1NrkX0OiIgueQsu/ntVhx7K+nZGFKzSDqUK50YftTgTtISWXFhCEo2dsVKFcKqkY6E7qQSEVipfPC+G9WyqFuh2YsiERdihTroE3fX/quTCG7cfQPy4cdQC1ftOGr5eSInsc8Auh1Fwt4s8+yUBEiABEiABEiABEiABEiABEiABEvAYAQkZI7vWW3Qbg36dGqB6uUI6bnO1Zv11GJWc2d7Sfd+99wAFK7dFDRVKpWOz6lijEi5WKVNAh5lxcvFXu94ljv20+etx+Njv2LNmAqJHiwqJfS5C/LKpfQOHN3fZFoyduRJ71TW/KEavv5ZK7/x3enFnDnRuUQMbvzqgFiNy6AUaJxeZA9tVfH9JFDx/5ZeYsWijSiY6IVA4F0H2VcmFx89ajUUqXNGeNeMdyePvC5chgrrsas9XsQ2a1i4D3wYVA936quTCN2/dQaEq7eFbvwKa1inruOnAOWCPyyi428OdvZIACZAACZAACZAACZAACZAACZAACUQAgVN//YM3MqTRArqIhxLDOWjMar9py/XOVxGkr9+8heI1O2PHyjE62ao3lEePHqtY1VeRPm1KveP1g88aY/n0fnrHsxQZc8HK7fRig8TEl5AjEv96dD9fbxi+HoMrc0Di9+cu0xLdW9dGpVL5vYbBtAXr9a5uWUyS8ljFLn9VcmGJ/1+0WkcM7NIosJ5TgUj4nKETFuq8BgEhdl6VXFjG2s9vLnZ+fRg7VXJhWbByconscyAifUfBPSJpsy8SIAESIAESIAESIAESIAESIAESIAHbCAwauwDfKcF92dQ+erfueRVqppgS2CWRqCQU/ea7Y2jZfQx+3jHHNhs92bHs+BZxXZLLlij0se6q57CZetyyyCDx3ss36IUyRT/R4We8sbxqDsgCxQfFmugTANmyvOGNCPSYXpVcWBLqtu45XidY3bRwuONPfATnyFclF5aFGrkfAsIvedtk4BzwnEcpuHuOLVsmARIgARIgARIgARIgARIgARIgARIwiIAkUG2kEopK2JTdq8eh2+BpOH/pGtbPG6KtXLhqm/5v2zK/QFGypQpJ075ZNZ101RvKjn2H0aH/JDSqWRqliuRG5cZ9VOz6jjrsiJQcxZvCr09LFM2fUyeVHDV1GQ6pxLRLlQAtSWmdXl41BwJE1m83T0PcOLHw3+27aNVjHDK/ke6l2OdOZvGq5MKHj55E3TZDsGhSL+TI+iz8kreVVyUXrtlyIHzUyRhJquyNhXPAc16l4O45tmyZBEiABEiABEiABEiABEiABEiABEjAQAJXr/+Hy1dvoEqTvs/tZB4wZj4uqTAaU4Z1wNbd36HLoKn4LH8uDFcJFwPCUBg4HJdNkkSY/iqkiCSQfazCzMwf30O3cefufXxcugU2Lhimw4+07D4Wx06cxnSVTPbjHN6RTDUAVkhzQBYkug+dju+2TNcJZSXmffx4cTB7TDfIrm9vKiEllo0dKyZKf94Nb2ZMp3d3e2sJLbmwhJGR+2P9/KHIpEJSeWuJ7HPAU36l4O4psmyXBEiABEiABEiABEiABEiABEiABEjAaAInTp3D25leC7SxfrthyJ4lk/73nGWb0atdXdSuVBQSiqW/3zzsPXREx3aXBKuNa5U2emxhMe7GzdsQ8T1l8sT68oCksmvnDEbjjiOQOFECzPLrghTJEunPWvcar1nkyfUeurWqjYzpU4elG6OveXEOzFy8EV/u+hYt6pVHpwFTUFqF1xmkYphL8kxvnAPBJZZdtXHPs9jlK8cGzg2jnWjBuOCSC0tzRaq2R9F8H6J/5wYWWndG1fCaA7KAseGr/cidM0tgjghnEAh/Kym4hz9TtkgCJEACJEACJEACJEACJEACJEACJOBAAhLfXEKIxIgeTQvNEsNbQpBUaNhL7Qh/gukjO2nB2bfHWNSpXAztm1Z14ChDNnnj9gMqzM50nTRVEob26VBPx3WX3f4d+09GF9+aKFU4N6bOX4c1W/Zi3xcTkTB+XK9i0GPoTHy5+1vt9wGdG6Jq2YKRYg4EJJa9d/8B8lZogwbVS6Jdkype5dvQBhM0ufCMRRswVSWZlbBT3ja/Q2Pg7hyQ0yJ/X7iMZl38kDRxAv3/q5QugH6dvH+xIiSeFNwjzaODAyUBEiABEiABEiABEiABEiABEiABEgiNQI3mA/TH00Z2ROKE8fX/l92+A8fOVyJ0VL3bvVWDSti84yAmzlmDPWvGexXQPQeOoH2/SeivhDJJIivl6dOnSoBtDREkkyVJiCHdm6qY3m/qv8kJAEmw6k1l3MxVWLFhF2aP7oosb2WIdHNAxNIBo+dj0tB2YYrZf/afS2jedTSWTumLRAnjecVUmL5wgzrdER/VyxUK03jWbN6L7ft+0KGovKG4OgdmLdmEsTNW6pBLXy4dBTk5IydH8n6U1RtwuDUGCu5uYWMlEiABEiABEiABEiABEiABEiABEiABbyQgAnMUlSgxoLTuOR5xYsfUu7uHjF+EAz/8gtfTpcKjx4+xZvYgr0MgiVJ9fP43fhFUS9XppsOLfHfkNwwauwAfZs8MEedFlP7kw3e9nkFkmwOuOFTCMH1/5ATixY2t7wu5T3K9/7YrTTj62rv37kNOxkjJmS2zvjc+r1JMPTNiOXpcrhi/cuNuHW4pIMfB6lmD1EmgG/j9z7/x3tuv6xBNDWuUQnR1ciiyFArukcXTHCcJkAAJkAAJkAAJkAAJkAAJkAAJkIDLBHqPmK0SqV7HTL/Ouu6RX0+h1/BZaFK7DCqWzOdye06rIOEiClRqC4nrnvmNdDrmu4SUkV3+W9Vu1qCLE04bW1jtjWxz4OjxP/HTL3+oEx2f6fBCIZV9h46iRbfROvGwhBIZPH6hXoiRkx9yGsLJZfys1ShfPM8r8xSMmLwUssN9RK/m+OvcRRWKZh36dqzv+JMfYZ0DsuAgIYga1iiJ1g0rY8fXP6BYgVw62XL7PhNx4d9rWojftmz0cwt5Tp4bYbGdgntYKPEaEiABEiABEiABEiABEiABEiABEiCBSEngz7MXUFHFcG9Rr4KKa10iUu1cDXC4JA/98dhJTB7aPjDMyosnAbx5clidA/sO/Yy2SnxMmyqZEiUroWThj43GJQlix05fif3fH9Nx7D9VSXJfLJLToEi1DiqBblYM69lUfyz5Dz4t64uJg9uiSL6cuH7zFhIliOfIRRnx2YDR81Dw0w/QoVk1vYP/xSKhV0rU6oIRvZuj7Gef6o9v37mnFuiuYdTUZYgVMyZKFcmNEoU+MtrfwRkXljkg9YZOWIx1W7/GvrUTECNG9Oea+uHn31Gv7VDMGdsNuXNkcRwDKwZTcLdCj3VJgARIgARIgARIgARIgARIgARIgAS8nsDxk2fQptd4vVvz7UyvYdGkXmES3mU3fOoUSZEiWSJHMxJxVQTEhau2IWGCuDqOfZ3Kn71yTBKeZvf+H7X46vTizhyQHc8Sgufg4V/Rs20dJTz7YM7STepkgF+oO8dNYXXqzHn0USc8YseKqRNgpk+bItC0eSu+xJjpK/Ru9oB8Bwd/+BWNO43EF3MH462M6dRCVW98nOMdNfbPTRmSS3Y89vfHolVfYe7yLWrBrTxqlC/y3C7tpp39cPnqDT3egPLV3u8hC1R1qxRHmlRJMWH2GpRWortTE4iGNgfO/vOvCjfVFX59W+qFhaBFFuTK1O2uFpmSB54Ocgm+wy+m4O5wB9J8EiABEiABEiABEiABEiABEiABEiCBiCEgiQBlB6vEaX5VkdArEoolZfIkaFyrNAp8kj1QmHxVXVM/lx3MPx49iQ/ee1ML768qi9d8pXfALpjQUy9UBLdL+FVtmPa5K3PgyrWbehe4LFi0VCckmn1eViffDS1Mi2njFXt2fn1Y+XERPlOhQto2royHDx+jQOW2OmzMxgXD9OKT3Bc1Ww5ENDU+EaA3bj+AboOn67HGVDufi+TNiV7t6yJBvDgmDjFUmyQJ6MgpS/Upj4FdGuGjD96BLMBUbdoPK2f0x7uZX9f1A3b4y5i7taqFWhU/w68n/4IkYz6wcYojxx4A5sU5ID5v22cC/rlwBatnDXyJnySb7uc3V4WS8dMnOyJboeAe2TzO8ZIACZAACZAACZAACZAACZAACZAACbhNQEItJIz/arF5wuzVamfsl6hYIi8O/XgcZ/6+hNljVJLRnM5OMiqiYlhEU7lOkknKtZJg9uZ/d/Qu4TaNKrvN3pSKYZ0DC1Zuhd+05SoUTweMnbECXVrW1OFZ2vedpETbt3FYLV4UUiFLyqlY4aaXR4/9MU/t9JawISdVMkwJuSIJMSXWe4US+bBj3w+4qEKpbFwwXC0yJdaLTRXU3O/UooZOqjpu5irMG9cdceM4N5moJAEdNWUZxg9qoxMpy78lr0FAWbtlHwaqEw1Lp/RBv1FzcfX6TdSoUESP3emCu4wx6ByoX60EZCHijorh/qKgHpBItnq5wjqJbmQsFNwjo9c5ZhIgARIgARIgARIgARIgARIgARIgAZcJiNBavn5PVC1bEM0/L/dSzOKABiXJarGandCnQz1UK1sIEl5BdsP6+PjoHbFOLjMWbVAJUw9hcPfGyPp2xhCH0t9vnk6guHPVOESPFlUJtEfx5MkTFRP7fScPX9vesMNwHZtcQqUkTxp8uCBZYChUtT1861dA0zplnxuzJBbtMWyGXoRYNXNAYFx8J4CRMDkSKmTq8A7Inzs7VqqdzCK2p1G7mGWswkMEZjndIOFmZCd0QPniy68xYMx8xIgeTcexl13gQT93wvhDs3H1pr1q7Cux74uJ+jIJLyO7vNOnTakTy8riRDsVy18E6XwfZ1Ox4as/F6bH6eOXxYhsWd7Q41y9aY/y/wS9MBEZCwX3yOh1jpkESIAESIAESIAESIAESIAESIAESMAtAvfuP8T0heuxfts3esfyi7GLpdE2vSfgj9N/Y/OiEYEJI7sOmqZ3xEq4DQm/MXbGSrX7t7ojBUeJTd9n5By8+XpaHZtcQosELRL3WRYmApJnBnwmSTRb9RiHYydOI8ubGdBSCbSF8nzglh/srrRu6zc6hnmN8oW1oB5dichBi/CR+PUBCw5BP5PY4EWrddSnHSThppOKLB5JrPbgEqnKOGSXu4xtUNdGqFy6QODQhk9aguXrd2HSkHZIlSIJ5H6QElw4EifxCGqrzG851dFRCekNapTUHz169BjXbtzCdz/9hm5DpuvFuqplCmLx2u1q4eog1s8bitdfS+XUIT9n9+79P6nnwmw9Xgmh1LpRJa8YlzuDoODuDjXWIQESIAESIAESIAESIAESIAESIAESiNQEJIHqoLHzIbvZh3RvgnfeTK95SJznz1sP0TuAC3zybDf3nbtqR2vFNpAwDO2bVtWJNJet24mOzatr0Trvx1l17GsnFRFeZcey7GauVbGojlMfIDrX9h2EJ+pz2dUbUE6fvaBjfOfOmQV92tfD7gM/QXbBOznMzt17DzBl/hdaOO3WqjZKFPpID/eP0/+gQsNeKpRM+2AXFGYt2aSSaa7GLrX7P2niBE5y+yttXaFE9QUque6G+UMDF5v+vnAZJWp10budc73/Dvqqkx8yf4rV7Kx3gydJFP+V7TrlAgkT1Lyrn15Ik/tfkgtL/oJPyvqicN4cGN6zWeBQfHuM1eL72+rZIWJ1xZL5HB1yRwYWEHZm4pw1ekFNhPfIWCi4R0avc8wkQAIkQAIkQAIkQAIkQAIkQAIkQALhQuCHn3/XuzrzfpRVhxiRcBsixr+WJgXGDWytBdVaSmi+ev0/bF0yCrILtmy9HjqkRpQoUbBtz3coVTi343Y6B8CT8BiT5qzFl7u/xbQRnZBR7dbtOGAK2jepgkxqMSGgdOg3SYnsR9TCgg96tKmDSqXyo2P/yYgdKyaG9mgaLr6wq5ELl66qUCnzlI9vYf74HjgiITU274Vf35YvmSS7fwtVaadj2b8YasYu+8O7X9nBH3QBaekXOzBl3hfYvmKMPh0iuQ1y53hHhxn6bst0LcTLwpXMpYzpU4e3ORHeniRM3rLzEI4e/1OHzfnjr39QrVl/LJzYCzmzvRVoj4xXhPlNasFmtIr1L0l25dRM3arFn7NZckBIomJJPuuUIs87+S9ojHun2B4edlJwDw+KbIMESIAESIAESIAESIAESIAESIAESCDSEpDduifVrmYR2PqOmoNty/wwYdZqbNx+QDORJJJThnXQu+DrthmKh0qQWz69n/5MRLZbKsHo8ZNn8e+V68j/SXZkypDGcSz/uXhFxzUPKSnmR6Wao1e7ungzowpDM2wWHqtEqrLzXxKGdlaJNQ8f/V0J1afwkRJi38v8euDuaCeBOHHqnN7NHFx58uSpiuEfBd2HzsA33x4NNtSMk8bqiq0S87+f3xzs3zBFx/MXcX3w+IWIHTMGRvZpgZmLN+qTElHVYowswAzo3FAvSEnZe/CI+nwTpo/s5Nh44AFx75eoZKrvv5spRHTffHcMrXuN16J77UpF9XVyXxVXJwFG9/MNZOIKe15rDwEK7vZwZ68kQAIkQAIkQAIkQAIkQAIkQAIkQAJeRmC8EtlFUPRtUFGPTHazy47mjK+l1mKrJMuUMBISx/2tjOn0NRKWpJPaEX7k1z+QJ1dWlWj0MMoU/QSDuzX2KjpFqnVAPRVSp0H1Z7GtJQb6iMlLVNiZflixYRfmLtuiwo28jV9//0snmZwzthsSxo/rFQwCkmU2rFkKklhy0tB2KJwnh1eMLSyDkDAjn1XvqJLDplex3RsHJpqVhaqRiseClVu1oCwheTZtV+F5VKxzOS2RP3c2tRB1Rs2P3ejXsX5YujL2muZdR+Pob39iuhqXnPyIESMa9qrnQaeBU+GvTgRIElU58bB+236c/fuSDrUkpWlnP1y+ekM/M2TnvOR+aN2wEuLFjW3sWGkYQMGds4AESIAESIAESIAESIAESIAESIAESIAEPEwgIFFm/tzZnxPTW3QbrUNrSFiVCiXy4k8V67yiiv89d2x3fJg9s4etirjm16gQK/1Hz8OoPi1RrEAuvQAhgutCFe97xOSlGNO/lRZcZQGibpshOrSIhGQJ2BkecZZ6pifZ5S1hZ+7df4B1c5+NLzIVWXzqPGAqDh7+FalV0tSxA1ojszoNICcfXgyvIyGKShT+SC2+nFGhWQ5q8d3pRRYdZLFl2bodaid/VOxePU7vXC9dJDfqq0UoCS0lO/1l/kueBxHfJZRMow4j9GmYrG9nhCzoLVq9DXvWjHdksmWn+9AV+ym4u0KL15IACZAACZAACZDVlJqxAAAPX0lEQVQACZAACZAACZAACZCAGwREOF6pdnKXVPHaEyZ4tnP7xs3byFuhNZrXLacTkKZIlhhD1M52SS7ar1MDlP3sUzd6MreK7GoX0V1KcSW6j+jdXO98/jD728/FsD/7z78q7Mg1JFHx7ys16o3iBT/SImS61MnNHVwYLJMdytMWrMfspZuwQ8UzT540URhqedclkt/guDrFUCRfTsjO/zqtBusFCAk1FLSI8FywclvUqFBEhxzypiKx22PFjIlsRRrqeR9wn/upOO7LVTLlPWsmqM9jKEG+E95Xsdtl9/9FdT8UrdYRA7s0QpUyBbwJh1eOhYK7V7qVgyIBEiABEiABEiABEiABEiABEiABEjCdgAjLpep0xaFNU3Xs6sVrvsJYFctaYrzLDtikiRMqgXYdJDHrJx++qxONJkuSMHBYsjNewm44qchO/5+O/YHEieLrWPU5ijdFbxXbPTgRUTj8qETZpWt3YOc3hzFpSDsU+OT9wOFKjPz4ceOg4Kf/+5sTWEjs+pBi3TvB/vCyUfIXFKzcDkO6N0HFkvmeazao+Hzzv9sYNG6BPh1QoUQ+fRJEEg4HlJu37jgy/NCMRRv0rvXyxfPijQypdRz7gJMui9ds1yGXdq4cq+/51j3Hq9Mv57Fp4XBH5jcIrznjlHYouDvFU7STBEiABEiABEiABEiABEiABEiABEjAqwg8evQY+Sq2QaOapfUudyk3/7uDr787qmM6SzgJCTHjW78C9n9/TO0IPqVinvfViTlPnv5bhZ7pjQUTejo69MznrYfgP5U0ds3sgYimQm0EFAnB8te5C2qh4T3kyPomZi3ZhLnLt2D/+snPOCmRtVCV9pqNhN9wqujqVRPajcFMVQtKU+evU36siMxvpMOHKo7/nTv3UEyFWwkQnxt3GonzKnmo7HYXkTrLmxkwTSVRlXwJf6hkxRVUCKbFk3vjA7Ub3GlFwsZ89+NvmL/yS6ROmQzr5z27H2QhokXd8vq5cPjoSR1madGkXupeeMtpQ4yU9lJwj5Ru56BJgARIgARIgARIgARIgARIgARIgARMIPDdT7+hmUqo+MF7mVCuWB68m/l1vPNmegydsBhrt+zFyhkD8PprqbSpvUfM1jGeJbb57v0/Iou6VuJhO7n8feGyDisi4ml+tXu9fPE8ege87HCWxKKSTNbHxwfZ382Eb5U4KacBpPTzm4udKsHszlXj8OjRIy1QSkLOkoU/djKOSGn73oNHMH/FVtxRoVYWT+qNVj3H4vyla1p8liIhluQkw0y/zjoMU7n6PfSueDntcPX6fzjwwy8opUI1RY3q41h+cloledKE+t4foMIubVUx3SW0TDQ1ptKfd1Mhd9Jh4uC2jh1fZDOcgntk8zjHSwIkQAIkQAIkQAIkQAIkQAIkQAIkYBSBS5evY96KL7HnwE/o6lsLhfJ8gNxlWurQGT3bfh5oq4QikfAae5RAOWziYhV2ZjySqNAsTi8S23zLzkNKXD+FLi1roHnXMcj6TkZ0a1VLD01iv/ccNlMn12xRrzxO/fUPyjfopQVIiQU+fNIStTixD3vXTkDMGNGdjiNS2//bH2dRpUlffZIj0+tpVailGDhx6hyqN++P0kU/wTCVXPjM35f0IlRAUtF9X0z0ivtAHC/JVYtUbY/+nRqiaP6cWLVxz7PFJRVaJmXyxJF6bjhp8BTcneQt2koCJEACJEACJEACJEACJEACJEACJBApCEhs8x6ta6N6+cLPjfe2CreRv1JbHUZFwqlIHOxz5//Fe2q3ewwvEZtlJ78sPswa3VWHzxk6YREkXvsetcAQPXo0vePZR8XwXjKlDwLi4I/s0wJllCDL4nwCIrCL32UeZM/yhr4Hjp04jdq+g9SCTE3UrVockoQ4aFJR54/6fyMQ0V1OfEhy1bwV2qBB9ZJo16SKNw3R68dCwd3rXcwBkgAJkAAJkAAJkAAJkAAJkAAJkAAJOI2AiI1bd3+rkiSOQIpkiQLNHzxuITbvPKjFZ9kNLOKzCO3+KhlpjzZ1UKti0cBrJd51IRWWRWJjO6lIbPsug6bpRKlS/P2fYEz/VihR6CMdRqZN7wlYP3+oTrrauONIXL95S8WAH+SkIdLWMBBYvWkv+o6ao0IFNUI5lVhUchokT5pIzQVflWD4f0lFEyWMh7nLtuhTEm+p0CufVymGbEqod3qRcEsDRs/HpKHteHLDYc6k4O4wh9FcEiABEiABEiABEiABEiABEiABEiAB7ycgYVZ6DJ2pRfe0qZKhX6cGSJMyKcrW64FxA1ujWIFcOs77vkNHsHnRCBw6fFzFgvcL3AH8WAnwdXwHo0qZAi/tkncSPQm1s0UlUF0+vV9guI2i+T5E/84NcOD7X9Ck8yismjkAWd7K4KRh0dYwEtilchUMU/P8H5U0VWK0zxvXXcczD5pUtG2fCeo+OIqOzarp0x4ixs8Z2w25c2QJYy+8jATClwAF9/DlydZIgARIgARIgARIgARIgARIgARIgARIINwIXLh0Fb/+fkbFKs+Bem2H4f6DhyqRan/d/uGjv6Num6EICKeyY99hPHn6RIvxo6etQOXS+ZExfepws8WuhmTxIFrUqJAd+1MXrFex68chXpzYKFazEz56/x2M6N3cLtPYbwQRuHz1BmLGjIEE8eI8l1T0oEqY2qLbGB3zPWBXe6cBU3Sopfnje0SQdeyGBJ4nQMGdM4IESIAESIAESIAESIAESIAESIAESIAEDCcgcZ079p+sE4dKotRjv53WyVUXrNyKEZOXYnQ/X5Qs/LEexe79P6FVz3FYN3eI2g2c1vCRhd286Qs3ILEae/VyhbBw1TaMmroMu1aNQ9LECcLeCK90NIEXk4q27zsJf569gPXzhgSOS06GnDh1VocZOvvPJZWEdzSWTukLCT3DQgIRQYCCe0RQZh8kQAIkQAIkQAIkQAIkQAIkQAIkQAIkEE4ElqzdgbEzVmDtnMFIlzo5RirB/YutX2P/+smQ3eCFq7RHwU8/wOBujfH06VP89MsfiBc3to5v7Q1FRNePS7fQSWMleSxL5CIQkFRURt20s5+K654QQ3s01RAk0Wjhqh1QtWxBHV6pfrth+P7ICb1I9VqaFDrPgTfEd49cHnfeaCm4O89ntJgESIAESIAESIAESIAESIAESIAESCASE3jy5Cl6DZ+FL1V895oViqj41T/rpIqrZw3ErCWbMGH2auxbO1HFPH+sQs4M+f/411GRWO3wnTeuB9KnTeF4eqfOnFfjSIno0aI6fiwcgPsEVmzYrUPMLJnSRy0opcXnrYfg9LmL+GqZH46fPKvCzYzGwok9leCeAPOWf4lNOw5gy+KRSJYkofudsiYJvIIABXdOERIgARIgARIgARIgARIgARIgARIgARJwIAHZub55x0Hc/O8OurWurUdQqEo7dGpRA/WrlUDlxn10zHcJpxFfxb5u2GE4rt+8/Vz4DQcOmyaTwHMExs1chTnLNsPf/4neyT5paHtkfTsjilTrgDy5smJYz2e73yURcc7iTfXJkMxveMdpD04FMwlQcDfTL7SKBEiABEiABEiABEiABEiABEiABEiABFwi0G3wdHx35De1u3c0jvz6h06oKnGs3870mm7nu59+Q4P2w/HL7nn639dv3kKiBPEQJUoUl/rhxSRgGgER2y9evobUKZLCxycK5q34EmOmr8CeNePVyY742lwJxTR80mIc2T6bc940B3qZPRTcvcyhHA4JkAAJkAAJkAAJkAAJkAAJkAAJkEDkJHDw8K+IET06cmZ7S4fPmLpgHQ5tmhoIY9KctZixeAN+3jFH/61iw97I8lYGdG1VM1CUjJzkOGpvIvDo0WN8XKYl2qoEww1rltJDk9jueSu0QcMaJdG2cRVvGi7HYiABCu4GOoUmkQAJkAAJkAAJkAAJkAAJkAAJkAAJkIAVAptUqJkeQ2dgx4oxKqlkIvx59gKqNOmLyqXyo0+Heti4/QBkR7zEsr5y7SYyvZ5WhZ7pg7hxYlnplnVJwAgCEuM/Q7qUiBb1WYz/oRMWYd3Wb1RugwmIofIdsJCAJwlQcPckXbZNAiRAAiRAAiRAAiRAAiRAAiRAAiRAAjYQeOzvj6pN+uH2nbsoVeQTLFu3Q8dx37hgOKJG9UGBSm1RuXQBdGtVC//dvosG7YYhXZrkmDCorQ3WsksS8ByBs//8i1J1usKvb0t1L+T2XEdsmQT+nwAFd04FEiABEiABEiABEiABEiABEiABEiABEvBCAhJaQ3b17v/+F7z5eho0qFEKcWLHhCSZXLzmKx3fOk7sZzvae4+YrcJuPMCY/r5eSIJDiswE5D6QEx8VS+aLzBg49ggkQME9AmGzKxIgARIgARIgARIgARIgARIgARIgARKwk4AklixarSMGdW2kd7hLuXbjFgpVaYeBXRpRlLTTOeybBEjAKwhQcPcKN3IQJEACJEACJEACJEACJEACJEACJEACJPBqAivW78KCVduwYf5QRIkSRVeQWO7fHfkNXy0brcPNsJAACZAACbhPgIK7++xYkwRIgARIgARIgARIgARIgARIgARIgAQcR0Diuwckkzx+8gyqNu2HWX5d8Gmu9xw3FhpMAiRAAqYRoOBumkdoDwmQAAmQAAmQAAmQAAmQAAmQAAmQAAlEEAHfHmPx4MEjzB7TNYJ6ZDckQAIk4N0EKLh7t385OhIgARIgARIgARIgARIgARIgARIgARIIkcC9+w9x7/4DJEkUn5RIgARIgATCgQAF93CAyCZIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgII75wAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJhAMBCu7hAJFNkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAFd84BEiABEiABEiABEiABEiABEiCB/2vHDmkAAAAYhvl3PRODNXDQHI0AAQIECBAgQIDAICC4D4gmCBAgQIAAAQIECBAgQIAAAQIECBAgQICA4O4DBAgQIECAAAECBAgQIECAAAECBAgQIEBgEBDcB0QTBAgQIECAAAECBAgQIECAAAECBAgQIEBAcPcBAgQIECBAgAABAgQIECBAgAABAgQIECAwCAjuA6IJAgQIECBAgAABAgQIECBAgAABAgQIECAguPsAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYBAT3AdEEAQIECBAgQIAAAQIECBAgQIAAAQIECBAIVkkaOvtjTY0AAAAASUVORK5CYII=",
- "text/html": [
- " "
+ ],
+ "source": [
+ "f1(\"banking_sentiment_zs_gpt3\", query=\"metrics.text_length:[175 TO *]\").visualize()"
]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "f1(\"banking_sentiment_zs_gpt3\", query=\"metrics.text_length:[175 TO *]\").visualize()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 188,
- "id": "a780d7c6-4472-44ea-9824-27f067086614",
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "application/vnd.plotly.v1+json": {
- "config": {
- "plotlyServerURL": "https://plot.ly"
- },
- "data": [
- {
- "type": "bar",
- "x": [
- "precision",
- "recall",
- "f1"
- ],
- "xaxis": "x",
- "y": [
- 0.7175324675324675,
- 0.7175324675324675,
- 0.7175324675324675
- ],
- "yaxis": "y"
- },
- {
- "type": "bar",
- "x": [
- "precision",
- "recall",
- "f1"
- ],
- "xaxis": "x2",
- "y": [
- 0.7931034482758621,
- 0.7931034482758621,
- 0.7931034482758621
- ],
- "yaxis": "y2"
- },
+ "cell_type": "code",
+ "execution_count": 188,
+ "id": "a780d7c6-4472-44ea-9824-27f067086614",
+ "metadata": {},
+ "outputs": [
{
- "type": "bar",
- "x": [
- "negative_precision",
- "negative_recall",
- "negative_f1",
- "neutral_precision",
- "neutral_recall",
- "neutral_f1"
- ],
- "xaxis": "x3",
- "y": [
- 0.5714285714285714,
- 0.5714285714285714,
- 0.5714285714285714,
- 0.8636363636363636,
- 0.8636363636363636,
- 0.8636363636363636
- ],
- "yaxis": "y3"
- }
- ],
- "layout": {
- "annotations": [
- {
- "font": {
- "size": 16
- },
- "showarrow": false,
- "text": "macro average",
- "x": 0.14444444444444446,
- "xanchor": "center",
- "xref": "paper",
- "y": 1,
- "yanchor": "bottom",
- "yref": "paper"
- },
- {
- "font": {
- "size": 16
- },
- "showarrow": false,
- "text": "micro average",
- "x": 0.5,
- "xanchor": "center",
- "xref": "paper",
- "y": 1,
- "yanchor": "bottom",
- "yref": "paper"
- },
- {
- "font": {
- "size": 16
- },
- "showarrow": false,
- "text": "per label",
- "x": 0.8555555555555556,
- "xanchor": "center",
- "xref": "paper",
- "y": 1,
- "yanchor": "bottom",
- "yref": "paper"
- }
- ],
- "autosize": true,
- "showlegend": false,
- "template": {
- "data": {
- "bar": [
- {
- "error_x": {
- "color": "#2a3f5f"
- },
- "error_y": {
- "color": "#2a3f5f"
- },
- "marker": {
- "line": {
- "color": "#E5ECF6",
- "width": 0.5
- },
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "bar"
- }
- ],
- "barpolar": [
- {
- "marker": {
- "line": {
- "color": "#E5ECF6",
- "width": 0.5
- },
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "barpolar"
- }
- ],
- "carpet": [
- {
- "aaxis": {
- "endlinecolor": "#2a3f5f",
- "gridcolor": "white",
- "linecolor": "white",
- "minorgridcolor": "white",
- "startlinecolor": "#2a3f5f"
- },
- "baxis": {
- "endlinecolor": "#2a3f5f",
- "gridcolor": "white",
- "linecolor": "white",
- "minorgridcolor": "white",
- "startlinecolor": "#2a3f5f"
- },
- "type": "carpet"
- }
- ],
- "choropleth": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "choropleth"
- }
- ],
- "contour": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "contour"
- }
- ],
- "contourcarpet": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "contourcarpet"
- }
- ],
- "heatmap": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "heatmap"
- }
- ],
- "heatmapgl": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "heatmapgl"
- }
- ],
- "histogram": [
- {
- "marker": {
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "histogram"
- }
- ],
- "histogram2d": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "histogram2d"
- }
- ],
- "histogram2dcontour": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "histogram2dcontour"
- }
- ],
- "mesh3d": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "mesh3d"
- }
- ],
- "parcoords": [
- {
- "line": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "parcoords"
- }
- ],
- "pie": [
- {
- "automargin": true,
- "type": "pie"
- }
- ],
- "scatter": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatter"
- }
- ],
- "scatter3d": [
- {
- "line": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatter3d"
- }
- ],
- "scattercarpet": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattercarpet"
- }
- ],
- "scattergeo": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattergeo"
- }
- ],
- "scattergl": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattergl"
- }
- ],
- "scattermapbox": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattermapbox"
- }
- ],
- "scatterpolar": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterpolar"
- }
- ],
- "scatterpolargl": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterpolargl"
- }
- ],
- "scatterternary": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "type": "bar",
+ "x": [
+ "precision",
+ "recall",
+ "f1"
+ ],
+ "xaxis": "x",
+ "y": [
+ 0.7175324675324675,
+ 0.7175324675324675,
+ 0.7175324675324675
+ ],
+ "yaxis": "y"
+ },
+ {
+ "type": "bar",
+ "x": [
+ "precision",
+ "recall",
+ "f1"
+ ],
+ "xaxis": "x2",
+ "y": [
+ 0.7931034482758621,
+ 0.7931034482758621,
+ 0.7931034482758621
+ ],
+ "yaxis": "y2"
+ },
+ {
+ "type": "bar",
+ "x": [
+ "negative_precision",
+ "negative_recall",
+ "negative_f1",
+ "neutral_precision",
+ "neutral_recall",
+ "neutral_f1"
+ ],
+ "xaxis": "x3",
+ "y": [
+ 0.5714285714285714,
+ 0.5714285714285714,
+ 0.5714285714285714,
+ 0.8636363636363636,
+ 0.8636363636363636,
+ 0.8636363636363636
+ ],
+ "yaxis": "y3"
+ }
+ ],
+ "layout": {
+ "annotations": [
+ {
+ "font": {
+ "size": 16
+ },
+ "showarrow": false,
+ "text": "macro average",
+ "x": 0.14444444444444446,
+ "xanchor": "center",
+ "xref": "paper",
+ "y": 1,
+ "yanchor": "bottom",
+ "yref": "paper"
+ },
+ {
+ "font": {
+ "size": 16
+ },
+ "showarrow": false,
+ "text": "micro average",
+ "x": 0.5,
+ "xanchor": "center",
+ "xref": "paper",
+ "y": 1,
+ "yanchor": "bottom",
+ "yref": "paper"
+ },
+ {
+ "font": {
+ "size": 16
+ },
+ "showarrow": false,
+ "text": "per label",
+ "x": 0.8555555555555556,
+ "xanchor": "center",
+ "xref": "paper",
+ "y": 1,
+ "yanchor": "bottom",
+ "yref": "paper"
+ }
+ ],
+ "autosize": true,
+ "showlegend": false,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "F1 Metrics for single-label (averaged and per label)"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "autorange": true,
+ "domain": [
+ 0,
+ 0.2888888888888889
+ ],
+ "range": [
+ -0.5,
+ 2.5
+ ],
+ "type": "category"
+ },
+ "xaxis2": {
+ "anchor": "y2",
+ "autorange": true,
+ "domain": [
+ 0.35555555555555557,
+ 0.6444444444444445
+ ],
+ "range": [
+ -0.5,
+ 2.5
+ ],
+ "type": "category"
+ },
+ "xaxis3": {
+ "anchor": "y3",
+ "autorange": true,
+ "domain": [
+ 0.7111111111111111,
+ 1
+ ],
+ "range": [
+ -0.5,
+ 5.5
+ ],
+ "type": "category"
+ },
+ "yaxis": {
+ "anchor": "x",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "range": [
+ 0,
+ 0.7552973342447026
+ ],
+ "type": "linear"
+ },
+ "yaxis2": {
+ "anchor": "x2",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "range": [
+ 0,
+ 0.8348457350272233
+ ],
+ "type": "linear"
+ },
+ "yaxis3": {
+ "anchor": "x3",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "range": [
+ 0,
+ 0.9090909090909091
+ ],
+ "type": "linear"
+ }
+ }
},
- "type": "scatterternary"
- }
- ],
- "surface": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "surface"
- }
- ],
- "table": [
- {
- "cells": {
- "fill": {
- "color": "#EBF0F8"
- },
- "line": {
- "color": "white"
- }
- },
- "header": {
- "fill": {
- "color": "#C8D4E3"
- },
- "line": {
- "color": "white"
- }
- },
- "type": "table"
- }
- ]
- },
- "layout": {
- "annotationdefaults": {
- "arrowcolor": "#2a3f5f",
- "arrowhead": 0,
- "arrowwidth": 1
- },
- "autotypenumbers": "strict",
- "coloraxis": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "colorscale": {
- "diverging": [
- [
- 0,
- "#8e0152"
- ],
- [
- 0.1,
- "#c51b7d"
- ],
- [
- 0.2,
- "#de77ae"
- ],
- [
- 0.3,
- "#f1b6da"
- ],
- [
- 0.4,
- "#fde0ef"
- ],
- [
- 0.5,
- "#f7f7f7"
- ],
- [
- 0.6,
- "#e6f5d0"
- ],
- [
- 0.7,
- "#b8e186"
- ],
- [
- 0.8,
- "#7fbc41"
- ],
- [
- 0.9,
- "#4d9221"
- ],
- [
- 1,
- "#276419"
- ]
- ],
- "sequential": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "sequentialminus": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAFoCAYAAABNITkUAAAgAElEQVR4XuydCbxVU9vAn1uaSzQPROaZvMgUKUkTFVGI0qCBiJLSXIoGolkTmaKBNL0hkiHhzVCEEErzrPl2u99+Vvb9bnc85+x9zlnnnP/6ft/P2717rfXs/7P33ff+9zrPSkp1mtAgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhDwRCAJ4e6JH50hAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAoYAwp0LAQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgAwGEuw8QGQICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggHDnGoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI+EAA4e4DRIaAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCDcuQYgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAj4QQLj7AJEhIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIId64BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAPBBDuPkBkCAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAAwp1rAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgAwGEuw8QGQICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggHDnGoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI+EAA4e4DRIaAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCDcuQYgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAj4QQLj7AJEhIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIId64BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAPBBDuPkBkCAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAAwp1rAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgAwGEuw8QGQICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggHDnGoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI+EAA4e4DRIaAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCDcuQYgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAj4QQLj7AJEhIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIId64BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAPBBDuPkBkCAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAAwp1rAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgAwGEuw8QGQICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggHDnGoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI+EAA4e4DRIaAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCDcuQYgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAj4QQLj7AJEhIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIId64BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAPBBDuPkBkCAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAAwp1rAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgAwGEuw8QGQICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggHCPwDWQmpoqycmHJV++4yQpKSkCM4Z3iv0HDsmh5GQpUrigHJc3b3gnSzf6J8u+l2XfrJI9e/bLqZXKSYs7bo7Y3NlNtGfvfkk5ckSKFysS1ljeeGeRbNu+Wx68v5Gv8/yxdqPMmr9Eql99iVx64VlBjb3ki+/k6+9+lnub1JZSJYoH1Te7g0M5z5279sjkafMlT5480rFFQ3Of0QIj8Mvv62Tu+5/LTdUvlwvOrhxYpwgc9fL0hXLoULK0ubt+BGbzPoWX++j3vzbIOws+kRuuqSJVLjjTezDOCJ8sWyFffbtK7rntJilT6gT57c/1Mvu/n8qJxYtJy6Z1fJmDQSAAAQhAAAIQgAAEIAABCEAAAhDImgDCPcgrY9Ib8+XZ8W9l2+v6qy6WMYM7H/P9uR8slW4Dx8uw3u2lTo2qAc94Uc37JSXliFx47mkybWzvTP3Sx/Li0C5yzeUXBDy2Hvj+kq/l46XfSbt7b5GTypcOuG+H7s+Zfs/27Si1HVEXifbM6DdkqiPh3Fa0SCFZNm9sJKbOcY7L6zwg+/YflKVzx8jxRQuHLZ46dz8uf/29WX5Y/JKvc3z46XJ5qOcL0rFlI+lw361Bjd1ryGQj698c38c3WRvKeT4+YJzMW/SFPPHgXdL89puCOodEP/gdR8I++fRE6dHpbrm7cS1rcFx9S0fRF3vfvDfBmphyCsTLfbRw8ZfyaN8x8kib2317wTDguakybfaH8tronnLJ+WeY50jbx4fJF//7UYb36SA333BFTHAlSAhAAAIQgAAEIAABCEAAAhCAQCwSQLgHmbUJr82VERNmmBW95cuWzNT7uisvNuLyyJFUWfTp/2TV6j9l4uvzjPAIVbjrJNNf7CvnnXVq2nw6/rUNH5Rdu/ear4175jGpVvXCoM5m0AuvymuzPpCpL/SQ/1wU+OrmoWOmyYefLZe+XVpK1SrnBjVnKAfv239ALq/TTvLnzycvjXhCLnJeQGzdvktKlzwhlOF87XNXhwGyY9c/MnNifylcqKCvY6cfLBQRHUgwXkShDcL9ux9/E81B7epXOC+AOgRyyhyTjgDC3Z/Lwct9FAnhrmepnxiofvsj5ln00YwRzs+rAv6cPKNAAAIQgAAEIAABCEAAAhCAAAQgcAwBhHuQF4Qr3HNbEaqrnnX1c/rmRbhnXDm/4MNl0qX//6/wjqRwDxKZ58N//m2tNG7VS7L69IDnwWNkAIR75kTpS6d6zbvJ3xu3yqK3nrXiBUyMXE5pYSLc/clYLAh3PdP5i5ZJ1wFjzSdB9BMhNAhAAAIQgAAEIAABCEAAAhCAAAT8J4BwD5JpoMJd67arKNb26sz35W2nRm8owr1iuVJS/PiismLV7/LetGGi/9Z2S4snZe36zVLz2ktF5XtG4a6rrgc894p8sfwHswpeV+TfXv96Z/V9Q8mbN49MmbZAxr3yrmgNcncOHbflnXWkbs2qpgTOxi3bZdKzj8sbby+ST79cIf/s2SfDnTIyHzor99/572fyTM8H5LRK5dMI/rrmb9HSLz/8ssaMW6liWWesK+U+p8a31nv/9odf5bkXp8uPv/whB53VlhrT1ZddkGNJGz3vx/qNMVJVy8jomNp6PtJcLj7vdKecywEZ9MJrTombb2X7zn+kfJkS0vDmatLBqeWdJ8/Revn68uO+hwfLFZecI63uqicvvblAvln5q6m7PmrQw9leAXr+z42fLp9/vVJ2/bPXzK+r61s1qyeXO2Np6z5ogsnDq6OeNP9evuIXGTzydad2ci2nBMwmk/dNW3aYc1XBlbGk0IbN26XvsCny5bc/mRWolSqWkTNPO0k2bNouLwzsZM5HW3bCXUupjH9ljvyxdoOT17xy9ukny4DH75czK58U0JWdlSj88pufZOjYaSZ+zaNeL6eeXF7a3lNf6t94Vdq47gp3LS00573Pnfr6P5q8XnTu6TLUKZ/kxu52+OnXv2TgiFec6+OPtHN99IE7pNZ1l6WNGcyLBVce6nXdz/m0Rfqmn4DQa/iX39ea3OmqXs3BnbfcYMp2aJ13/fRJ76FT5Ioq50jX9k2P6a/n3bLzM1L55HIypFc7873DKSkyavLbpua55k2vh2suv1D6PHqfc48ereHv5v9+p052ZefeeNMp67HKOW99WdSkfvVcY0ofxGuz3jf3qc6ln+644eoq8ue6jWasTq1uSzs0t3vdPVD3kRgy5g1Tfkd/JpQ4oZhT3/tE0bzk9gJRx9B49BMxW7btNPeUnr/WfddSKFr2ym1a+mnO+0ul+0N3m/Nf7NybylOvSf2Zoddo+rZ8xWp56vlXTBx6rV183hny3Y+/mus5t5IyLu9mDWvIaufnz3zn3DT3eh/17nyfXHXZ+cfMFQgrN/7hfdqL/kxTXuvWbzE/U5R9Vs3LfeSucNfrUn+eLVz8Vdo5ZPUpokDuo4wlZdLHfH3jh834n80eJScULxrQzwkOggAEIAABCEAAAhCAAAQgAAEIQCBwAgj3wFmZIwMV7umHHfPSOzLa+f9QhXvPR+6Vtl2HSeO61xmZquL67o4DjahWmatSN71w37x1p1n5q1JMReC5Z5ziiPcfTUi31r5GBnVvIyMnz3I2mlxgxKceU7BAfvP9B51a3jrPjXc8akSfSlP9r9venjzQSLT09YH1e7qBZvsnnjOHqWgs4AjC1WvWGdE55bkn5PhiheW21kfr0Kt4K+bUO//p1z9NjE8+3FzualQzy0z87/tfnBrjzxtBqNLxxH8F0ZCe7Yxwr31XV8OgbOkTzbjKRuWeltdRJtpUuF7doKMpoXDYiUfPWZuOl53QU/FVu1nXNIl/iiNeVb6pqEq/0j6jIHblmXsyOqeWmtF+2t596Sk5/dSK5n+vd14i3OzUZndlsL5MUEGs8ZtjXx4kp59SwfzvrES07iWgdfy16Yanf2/cYlhoe995OVPh35czWYL994tZiUIVjvriRAW1xqQsVPJpU/lcz3mJos0V7u74moMdzgamyldl7Cdvv2AYa8t4fRQqWMC8eMk4ZjDCvXOfUfLex1/L62N6mWshfdNc3drySZPz0ypVMIL9+1W/GdaN6lSTgd1aSfLhFLmibjsTr+4HoDG77XXnJZNK4FbN6oq+FNAXaHc80M/ErFL4qv+cn/aSRM/7/WnDzdfd/OvX3FzomPpiqVvHZrnG5M7f79mX5a13PzJj6v2bfPhw2gu89Nd2IPe6jqnx6/2nLwE1J2c598q2HbvS7u1AhPsDjw83L95UZquo37x1h9lXQGOcO/Vp8/Wsrgu9jvQaciX9p47ozXfc0c2WdS8I3RNCm/vi7+ff/jJ5yun+dDllvN/cFx9uqa30+wsEysq9rjUefdHntq4dmma7UbOX+yjjOeh1qEzdc9ByVeecUSmo+ygn4a4l0fQ59syTD0j9Wv//Au2YG4h/QAACEIAABCAAAQhAAAIQgAAEIBAyAYR7kOhc4a4iT6Vx+nbBOZXlhQGdMo3oVbgveG1ImgDXVYlPDBrvrLr+wRGaI81K5IzC/ZHeo8yGqD063WNEdlJSkuzdd0BqNX3MSJxF05+VcqVLOCvDs6/h7gp3XQXbreNd8p+Lz3Y2MTxopNgQR8amF+5ubWAde+zTnUXr2GvTOYc58d3mrECeOW+JEYjppZVKwNkLP5OyjrzLuBI1PUSV7vd2GuRs6nijOSe3uZvG3nT9Zc5GgB3NinYVeypG1/y1wazOv/LS89KEu/ZTMdveWeV/7pmVHBZ70uR3xqQt+mS5dOr1ghGlE4Z1Sfu2rsZV+ey+IMhOuCs3jUlXT2tzWbsCV7/Wpssws3r+geYNjlmxrC8uVFDnJNz1/Orf2928aJj+Yj8peeLxZp5XZrwnT4963axE19XEubWsRKG+CEjKk+eYFep63s0fekouc66Dl5/vboZ1xaQK4IHdWhtBr6uomzu50k8m6KcQmjWsacT29Y07mWsvvTx0pbiy+uSdkWbMYIR71Xrtnb0SjshXC8ZnOk29Dv5ct8nJ8ylp39vpvAy4oUlnR+amyPeLJpuvu2I740sf/QTJb3/8LR84pWr0pdP0uYudTyK8JHqtPe2ISn2hpFJYXwapNH66R1tpcNPVacJdx9aV9/rySu+ZAwcPmRXlgcSk15fKcZXHMyf0T9sr4ncn5w2cnKcX7oHe67q5reZLV5frpzHc/QZ0xbpem4EId5X1ei7pX0zoiv+xU2cfs+Gne13ovaafdNA+eg00adPHvISb/Fw3s/eDfmLghtseMS+19OdmzWqXmpzo16+55UE55FxLua1wd2W15mjEgIfSNu8dPu4t54Xi/GNejgXKyo1fpbd+kqCG8ymiQs4LSX0B4N5nGS84L/dRdufginH9ZIN+EieY+ygn4f7L7+uk0f09A/4ZkdvPEL4PAQhAAAIQgAAEIAABCEAAAhCAwLEEEO5BXhGucFcZo9ItfdNSGip5MzY/hLtK9Z7PTDIlSbSEjFtGQ7+WXrhrXesLa7Q0UmyJs8I4jyPb3aZi7a05i2XM4M5GRAUi3FV4uauU3XEyypxl36yS+53yGznVWHfn0rIaKvcyjplTGrIT7g1b9jQC78Ppzxnx7LbFn38rHXuMSFvJ7K5w101ndfPZQJq78lZXzWtOsxNt2Ql3LbOhJSLcpgK6afv+aZt7ps/T0jlj0srf6PFam19znJNwf37iTHnx1TlGat9e7/q0eXY7ZX+ua9RJTjmprMx/9Rlnxfw6meHI4gy3vXnxoauMc6o9ravydUX3RmfVvK6GVrmqUv3jWc+b4bLbNNW9HlSgqkj9+rufTUkfFZfP9jl2Y9N6zZ8wq4i//u+LUqhg/qCE+/nVWxiBPGvSgGxTquJ95U9/yPpNW00pFF29r4JXBb8KcJXqKtf1Uxlzpw4247gvM1QY6+p5bU3a9jUsNCeVKhxdya3tw8++kUf7jk57GZS+PIheA1m13GLST5+Mm/quKVVzh1MCx226Yr6G88LAFe7B3OvNHxpkyt24LwbcMUOp4f7H2o3mvtMV7qtW/2V+/rifnMnputDSRy9Mmin9u94vt9W7zryU0Xsi/QsXN66rb+novOA7FLBwz3i/ad+q9dqZn9H6QiYYVu51rRs0u6Wjsr3A3Ovg0+XOy5cXpKPzCSHdNDt9y+0+ym7TVD2Hy25ua36W6ycwgrmPchLuWvbp0pvamE/FvDKyR26nxvchAAEIQAACEIAABCAAAQhAAAIQCJIAwj1IYNEoKaMr3HV149UNOpiyDNrceu4ZhbuWeFAJnFNzVx7nJtw3O4LSXQmcfryMMsctv6GlN3QFd1Zt5c9r5E5n5bk2fVmhLyeqVb3I2byvVtpq2+xizk6466a0WiIm4ypYV0y6wtQV7ulXZ+eW9oy8VbxffsnZ0sKpce/W0dcxAhXubl7c1aruv3UFfsaXNIEId119r6vws2v6CQwVjVp/+vEB4zId9tWCcYZ7VsJdhfTDvUYaQZuxBSLctX+1hg+ZMhi6ol0/2aAryXNqC157xpSvCXSFu75YuKp+ByPxRzq17jM2XSU92Kntr5/EyKrpSwM9F23uavY5jnDXPQm0nI6K+Wf7djAvSLTpanq31E9W47l5zU6eap9AY3Jzm/7TANo/o3AP5l5Xga2fMHBfNLjnEIxw13u4Y/cRaeWR0nPQ1f0q87Vl9yLGvQ7cnz/uS0S3xE/68bwKdx3LrVW+4sMpsm7DloB/LmYXf07Xr5f7KKdrJv056IuzQO+jnIS7nkcVR7jrpwL0pRwNAhCAAAQgAAEIQAACEIAABCAAAX8JINyD5Bkt4a5huitEtWSLlm7RllG4u+UoVKbc62xWmlW75vILTCkVv4T7xNfnmc1QtdyLln3Jrqkg1HI0S5Z9Z8pxaNOV7m84q4jdGsVZ9c1OuF9U8/60Fazp+7nC113RHopw1/G037Cxbzp1wr86RrbqBp36CQNtgQp3LdNSq2kXs/GllodwV1Znteo+EOHe6tEhpi5/iztuPmZ1v8uhSOFCZhWxStbf/vw7A9YkqXLBGabUUFai8CYnTl11ri8s9Bo6w7lWSpc8Qarf/ogc75RRym2Fu5ZuuebWB8U9N7f0j67M1hI9WTUtvaIreQMV7m5O3VX0GcfsN/wl82kOleodnc0uzzv7VFNGSTdSVW7phbtbLubuxrXMxrZXOS+2tJyJvpQ4ztm4U5tea3rNah32rJreT3pf5SRPA42pXbfh8smyFZJxhXVG4R7Mva7xZ7UJaaDC3exd4Gy2qU0FuW50q58K0E1I7+owwJTTyU24z5j7sfRxNgh2hftLb/7XlMRS5s1vv+kYrH4K95UfTTG167VMTyA/F/0S7oHeR4EIdz0H3XND920I5D5CuGf7GOIbEIAABCAAAQhAAAIQgAAEIACBsBNAuAeJOJrCXVfY6uartzsi1d14M6Nw1xXwuvJbNzDUlfE5NVe4uzWV0x+rNdwDXeHuSlstf6FlMAJpWpLi+Qkz5aPPv0krj5Ndv+yEuytndSW3ruh2W8byLaEK9/TxaDmS6Y7AVf4q7bS2t7ZQhbubJ13t/817E82qf7cFItzd3Onqbl3lHWrLKNz1PKs7dbXTn6M7tq6KDUS4u/zdOvJuiZ+mt9aQXp3vzTHUQIW7DqIlZdxV9BkH1RX2+uLl09kjnY12i6V92934M71w11xcWb+9eXkz3Cl5ozX0M+4XUPeebqb++pfzx0mRwgWzPYec5GmgMelmrfqpkQfvbyTt7/3/8iQZhXsw97q7J8Nyp0RU+lJYgQp33Wuhx+AJoiWh+nZpkXb+bh3+UIS7y+o+56XO4xleZHgV7lo2RX8Oau4118Gw8kO4B3MfZXfN6CcitPRL8WJFzCcTgrmPchLuus/CJbVaU1Im1B+a9IMABCAAAQhAAAIQgAAEIAABCORCAOEe5CUSTeGeVagZhbse40pL3TRTpWf69smy7+Ws0042q6K1TrTWi06/Yts9NhjhvnnrTrnBWf2s0ljrqbulOnQsrTtczhHU3/7wq1xxyblSptQJaeF8s3K13PPgU3LhuafJtLG9s81EdsLdPfeM9Zs79xnlrEr/Wno7cvdOR/KGItw1bhWTGpvbdHPYyxyJpyudf1j8kvlyqMJd+7oS163VrXWmFzsvILo7YlNfruRUw90V5VreRkuhpJeoer5f/O9HpxzK5ble3RmF+6rVf8rtzuaWGV/YuKupAykp06H7c2Yj0aeeaC0Nb77WlCDR1dF6fcyd+rQZ220qFd91ZK6ucM+KZ04noGVetGl964zNXZGumwyfULyo+bYK+Dva9pENm7cfs8Jdv6cr3+d+sNS8uFE565a4ccd1BWb6WuXu93Qz053OSm+tiZ2TcA80Jles6kuPGc6mqRr/th275RlnM1wtEZR+09RA73WtL665Tr85rF7HuuJcS7vktmmq+ymWjC9N3nhnkQwc8UpIK9z/+nuTc/90M5vDLnrrOVPDX5t++qNRq15ZrsjPmOfseLv7ZqQvVxMoKz+EezD3UXbn4JbqqlfzShnSq11Q91FOwv23P9fLLff1EHfcXH9IcAAEIAABCEAAAhCAAAQgAAEIQAACQRFAuAeFSyRQ4a4iUaWPts++XCla/1hFmZbZ0A04tXxFbk0FnQrVnFaqZyXcl69YLc0fesoMryVM/nPRWY5k3OaU0lhlZNZro3vKJeefIUu//kFadxlqyro0v62WHDiYbI5VURuMcNd53LrXKiybNaxpVpYuXvqtEe5TnntCxk59R7785iez6auWM9n1zz6ZNe9jIz9HD3pEql99SbY4shPuuoq0prMSX8Whrrw998xK8vEX3xnZqxsxfjRzhCkJEopwdwXjFVXOkav+c74UKJBfPljyP1PXPP3qZy/CXcuGaPkQbZqDFOeacUvt6NdyEu76fS3l8d2PvxlhqRunFnPKvXzvbET5scP9grMrp234mdN1llG460uFqk5tdP1vlQvONP//4+o/jMDXlpVwV4Fe15GCRZ0yNu8v+drEpLL4vWnD0zaDHTt1ttl0VaX7bY5cP+Wkcs6GrmvNNaJlb7J7gZFT7G6t8xkT+jm5P+WYQ3WTVr329P65sdp/zMavH3zydRrf9CvctaO7Kl//d1ar5rVmvL40UC66UetN118uuoparwedx90sMyfhHkxMjR3hrGVQtLkvAdwTTC/cA73X0++hoPeg5ko/XaIvQ7TlJtzT99cyPieVKy2fOz8/9JMq2kJZ4a793M1c9Xqpce1/zIa1n3+9Mu2eyLg/Q8brweWt989NTpmb8mVLmlxq2SC91j6aMSJtw+NAWfkh3IO5j9xz0JJKt9a+Vk4qX0p++PkP8wJIm36aRvloC/Q+ykm4uy8j3BdiOd1jfA8CEIAABCAAAQhAAAIQgAAEIACB4Akg3INkFmi98v0HDsllNx/dRDBjUxmsJQJya8EI9xeHdjE1pN2mIvDJpyeK1k1P33STzsHO5obuSvMRE2aIrlJ1N4R0Nz7NSbjrilbto6vS3RXg+oJBX0aMfXn2MdJY64AP79tRPvrsG3l+4oxjaqGrEGvX/Bbp4NTYzqnpuaiY0zrPWu85fctqI0cVpqMHP2JqdmtzN9gMZtNUlfw9n8nMT8u3DOnZLm01bkbhrsL5kd6jJOOq+w2btsmNdz4mGWuO60uI8a++K1qaQ+VwvRuvNC9GVISn3+Ayq1IruhL7hUkznfIjHxzDXAW81i0P5KWOK9wfur+xtLv3FsPrs69WyoNPPm/kstvualRT3nQ2P3VLdOjX+w57SbT+uV7Punrcbcp/3DOPmrrv6ZvW8H5m9OtpG//q9/Qa0E9hDOrexhwaTEmZOe99Lk8MelGyKlWjvPWlk77QcZte+1scwawvnZa8/UKaiHW/75ZdyU5E6li9h0xOE8JuPy3v1PPh5qIvZ7LLvx4bTEwq83VfhE+/XGFexOiLOv0UQNuuwxwpe00aLx030Htda9prHXm3ad70ZZKums9NuGufF1+d49zDM9P664sAXUH+2qwP5JabrnF+rhzNoXtdTH+xr4nbbTPnLZHeQyebslNafkqbrtzX/Qhcca9f0zFVQme1IfIxF5Tzj/SyOv2mtvoSaNRTD6eV3nL7BcIqu/gzzp3+317uI/ea0XEPCswAACAASURBVPtWXz65TQW83kf60it9C+Q+yupntDtGjSadzQa8GTfQzen8+B4EIAABCEAAAhCAAAQgAAEIQAACgRNAuAfOKiaPVCmrpRsKFyooFcqVTNsEMv3JpKamypq1G0197vTlYEI5YR1royMm9+474MxX6pja6jqebrKoG3LqClsVzPnyHRfKNJn6bNyy3QjNyieXTysh4sfA+/YfkLXrt5ihTq5Q2nAMd8vpZUdWcxvmjkDbsXO3w7S0WfHutekLI3ez1dOczTFzO29lr5+iOLlCmUyiPWMs7jVQusQJ5sWPbt4aStNPA6ig19y/N21Y2gsWdywt0aPnoNeixqWfLPGj6cslfZGlIlx5p98/ILfxvcS0cPFX8mjf0dKp1W3yQPMGmaYK5F5Xka9y+4TjizorqUvnFm6m7+uGuFpCR2WwbqabJ09oucs4sF4/utr+jMonpb3MCiS49J8o0A1+9WdLyROOz/UeCIRVIPPndkyw95Hy/WOd87PYqdte+eRyOd4bodxHumpeyydl3KMgt/Pg+xCAAAQgAAEIQAACEIAABCAAAQgETgDhHjgrjoSArwRUXL7urA6+9ooLpdJJZWWvU7f9NWe1uq7cdjcc9XXCOBzMLQWjq9cnPft43Jyhlg4pXqyos0L8FLNp5qrVf0m/Z18ynxBZ+MbQkGR53MBJdyI5lfCJx/P1ck5aWktf5uXJc7TUTjAvirzMS18IQAACEIAABCAAAQhAAAIQgECiEUC4J1rGOV9rCGjtb63rnbGd6azyVXns14psa044TIG4+xjc56xwfrxjszDNEtlhm7TtKz/+8kemSXs+0tzskUA7SgDhHtiVoJ9suPOBfubTDSMHdnLq5V8aWEeOggAEIAABCEAAAhCAAAQgAAEIQCBoAgj3oJHRAQL+EFAJpjXcdfPQXbv3mFIsZ552kuhqbVrgBHTV9wxnA15tdzkyWjfQjPWmZaC++vZnp9b2dkk5csSUSrr8knOkbOkTY/3UfI1/3YYtzma4/zP3jO4dQMuagG5GqxtK66cltEY+DQIQgAAEIAABCEAAAhCAAAQgAIHwEUC4h48tI0MAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEACEUC4J1CyOVUIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAIHwGEe/jYMjIEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgkEAGEewIlm1OFAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACB8BFAuIePLSNDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAAhFAuCdQsjlVCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQCB8BhHv42DIyBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIJBABhHsCJZtThQAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgfARQLiHjy0jQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQAIRQLgnULI5VQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEAgfAYR7+NgyMgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCQQAYR7AiWbU4UABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHwEUC4h48tI0MAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEACEUC4J1CyOVUIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAIHwGEe/jYMjIEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgkEAGEewIlm1OFAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACB8BFAuIePLSNDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAAhFAuCdQsjlVCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQCB8BhHv42DIyBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIJBABhHsCJZtThQAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgfARQLiHjy0jQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQAIRQLgnULI5VQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEAgfAYR7+NgyMgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCQQAYR7AiWbU4UABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHwEUC4h48tI0MAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEACEUC4J1CyOVUIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAIHwGEe/jYMjIEIAABCEAAAhCAQAwR2Lf/gBw6dFiKH19EkpKSYihyQoUABCAAAQhAwCuBVav/lPmLlkmTBtWlUsUyAQ+38uc1svCjr6RpwxpSsVypgPtld+DE1+fJ8UULyx233OB5LAaAAASiQwDhHh3uzAoBCEAAAhCAAAQgYBmBOx/oJ/pH8wdvDpfyZUtaFh3hQAACEIAABCAQTgJvvfuR9Hv2ZRn3zKNSrepFAU/12qwPZNALr8rEYV3lqsvOD7hfdgdWrddeSpc8QeZOHex5LAaAAASiQwDhHh3uzAoBCEAAAhCAAAQgYBmBAc9Nlf99/4tMevZxKXni8ZZFRzgQgAAEIAABCISTAMI9nHQZGwKJRQDhnlj55mwtJJCammrFx9YTLY5AzzfQ4yy8tAgJAhCAAAQcAln9HI/Gz/ZozJnVBRCpOAKdJ9DjuJghAAEIQCAxCQTynAjkmEDoRVq4Zxc3K9wDyRbHQMBuAgh3u/NDdDFMYNEny2Xk5FnS7t5b5J3/fiKff/2D5M2bV2pXv1wGdmsl7yz4VCa9MU/++nuzFC1SSB5t20TuvLVG2hkPG/emUz/uC9m6fZekpBwx9WRrV79COjvHaT03tx1OSZExL70jCz5cJn9v3GrGuuKSc6Vjy4ZyZuWTpNWjQ8zH4jWOSU4tuJU//yFVLjhTenS6W7RWbX9nNd9Hn30je/bul7KlT5T77rhZ7mtSO1fyOp+e34bN2516t8mSP38+qVrlHOnaoZmcfkoF87VmHQaY2nfP9XvwmPGWr1gt/Z2P6t1zWy25vf715nvv/PdTGf/Ku4aHjnWpE2O/ri3lpPKlzfddngOfaCU/rf5LPvjka9mybZcM6fmAvO30DYTVvv0HZcjoN2TBR8vM+ZY4oZicd9apsmnLjmNWMyYfTpERE6bL3PeXGv7K9OYbrpBuHZtJ4UIFc2XDARCAAAQgEB0CG7dsl3aPPyu31r7GPBPnvP+5+Xl/8Xmny/MDHpJ1G7bI0yNfl1W//mkCvOWma6RvlxZynPN81vbCpJny4affyMyJ/Z1ndh7zNZ6z/j9n9dmqH9n/4n8/OL+LHJRSJYpL67vqmd8LqJ0fnXuHWSEAAQjYQMB9jtetWdU8x99f8rXs2r1XTj+1ogzr3V7OOu2ktDADeZaMmDBDFn/+rbw2uqdMnjZfli1fZZ7r08b2zvJ0sxLugfxd7paU0b8XP/7iO9G/d1Ocea694kLn79V25u9JtwUSN8LdhquRGCDgjQDC3Rs/ekMgWwLuQ1cPUFn+n4vOllW//GEEdeFCBcwfmCrET3aE9MdLvzVS/asF49KEbuNWveRQ8mG55PwzzANaP+L+o9P/ykvPM3JYm74Rv8OpN6tfP/v0k+XSC8+S3/78W7785idpc3d9eaTN7XJ5nQfkoCO/dXxtOpbO+/Lz3aXO3Y+bX2Suu/JiOcP5JWbRp/+TP9dtkrsb1zJCPqc2dOw0eXfhZ3K5I/dV1K91RPlHn39jzu3jWS+Y/7Z6bIjzx/SP8s6UgWZOtz3U8wVHaCw3NekqVyovz0+cKS++OsdwUvmxes06009jXTzzeSlUML+4PFXGu4Jfx9M6eU89/0qurI4cSZWG9/eU3/742wj9+jdeZWT6Z1+tMGzS1+t1a/jqL3bXO2z0lybtd/VlF8iEYV246iEAAQhAwFICa/7aIPXv7W6iU2Fetcp58s/efbJi1e/mZ78+P1TuXnz+6fL1dz+bP+LT12nt1OsF84L32w8mSb7j8vKcDcNzdvvOf6TmHY+aXOjvNGc68mTeB0tFv961Q1Np4bz4p0EAAhCAQGISSP8c1+f2Zc7f0D/8ssY8r/W5/vm7o83fiIE+Szp0f875W/u7tL+/9W9U/dv4+0WTswSclXAP5O/yjH/7X3TuaWbBnf6deaHzv13BH2jcCPfEvP456/gigHCPr3xyNhYRcB+6Kq/1Tbf+gqAPdxXg2l4a0d0R5Gea/z3bEdc9Bk+QZ/t2NCvgtekqa/1jP327rXVv+enXv8wvCDqergp/8umJcv1VF8uYwZ3TDtVfVDZv2+mIhnPNfCr3Vb5rLPpLhjb3lwlXzOvX9BeCRo7oV7mc24ZxWcWnKwgmvDZXpr7Qw3nBcJZ8smyFtOs23Kxi79elpZl31z975eoGHeWCsyvLm+P7yHpH+Ndq2sW8MJg1aUDaOejO7M+9OF36PHqf2Z3d5ani/ukn28o5Z1RKOzYQVrPmL5FeQyYbVs8P6JTGVmX9628vSjtfXdXe7anx0rJpHenS7s60OVp2ftq8yFjw2pCgdqy36JIkFAhAAAJxT8D9Q12fMS8O7WJe5GpzX6Q+7jyP3U9xbd66U264/ZFjnlEZhTvP2aOXjJ/P2ScGvShz3vtcJg1/XK78z3lmfF1teHmddpI/33GybN7YuL9OOUEIQAACEMiagPsc14Vk+kK8SOGCoguneg+dLG8v+EQefeAOadWsrgT6LHGFe72aV4r+DqAv3XNqWQn3QJ6B7t+q+rd1p1a3SZ48SeYTdk3b9xc9J/3knP79GmjcCHfuEAjEPgGEe+znkDOwlEB2O5XrqnJdWf3VgvFpkf+65m+5teWTRgLoLwLa9BeLhYu/lCVffO+sOt9o+uhH7FSK65t9lQiP9h1jjnnBEcg1q12aJQkV7hXLlTarzNM3t+/Hs54/5hePt+Ysln7DX5KhvdqLfpQvp6YflfuvU57l59/WOuVddpr/V7k/vE8HU4JFV+Bfc+uD5peNr53z1VUKL731Xxk6ZlraMa7M0NXj7h/eOueGTdvkjXcWyV2NasqTDzdPE+5Z7fweCKtuA8fLXGcFnb6YUOnutozC/fEB42SeU8qnxZ03OyVn/n/DvCXOKnddDTlq0MNyw9VVLL3qCAsCEIBAYhNw/1DXn+Fd2zdNg6GboU6b/aHz0vQZ56Vp2bSvV7mpjZxcoYy8+9JT5msZhTvP2aOo/HzOVmv4kHn5/nDr24+5WKdOX5j2+5G7OCCxr2bOHgIQgEDiEcjuOf7F8h9NqVT9G1P/1gz0WeIK95UfTQmoZFlWwj2QZ2B2f/s/O/4tp4zsfHnqidbS8OZrA44b4Z541z5nHH8EEO7xl1POyBIC2T10b2nxpCOTtx4j3LVuuYr45rffJE88eJeR1i0fedqpt77GrEjXOuMqBLTWqZakcYW7u+I9fSmajKefnXB3+674cIp5A+82Fcvtn3jOrIjXN/TZtadHvS6vzHjPrLQ/94xT5NSTy5kXAiqlXeGufbVUjJaMcX/JuNH5GLn+of3F3LGmr7sqXs8zn7OyLWNrXPc6s9I8O56BsnJXN2ZklVG4N2nb15TocVdFZoxHzwPhbslNRhgQgAAEMhDI7g913b/jZUfoZhTu+owsW7qEKXGmLaNw5zkrAf9OEshztlyZEnLBDUc/8Zbdc3beK0/LicWLcW1DAAIQgEACEsjuOb5z1x6zkOsKZ8+wyc92C/hZ4lW4B/q3ZnZ/qy5c/JWzSG602YdNV+YH+gxEuCfgxc8pxx0BhHvcpZQTsoWAF+HuPpjr1Khqyqe4m7n1fGaS+SidK9zdXyBeGdnD1G/PqmUn3FWqq1zXenJaV85t+jFv/ajbgMfvF5XdWTWtoXf1LR2dlfOl5K3xfeWE4kXNYfMXLZOuA8YeI9zdX460ZEyfx1rIXc5GqvrLhn4cUJuWc1Hpnb6cTlZz5vZLTG6sHuzxvKkx//qYXmbzPLdlFO4u06VzxxyzOa0t1xVxQAACEIBA9gSCFe4Z/6DNKNx5zorzSbqjssCv56z+XlK8WBH54K1nuZQhAAEIQAACxxDI7jmuG5927DFCGtWpJgO7tTJlUwN5lngV7oE+A7P7W9X9NPeQXu1Ey9oEGjfCnRsDArFPAOEe+znkDCwl4EW4ux89y1jWReuha110V7iPeekdGe38f8ZNTrUW6vqN20yt8eyEu9u33b23yEP3N06j+MDjw+XTL1ek1ZnLCu+yb1bJ/Z2fSfuFxz1GV7zryvf0K9z1e67AUOmu5Wc+mjFCypQ6wXTTjey0tl36zWTc8XRFga6GL++siMvtY3q5sdLa8rqa/tba1xjxX8Apb6Ob1uj56op2t2b9+FfmyAuTZkrHFg2lg/P/6Zuu4D++aOG0jW0tvfQICwIQgEDCEvBbuPOcFQn0d5JAn7PNHxoky1f8krbfS/qL9Xenzu1pzmbqNAhAAAIQSEwC2T3H3YVn7qKwQJ8lXoV7oM/A7P5Wve/hweYT4O4n7AKNG+GemNc/Zx1fBBDu8ZVPzsYiAl6E+6JPlhtJrZu63HNbLXNWc5zNPHUzU22ucN+774BUv+1h83Hvuxvf6GxUerasXb/ZlHrRt/9aFiY74a511as16uTUhE8xG7ucddpJTj32L80GrlpLXTczy66pqNa6eVoSRsvgVChb0pH0K82KeW0ZhbvWem/+0NH6uFqrfcKwLscM7f4ipBvJNGtY08jwFT/9LtPnfuzUeL1NWtxxc7bCPVBW+/YfkOsbH2WlteS1RI/LU4Nxhfv+A4ek5h2dRVfx165+hdS4torsdVh9pb8ofbhM3p480LCiQQACEICAfQT8Fu48Z0X8fs7+8vs6aXR/z7TfIS5yPmW3dv0W+Xjpd6aU3jfvTbDvwiIiCEAAAhCICAH3Oa5lx+5pXEtKO4u0vv72Z7MXly7CWvjGMPP8CPRZ4lW4B/oMdP/210+dN65bzfmb84C8/NZC+XvjVql13WUyov+Dhl+gcSPcI3K5MQkEwkoA4R5WvAyeyATcUikqrtNvBtqwZU/nwbvlmBru6zZskdrNusq9zqap3f7dNHX4uLfk1Vnvy6FDyQbjmZVPMr9c/PTrX/L5HGfTVOfj2Np++3O9PPHUi2aVtttKnFBMBnVvI9WqXmSEu8rlWZMGZEqHrjZv/8SzsmnLjrTv6YaiQ3q2k6JFCuWYPt1YVGvi6mau2vT4qpeea/4wf7ZvByOr0zet3a71518c2kWuufyCY76nknvU5Fnyysz3zKawbtMV+gO7tXZeJJyVVnomI089NlBWm7fulMEjXzWr6osWKWz4bHJWreu5fDl/nBQpXNBMrSvZ+w6bYj5NkL7pL1D6y1LJE/9/M9VEvsY5dwhAAAK2Efhj7Uap1/wJadm0jtn/w226Wbdu2r3gtSHm019u0z9otYZ7dpum6nE8Z/1/zn6zcrX0GDxBdA8bt+nvOPVvvMr8/kKDAAQgAIHEJOAKd93fSxdKuU1Lgj4/4CEpXfLop6S1BfIsCVq4z1ks/Ya/JOOeecz5W/FCM08gf2u6f/vriwJduOW2GtdeKs84JWILFzr6d2agcWf8/SQxrwbOGgKxTQDhHtv5I/o4J5B8OMWI9DKlTjRv9HNq+guJinuVwcEKYRXRGzZvkzNOrZgmnQNFqy8AdLNT/Qh4UtL/b74aaP/0x6Wmpjqye4dZUV6hXMmgSrcEwyr9nI1b9ZI1jqDJakWdluZZ56y601axfGnJd1zeUE6LPhCAAAQgEAcEeM4G/jtJoM9ZZaqLEPQleFnnd530m7jHwSXDKUAAAhCAQJAE0n9STT+FrQvDSpU4Pse/CyPxLAnmb01dZLZh0zY5/ZQK2W4QrlgiEXeQ+DkcAhDwkQDC3UeYDAUBCNhNQGv/6crGM52SMEnO/2mJGP14opax6flIc7uDJzoIQAACEICA5QR4zlqeIMKDAAQgYDmB7ErDWR424UEAAhDIRADhzkUBAQgkDIEaTTofUz5HT1w/5vd0j7ZBr+xPGGicKAQgAAEIQCBAAjxnAwTFYRCAAAQgkCUBhDsXBgQgEC8EEO7xkknOAwIQyJWA1sP/Zc062bZ9t/OxxAJS2SmDoxvT0iAAAQhAAAIQ8E6A56x3howAAQhAIJEJ6HPkB6ekavmyJaWcs8cKDQIQgECsEkC4x2rmiBsCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASsIoBwtyodBAMBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKxSgDhHquZI24IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCwigDC3WM61m/b73EEukMAAhCAQKwTKHtiQcmbJynWT8Pq+HftTZa9Bw5bHSPBQQACEIBAeAkUKXicFC+SL7yTJPjoKUdSZdOOAwlOgdOHAAQgAIEKJQsBwQMBhLsHeNoV4e4RIN0hAAEIxAEBhHv4k4hwDz9jZoAABCBgOwGEe/gzhHAPP2NmgAAEIBALBBDu3rKEcPfGD+HukR/dIQABCMQDAYR79lk84qyUW79pq5QtXULyHZc3oHT/9fdmOal8acmT7lMDCPeA0HEQBCAAgbgmgHAPf3oR7uFnzAwQgAAEYoEAwt1blhDu3vgh3D3yozsEIACBeCCAcM86iws+XCbdnhovKSlHzAGd2zaR1nfVyzblIyfPkldnvi+Hko+WjqlX80oZ2K2V+d8I93i4UzgHCEAAAt4IINy98QukN8I9EEocAwEIQCD+CSDcveUY4e6NH8LdIz+6QwACEIgHAgj3zFnct/+AXFm/gxHs7e9rKPM+WCpPPj1R5k4dLJUrlc/UYfmKX6T5Q4NkzODOcv1VF8tPv/4lt7XuLZOf6yZVq5yLcI+HG4VzgAAEIOCRAMLdI8AAuiPcA4DEIRCAAAQSgADC3VuSEe7e+CHcPfKjOwQgAIF4IIBwz5zF+YuWSdcBY2X5exOkQP6jG9xdfUtHuadxLenQomGmDos//1Y69hghs6c8JWdUrmi+X+WmNtK1fVO5q1FNhHs83CicAwQgAAGPBBDuHgEG0B3hHgAkDoEABCCQAAQQ7t6SjHD3xg/h7pEf3SEAAQjEAwGEe+YsTnx9nkyeNl8+f3d02jebtu8vZ5xaMa1MTPpeBw8lS6P7e8q6DVukzd315Z89+2Xh4i+NgD+heFGEezzcKJwDBCAAAY8EEO4eAQbQHeEeACQOgQAEIJAABBDu3pKMcPfGD+HukR/dIQABCMQDAYR75iwOG/emzF/0hXw4/bm0b7bs/LQULVJYRg7slKlDamqqDBv7prz73mdmRfyGzdulUZ1q0uexFmaz1YPJKVIgX2CbrsbDNcU5QAACEIBAZgI8C8J/VSDcw8+YGSAAAQjEAgGEu7csIdy98QtJuCdJksdZ6R4uAqmSGq6hjxmXayAimEOahGsgJGxx1SmUawDhnvkSCHaF+38/+lIe6zdGPps9yqxoX/TJcuncd5Q82LKRtL2nQUgr3PlZa++tGcp9FsrZcA2EQi0yfbgGIsPZ5llCuQZY4R7+jCLcw8+YGWKbQDz9bhHKz+F4On+9EhOdQU7nj3D39rMK4e6NX9DCff/+JJn/3zyy+x+ku0f0vncvXCRV6tc5IkUKh1e6HzoksuC9vLJ9O9eA70n0OGCBAkekft0jcnwxjwPl0v3IEZH5C/PIli15wjsRowdNIG/eVLm1/hEpXjy4nwMI98yos6rhXrVee7mvSe0sa7j3GTZFPvx0uXzyzsi0we58oJ+zIr6QTHr28ZCEe97V30m+ua8EfR3QIfwEkmvdISkXXBH2ifL+tlLyvftS2OdhguAJJNdoLCkXXx18xyB75F2zSvK9MynIXhweCQLJ198iKZdeF9RUCPegcIV0MMI9JGx0ShACO48ckt7blsmGlH1xccadT7hIri5YPqhzWX5wswze8U1QfWw9+Mx8x0u/ElUlX1Lgf5fvTU12roEv5a/De2w9raDierD4BXJ9oaP7Z2VsCPegUGY6GOHujV9Iwv3FSXlkG7LVI3n/u6tga9cmMsJ94kvHycaN/p8DI3ojULiwSIcHDkdEuE96Oa+sXctLF28Z8793Pmdvz04dUhDuPqDdt/+AXF6nnVmd3uG+W2XO+59LryGTZe7UwVK5UnnZuWuP3NrySenorGC/o0F1eWvOYuk3/CUZ2qu91Klxhfz2x3rzfe3/cOvbQhPuy5dIgQkDfDgbhvCbwMGOT0VGuH/3uRQY18fv8BnPBwIH2/WLjHBf+aUUGP2kDxEzhN8EDrbphXD3G6oP4yHcfYDIEHFLQIV7g/Vz5ffDu+PiHKeXqx20cF+0b63cu3lRXJz/pQVKy6xydYIW7rdumC+rDu2ICwavl62FcA9TJhHuHsGu37Y/qBF0hTvCPShkETsY4R4x1NZOhHC3NjURCwzh7i/quR8slW4Dx6cNquJcBbq2bTt2y3WNOkmnVrfJA80byJEjqfL0qNdl9sJPZf+Bg6aOe72aV8mTD98j+fIdh3D3NzVRHw3hHvUURD0AhHvUUxD1ABDuUU9BlgEg3O3MC1HZQQDhLoJwTxaEux33o+1RINw9Zgjh7hGgRd0R7hYlI0qhINyjBN6iaRHu/icjJeWIrF2/WSqULSn5HYkeSPvr701yUvkykifP/38KZNfeZNl74HAg3dOOycsK96B4RfJghHskads5F8LdzrxEMiqEeyRpBz4Xwj1wVhyZeAQQ7gh3LSmDcE+8ez+UM0a4h0ItXR+Eu0eAFnVHuFuUjCiFgnCPEniLpkW4W5SMDKEg3O3NTSiRIdxDoRZffRDu8ZXPUM4G4R4KtfD3QbiHnzEzxC4BhDvCHeEeu/dvpCNHRCFftgAAIABJREFUuHskjnD3CNCi7gh3i5IRpVAQ7lECb9G0CHeLkoFwtzcZPkSGcPcBYowPgXCP8QT6ED7C3QeIYRgC4R4GqAwZNwQQ7gh3hHvc3M5hPxGEu0fECHePAC3qjnC3KBlRCgXhHiXwFk2LcLcoGQh3e5PhQ2QIdx8gxvgQCPcYT6AP4SPcfYAYhiEQ7mGAypBxQwDhjnBHuMfN7Rz2E0G4e0SMcPcI0KLuCHeLkhGlUBDuUQJv0bQId4uSgXC3Nxk+RIZw9wFijA+BcI/xBPoQPsLdB4gZn5W790ry4cNSqkTxgAbfs3e/HDyULCVPPD7teIR7QOg4KEEJINwR7gj3BL35QzhthHsI0NJ3Qbh7BGhRd4S7RcmIUigI9yiBt2hahLtFyUC425sMHyJDuPsAMcaHQLjHeAJ9CB/h7gPEf4dQcd66y1BZsep385WK5UrJ1JE9pFzpEllO8vfGrfJYvzHy4y9/mO+fVL60DOreRi45/wxBuPuXF0aKPwIId4Q7wj3+7utwnRHC3SNZhLtHgBZ1R7hblIwohYJwjxJ4i6ZFuFuUDIS7vcnwITKEuw8QY3wIhHuMJ9CH8BHuPkD8d4hh496U6XMWy9uTBkiRwoWkaft+UrlSeRkzuHOWk7R6dIjs2PWPTBvbW/LkzSOder4gm7bskJkT+yPc/UsLI8UhAYQ7wh3hHoc3dphOCeHuESzC3SNAi7oj3C1KRpRCQbhHCbxF0yLcLUoGwt3eZPgQGcLdB4gxPgTCPcYT6EP4CHcfIP47RI0mnaVOjarStX1T85WZ85ZI76GTZeVHUyQpKSnTRHXuflwqVSwr44c8Zr43dfpCGTl5lny1YDzC3b+0MFIcEkC4I9wR7nF4Y4fplBDuHsEi3D0CtKg7wt2iZEQpFIR7lMBbNC3C3aJkINztTYYPkSHcfYAY40Mg3GM8gT6Ej3D3AeK/Q1xU837p+1gLaVz3OvOV5StWS/OHnpJPZ4+UE4sXyzTR3PeXSrenxsvF550udzW6UQaNfFXa3t1AWtx5M8Ldv7QwUhwSQLgj3BHucXhjh+mUEO4ewSLcPQK0qDvC3aJkRCkUhHuUwFs0LcLdomQg3O1Nhg+RIdx9gBjjQyDcYzyBPoSPcPcBojNEamqqXHBDSxnaq73UrVnVDLpq9Z9ye5s+suC1Ic5K9jKZJlrz1wa5+8GBcvopFeW7H3+VvHnzymujnpTzzjrVCHcaBCCQNYEN+/bJ9b+9I78f3h0XiGafVEfqlT4lqHOZvuk3abb+/aD62HrwpQVKy0dn3ipF8h0XcIjbDhyQ6r/NllWHdgTcx+YDp1esLY3KVM4yxLx5Mn9CyuZzsS02hLvHjCDcPQK0qDvC3aJkRCkUhHuUwFs0LcLdomRkCGXX3mTZe+BwUAHmXb5ECkwYEFQfDo4MAYR7ZDjbPAvC3ebsRCY2hLt/nHWFe78uLaVRnWpmUHeF+2ezR8kJxYtmmkhL0NxY7T/So9M9suufvfJI75Hyv+9/keXvTXBK0OSRrbsO+hccI0EgjgjsOHxQ6q2fGzfCfUa52nJt4QpBZej9vWul+aYPgupj68Eq3N+pUFfyOz/3Am17jiRLg/Xz4ka4v1G2ltxQ5KQsT7/siQUDxcJxWRBAuHu8LBDuHgFa1B3hblEyohQKwj1K4C2aFuFuUTIyhIJwtzc3oUSGcA+FWnz1QbjHVz5DORuEeyjUsu6jAr1uzSulS7s7zQEz5n4sfYZNybKG++49++Sq+h3k6R5tpcFNV5vjl6/4xSlBM0jeHN9Hzj3zVNm044B/wTESBOKIACVlKClDSZk4uqHDfCoId4+AEe4eAVrUHeFuUTKiFArCPUrgLZoW4W5RMhDu9ibDh8gQ7j5AjPEhEO4xnkAfwke4+wDx3yGGjp1mJPusSQOkSKGC0qxDf6lcqbyMGdzZHDFiwgxZuPhLU2JGW9V67aViuVIyYVhXKVqkkPQeMlk+/3qlfDRzhFnhjnD3LzeMFF8EEO4Id4R7fN3T4TwbhLtHugh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkId3uT4UNkCHcfIMb4EAj3GE+gD+Ej3H2A+O8Qe/bul1aPDpGVP68xXylfpoS8Mqqn+a+27oMmyLxFS+X7RZPNv79ZuVqGjpnm1G//zanfnkfOPr2SdOvYTC67+Gw2TfUvLYwUhwQQ7gh3hHsc3thhOiWEu0ewCHePAC3qjnC3KBlRCgXhHiXwFk2LcLcoGQh3e5PhQ2QIdx8gxvgQCPcYT6AP4SPcfYCYYYjtO/+RQ8nJUq70UdGeW9PyMsnJh6XkicenHaqbprLCPTdyfD9RCSDcEe4I90S9+4M/b4R78MyO6YFw9wjQou4Id4uSEaVQEO5RAm/RtAh3i5KBcLc3GT5EhnD3AWKMD4Fwj/EE+hA+wt0HiGEYAuEeBqgMGTcEEO4Id4R73NzOYT8RhLtHxAh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkId3uT4UNkCHcfIMb4EAj3GE+gD+Ej3H2AGIYhEO5hgMqQcUMA4Y5wR7jHze0c9hNBuHtEjHD3CNCi7gh3i5IRpVAQ7lECb9G0CHeLkoFwtzcZPkSGcPcBYowPgXCP8QT6ED7C3QeIYRgC4R4GqAwZNwQQ7gh3hHvc3M5hPxGEu0fECHePAC3qjnC3KBlRCgXhHiXwFk2LcLcoGQh3e5PhQ2QIdx8gxvgQCPcYT6AP4SPcfYAYhiEQ7mGAypBxQwDhjnBHuMfN7Rz2E0lY4b5r915JPnxYSpUoHjDkQ4eSZf2mbVK+bEkpkD+f6YdwDxif9Qci3K1PUdgDRLiHHbH1EyDc7U3Rrr3JsvfA4aACzLt8iRSYMCCoPhwcGQII98hwtnkWhLvN2YlMbAj3yHAOdhaEe7DEOD6RCCDcEe4I90S6472da8IJ9z1790vrLkNlxarfDbmK5UrJ1JE9ctzJ/Zff18kjvUfKn+s2mT4Pt75N2t7TAOHu7dqzrjfC3bqURDwghHvEkVs3IcLdupSkBYRwtzc3oUSGcA+FWnz1QbjHVz5DORuEeyjUwt8H4R5+xswQuwQQ7gh3hHvs3r+RjjzhhPuwcW/K9DmL5e1JA6RI4ULStH0/qVypvIwZ3DlL9n9v3Co3Ne0iV1Q5R1rfVV+qXHCG7Nt/MG1lPCvcI33Jhm8+hHv42MbKyAj3WMlU+OJEuIePrdeREe5eCdrVH+FuVz6iEQ3CPRrU7ZoT4W5XPtxoEO525oWo7CCAcEe4I9ztuBdjIYqEE+41mnSWOjWqStf2TU1+Zs5bIr2HTpaVH02RpKSkTDl7YtCLsnDxV/LVgnFyXN68mb6PcI+FyzywGBHugXGK56MQ7vGc3cDODeEeGKdoHIVwjwb18M2JcA8f21gZGeEeK5kKX5wI9/Cx9TIywt0LPfrGOwGEO8Id4R7vd7l/55dwwv2imvdL38daSOO61xmKy1esluYPPSWfzh4pJxYvlolstYYPmXrtZUqdKJu37pBzzjhFHu/YTCpVLGOORbj7dzFGeySEe7QzEP35Ee7Rz0G0I0C4RzsD2c+PcLc3N6FEhnAPhVp89UG4x1c+QzkbhHso1MLfB+EefsbMELsEEO4Id4R77N6/kY48oYR7amqqXHBDSxnaq73UrVnVsF61+k+5vU0fWfDakDSJnj4J51dvIaefWlGaNawh+R0TM/bld2TfgYOyeMYIye+I+H/2B7eB2+5/jsgLY0W2bc+8mj7SyWe+YwmocH+4gzgvXvKEFc2+fUdk5ItJsnFjWKdh8BAIqHDv/OARp2RU5k+zhDBctl0OJafKqBdTZe1afg74ydWPsVS4P9YpVcqWDu7nQOECeSVvHvLpRw6yGwPhHk66kR8b4R555rbNiHC3LSORjwfhHnnmgcyIcA+EEsckKgGEO8Id4Z6od3/w551Qwl3x6Ar3fl1aSqM61Qwtd4X7Z7NHyQnFi2YiqMJ9UPc2cmvta8z3Vq9ZJw1b9pRpY3vLheeeJv/sSw6K+u5/UuWFcQj3oKBF6GAj3NurcA+vNNu3X4V7HoR7hPIazDRGuHdU4R6cbA1mDj3WCPcJgnAPFlwEjj8q3I9I2VLBXQOFCx6HcA9zfhDuYQYc4eER7hEGbuF0CHcLkxLhkBDuEQYe4HQI9wBBcVhCEkC4I9wR7gl564d00gkn3LWGe92aV0qXdncaYDPmfix9hk3Jtoa7Hn/LTdfII21uN8f/+Msf0qRtX3n5+e5y2cVnU1ImpMvOzk6UlLEzL5GMipIykaRt51yUlLEzLxoVwt3e3IQSGcI9FGrx1QfhHl/5DOVsEO6hUAt/H4R7+BkzQ+wSQLgj3BHusXv/RjryhBPuQ8dOM5J91qQBUqRQQWnWob9UrlRexgzubNiPmDDD2ST1S1Nixv33y9MXysyJ/aV4sSLSZ+gU+ezrlfKZU/O9sNOfGu6RvmTDNx/CPXxsY2VkhHusZCp8cSLcw8fW68gId68E7eqPcLcrH9GIBuEeDep2zYlwtysfbjQIdzvzQlR2EEC4I9wR7nbci7EQRcIJ9z1790urR4fIyp/XmPyUL1NCXhnV0/xXW/dBE2TeoqXy/aLJ5t8HDyVLu27D5ctvfjL/LlyogIwe1FmuqHKO+TfCPRYu88BiRLgHximej0K4x3N2Azs3hHtgnKJxFMI9GtTDNyfCPXxsY2VkhHusZCp8cSLcw8fWy8gIdy/06BvvBBDuCHeEe7zf5f6dX8IJdxfd9p3/OHWUk6Vc6aOiPbe2c9ce2b1nn5xcobQkJf1/jW+Ee27kYuf7CPfYyVW4IkW4h4ts7IyLcLc3Vwh3e3MTSmQI91CoxVcfhHt85TOUs0G4h0It/H0Q7uFnzAyxSwDhjnBHuMfu/RvpyBNWuPsFGuHuF8noj4Nwj34Ooh0Bwj3aGYj+/Aj36OcguwgQ7vbmJpTIEO6hUIuvPgj3+MpnKGeDcA+FWvj7INzDz5gZYpcAwh3hjnCP3fs30pEj3D0SR7h7BGhRd4S7RcmIUigI9yiBt2hahLtFycgQCsLd3tyEEhnCPRRq8dUH4R5f+QzlbBDuoVALfx+Ee/gZM0PsEkC4I9wR7rF7/0Y6coS7R+IId48ALeqOcLcoGVEKBeEeJfAWTYtwtygZCHd7k+FDZAh3HyDG+BAI9xhPoA/hI9x9gBiGIRDuYYDKkHFDAOGOcEe4x83tHPYTQbh7RIxw9wjQou4Id4uSEaVQEO5RAm/RtAh3/5Nx5EiqrN+0Vco6e6bkOy5vwBNs3rrTHFum1Anmv6xwDxhdTByIcI+JNIU1SIR7WPHGxOAIdzvThHC3My9EZQcBhDvCHeFux70YC1Eg3D1mCeHuEaBF3RHuFiUjSqEg3KME3qJpEe7+JmPBh8uk21PjJSXliBm4c9sm0vquetlOonJ++Lg35fV3FsmhQ8mSN28e+X7RZIS7v2mxYjSEuxVpiGoQCPeo4rdicoS7FWnIFATC3c68EJUdBBDuCHeEux33YixEgXD3mCWEu0eAFnVHuFuUjCiFgnCPEniLpkW4+5eMffsPyJX1OxjB3v6+hjLvg6Xy5NMTZe7UwVK5UvksJ+r5zCSZt+gLaXN3fWlS/3o56Ej3k8qXRrj7lxZrRkK4W5OKqAWCcI8aemsmRrhbk4pjAkG425kXorKDAMId4Y5wt+NejIUoEO4es4Rw9wjQou4Id4uSEaVQEO5RAm/RtAh3/5Ixf9Ey6TpgrCx/b4IUyJ/PDHz1LR3lnsa1pEOLhpkm2rBpm9x452PyeMdmcl+T2pm+T0kZ/3Jjw0gIdxuyEN0YEO7R5W/D7Ah3G7KQOQaEu515ISo7CCDcEe4IdzvuxViIAuHuMUsId48ALeqOcLcoGVEKBeEeJfAWTYtw9y8ZE1+fJ5OnzZfP3x2dNmjT9v3ljFMrysBurTJNNHvhZ9Jj8ASpdd1l8svvayW/k4wmDa6Xux1Brw3h7l9ubBgJ4W5DFqIbA8I9uvxtmB3hbkMWEO52ZoGobCWAcEe4I9xtvTvtiwvh7jEnCHePAC3qjnC3KBlRCgXhHiXwFk2LcPcvGcOcWuzznfIwH05/Lm3Qlp2flqJFCsvIgZ0yTTTm5dkyesrb0vz2m+SCsyvLyp/XyCsz3pPene+VO2+tIQeTj8hxeZOCCnDn4vcl77j+QfXh4MgQOPLwYCl+1bVhn2zXJx9JntG9wz4PEwRP4EjHAVK8WvXgOwbZY9fSTyXP892D7MXhkSCQ0q63nFD96EvVQNvhlFQpkC9PoIdzXAgEWOEeAjS6JAwBhDvCHeGeMLe75xNFuHtEiHD3CNCi7gh3i5IRpVAQ7lECb9G0CHf/khHsCncV7m+8/YF88s7ItCDadBkm+w8clFdHPSm79yXL/kMpQQWY9PXHkv/FAUH14eDIEDj04FOSelHVsE+WtPwzyT+uT9jnYYLgCRxq309Sq1wTfMcgeyR9v0zyOz9DaPYRONS2l6Redn1QgRXKn1eOL3y0TBktPAQQ7uHhyqjxQQDhjnBHuMfHvRyJs0C4e6SMcPcI0KLuCHeLkhGlUBDuUQJv0bQId/+SkVUN96r12pv67FnVcF/w4TLp0n+sfPv+RMmX7zgTyH3OKugDBw7Jm+P7UFLGv9RYMRIlZaxIQ1SDoKRMVPFbMTklZaxIQ6YgEO525oWo7CCAcEe4I9ztuBdjIQqEu8csIdw9ArSoO8LdomREKRSEe5TAWzQtwt2/ZOzbf0Aur9NO2t7TQDrcd6vMef9z6TVkssydOlgqVyovO3ftkVtbPikdWzaSOxpUl12790q1Rg/JbXWvkycfaS7Llq+Stl2HSadWt8kDzRsg3P1LjRUjIdytSENUg0C4RxW/FZMj3K1IA8LdzjQQlaUEEO4Id4S7pTenhWEh3D0mBeHuEaBF3RHuFiUjSqEg3KME3qJpEe7+JmPuB0ul28DxaYM+3Po2I+C1bduxW65r1ClNqOvXFn2yXDr3HSUpKUfMMbWrXyFDej3g1G7Pi3D3NzVRHw3hHvUURD0AhHvUUxD1ABDuUU9BlgGwwt3OvBCVHQQQ7gh3hLsd92IsRIFw95glhLtHgBZ1R7hblIwohYJwjxJ4i6ZFuPufDJXna9dvlgplS0r+/LnX3T2ckiLr1m+RUiWKOxusFkoLaNfeZNl74HBQAeZdvkQKTKCGe1DQInQwwj1CoC2eBuFucXIiFBrC3X/Q+mmx5MOHzTM00HboULKs37RNyjvP6QLOcxrhHig5jktEAgh3hDvCPRHv/NDOGeEeGre0Xgh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkZQkG425ubUCJDuIdCLb76INzjK5+hnA3CPRRqWffZs3e/tO4yVFas+t0cULFcKZk6soeUK10i20l++X2dPNJ7pPy5bpM5xv0UGsLdv7wwUvwRQLgj3BHu8Xdfh+uMEO4eySLcPQK0qDvC3aJkRCkUhHuUwFs0LcLdomQg3O1Nhg+RIdx9gBjjQyDcYzyBPoSPcPcB4r9DDBv3pkyfs1jenjRAihQuJE3b9zP7pYwZ3DnLSf7euFVuatpFrqhyjrS+q75UueAM2bf/oFkZj3D3Ly+MFH8EEO4Id4R7/N3X4TojhLtHsgh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkId3uT4UNkCHcfIMb4EAj3GE+gD+Ej3H2A+O8QNZp0ljo1qkrX9k3NV2bOWyK9h06WlR9NkaSkpEwTPTHoRVm4+Cv5asE4s09K+oZw9y8vjBR/BBDuCHeEe/zd1+E6I4S7R7IId48ALeqOcLcoGVEKBeEeJfAWTYtwtygZCHd7k+FDZAh3HyDG+BAI9xhPoA/hI9x9gPjvEBfVvF/6PtZCGte9znxl+YrV0vyhp+TT2SPlxOLFMk1UreFDpl57mVInyuatO+ScM06Rxzs2k0oVy7DC3b+0MFIcEkC4I9wR7nF4Y4fplBDuHsEi3D0CtKg7wt2iZEQpFIR7lMBbNC3C3aJkINztTYYPkSHcfYAY40Mg3GM8gT6Ej3D3AaIzRGpqqlxwQ0sZ2qu91K1Z1Qy6avWfcnubPrLgtSFGomds51dvIaefWlGaNawh+Z1ffsa+/I7sO3BQFs8YIXmPO0503xQaBCCQmcC25ANy89o58vvh3XGBZ2b5m6V6sYpBncuC3X/KPRs/CKqPrQdfWqC0zD25nhTIc+wnfXKKd/fhQ1J33VxZdWiHracVVFzTyt0ktY4/Ocs+JYrlD2osDj6WAMLd4xWBcPcI0KLuCHeLkhGlUBDuUQJv0bQId4uSkSEUNk21NzehRIZwD4VafPVBuMdXPkM5G4R7KNSy7qMr3Pt1aSmN6lQzB7gr3D+bPUpOKF40UycV7oO6t5Fba19jvrd6zTpp2LKnTBvbW847u7IkHz7iX3CMBIE4IrDpwH6psWZ23Aj3tyvWkZtLZC1bs0vb21vXyF0b3o+LrKpwf/+0BlLYedEYaNt+6KDcuObduBHub1WoLQ1KnpLl6RfMH/iLiED5JdJxCHeP2Ua4ewRoUXeEu0XJiFIoCPcogbdoWoS7RcnIEArC3d7chBIZwj0UavHVB+EeX/kM5WwQ7qFQy7qP1nCvW/NK6dLuTnPAjLkfS59hU7Kt4a7H33LTNfJIm9vN8T/+8oc0adtXXn6+u1S58CzZtOOAf8ExEgTiiAAlZSgpQ0mZOLqhw3wqCHePgBHuHgFa1B3hblEyohQKwj1K4C2aFuFuUTIQ7vYmw4fIEO4+QIzxIRDuMZ5AH8JHuPsA8d8hho6dZiT7rEkDpEihgtKsQ3+pXKm8jBnc2RwxYsIMZ5PUL02JGfffL09fKDMn9pfixYpIn6FT5LOvV8pnTs33AgUKINz9Sw0jxRkBhDvCHeEeZzd1GE8H4e4RLsLdI0CLuiPcLUpGlEJBuEcJvEXTItwtSgbC3d5k+BAZwt0HiDE+BMI9xhPoQ/gIdx8g/jvEnr37pdWjQ2Tlz2vMV8qXKSGvjOpp/qut+6AJMm/RUvl+0WTz74OHkqVdt+Hy5Tc/mX8XLlRARg/qLFdUOYdNU/1LCyPFIQGEO8Id4R6HN3aYTgnh7hEswt0jQIu6I9wtSkaUQkG4Rwm8RdMi3C1KRoZQKCljb25CiQzhHgq1+OqDcI+vfIZyNgj3UKjl3Gf7zn/kUHKylCt9VLTn1nbu2iO79+yTkyuUlqSkJHN4ypFUVrjnBo7vJywBhDvCHeGesLd/0CeOcA8a2bEdEO4eAVrUHeFuUTKiFArCPUrgLZoW4W5RMhDu9ibDh8gQ7j5AjPEhEO4xnkAfwke4+wAxDEPkJNz3pCbLwdSUMMwa+SGTJElK5CkQ1MTJqUdkd+qhoPrYfHD+pLxSLClfUCHG0zUgzjVQMshrAOGOcEe4B/UjI6EPRrh7TD/C3SNAi7oj3C1KRpRCQbhHCbxF0yLcLUoGwt3eZPgQGcLdB4gxPgTCPcYT6EP4CHcfIIZhiJyE+wf71skT25eGYdbID1m9UEUZVvLqoCbemnJA7t30vmw+Eh+byo4uVU2qFiwXFIPF+/+WLts+D6qPrQdfUaCMjCl9fVDhIdwR7gj3oG6ZhD4Y4e4x/Qh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkId3uT4UNkCHcfIMb4EAj3GE+gD+Ej3H2AGIYhchLuc/f+IQ9sWRyGWSM/ZJ0ip8jE0jcENbEK95vXvysbUvYF1c/Wg2eVuzlo4b5w319y/+YPbT2loOK6tmB5ebNc7aD6INwR7gj3oG6ZhD4Y4e4x/Qh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkId3uT4UNkCHcfIMb4EAj3GE+gD+Ej3H2AGIYhEO7ZQ0W4iyDcD0mD9XPl98O7w3D3RX7I6c4Lh6udFw/BtEX71sq9mxcF08XaYy8tUFpmlasj+ZLyBBwjwj1gVAl/IMLd4yWAcPcI0KLuCHeLkhGlUBDuUQJv0bQId4uSgXC3Nxk+RIZw9wFijA+BcI/xBPoQPsLdB4hhGALhjnDP6bJCuCPcEe7JcuuG+bLq0I4w/ASO/JCvl60l1zsltrJqFUoWinxAcTQjwt1jMhHuHgFa1B3hblEyohQKwj1K4C2aFuFuUTIQ7vYmw4fIEO4+QIzxIRDuMZ5AH8JHuPsAMQxDINwR7gj37AlQUoaSMqxwD8ODJ06HRLh7TCzC3SNAi7oj3C1KRpRCQbhHCbxF0yLcLUoGwt3eZPgQGcLdB4gxPgTCPcYT6EP4CHcfIIZhCIQ7wh3hjnDP6RpghTsr3MPw6InLIRHuHtOKcPcI0KLuCHeLkhGlUBDuUQJv0bQId4uSgXC3Nxk+RIZw9wFijA+BcI/xBPoQPsLdB4hhGALhjnBHuCPcEe7ZE2CFexgePHE6JMLdY2IR7h4BWtQd4W5RMqIUCsI9SuAtmhbhblEyEO72JsOHyBDuPkCM8SEQ7jGeQB/CR7j7ADEMQyDcEe4Id4Q7wh3hrgSo4e7tIYtw98ZPEO4eAVrUHeFuUTKiFArCPUrgLZoW4W5RMhDu9ibDh8gQ7j5AjPEhEO4xnkAfwke4+wAxDEMg3BHuCHeEO8Id4Y5w9/6ARbh7ZIhw9wjQou4Id4uSEaVQEO5RAm/RtAh3i5KBcLc3GT5EhnD3AWKMD4Fwj/EE+hA+wt0HiGEYAuGOcEe4I9wR7gh3hLv3ByzC3SNDhLtHgBZ1R7hblIwohYJwjxJ4i6ZFuFuUDIS7vcnwITKEuw8QY3wIhHuMJ9CH8BHuPkAMwxAId4Q7wh3hjnBHuCPcvT9gEe4eGSLcPQK0qDvC3aJkRCkUhHuUwFs0LcLdomQg3O1Nhg+RIdx9gBjjQyDcYzyBPoSPcPcBYhiGQLgj3BHuCHeEO8Id4e79AZuwwn3X7r2SfPiwlCpR3BNFhLsnfFZ1RrhblY6oBINwjwp2qyZgAHTPAAAgAElEQVRFuFuVjmOC2bU3WfYeOBxUgHmXL5ECEwYE1YeDI0MA4R4ZzjbPgnC3OTuRiQ3hHhnOwc6CcEe4I9wR7gh3hDvCPdinZ+bjE06479m7X1p3GSorVv1uaFQsV0qmjuwh5UqXyJVmryGTZdb8JfLZ7FFyQvGi5niEe67YYuYAhHvMpCpsgSLcw4Y2ZgZGuNubKoS7vbkJJTKEeyjU4qsPwj2+8hnK2SDcQ6EW/j4Id4Q7wh3hjnBHuCPcvT9vE064Dxv3pkyfs1jenjRAihQuJE3b95PKlcrLmMGdc6Q5dfpCeWb0G+YYhLv3C8/GERDuNmYlsjEh3CPL28bZEO42ZuVoTAh3e3MTSmQI91CoxVcfhHt85TOUs0G4h0It/H0Q7gh3hDvCHeGOcEe4e3/eJpxwr9Gks9SpUVW6tm9q6M2ct0R6D50sKz+aIklJSVkSXfLFd/Lgk89Lr873St9hLyHcvV93Vo6AcLcyLRENCuEeUdxWToZwtzItCHd70xJyZAj3kNHFTUeEe9ykMuQTQbiHjC6sHRHuCHeEO8Id4Y5wR7h7f9QmnHC/qOb90vexFtK47nWG3vIVq6X5Q0/Jp7NHyonFi2UiunrNOrmtdW8Z3qeDKT/TpG1fhLv3687KERDuVqYlokEh3COK28rJEO5WpgXhbm9aQo4M4R4yurjpiHCPm1SGfCII95DRhbUjwh3hjnBHuCPcEe4Id++P2oQS7qmpqXLBDS1laK/2UrdmVUNv1eo/5fY2fWTBa0OkUsUyxxDdtmO31L2nm9zftK480LyB/PjLH5mE++GUI0FlYfvOIzJ81BHZtj3r1fRBDcbBvhJQ4d7loTxSukQeX8fNONg/e1Nk+GiRjRvDOg2Dh0BAhXvXh1OlfOnjQugdeJcDB52fA2OOyNq1/BwInFpkjlTh3u2RVDmpfHDXgH5CKm8e8hnOLFFSJpx0Iz82wj3yzG2bEeFuW0YiHw/CPfLMA5kR4Z49pa0pB+Tm9e/KhpR9gaC0/phZ5W6WqgXLBRXnwn1/yf2bPwyqj60HX1uwvLxZrnZQ4e08ckgarJ8rvx/eHVQ/Ww+e7pz/1Q6HYNqifWvl3s2Lguli7bGXFigts8rVkXxJgTugvanJcuuG+bLq0A5rzyuYwF4vW0uuL1Qxyy4VShYKZiiOzUAgoYS7nruucO/XpaU0qlPNoHBXuKevy+4ymjH3Y+kzbIrUv/Eq86WtO3bJF//7UWpWu1Ra3llHqlxwpmzeeTCoi2rf3lQZOzEPwj0oapE5WIV7h7apUuzofrhhawcPpsr4yXkR7mEjHPrAKtwfbJfibIocXnGakiLy4pQkhHvoqQpbTxXuD3dMkRInBncNlDw+P8I9bFk5OjDCPcyAIzw8wj3CwC2cDuFuYVIiHBLCPcLAA5wO4Z49KIS7CMId4Y5wR7gH+DhJ+MMSTrhrDfe6Na+ULu3uNMl3pXpWNdx19fvcD5amXSRbtu6UeYu+kKa31pDb618v5555iqzftj+oi2j//iR5cRLCPShoETqYkjIRAm3xNJSUsTg5EQqNkjIRAh3CNAj3EKBZ3AXhbnFyIhQawj1CoC2eBuFuZ3IQ7gj3nK5MhDvCHeGOcLfz6WVfVAkn3IeOnWYk+6xJA6RIoYLSrEN/qVypvIwZ3NlkZ8SEGbJw8ZemxEzGllVJGYS7fRd1qBEh3EMlFz/9EO7xk8tQzwThHiq58PdDuIefcSRnQLhHkradcyHc7cxLJKNCuEeSduBzIdwR7gj37AlQUkYE4Y5wD/yJkthHJpxw37N3v7R6dIis/HmNyXz5MiXklVE9zX+1dR80wVnFvlS+XzQZ4Z5g9wbCPcESnsXpIty5BhDu/l8DR46kyvpNW6Vs6RKS77i8IU+AcA8ZnZUdEe5WpiWiQSHcI4rbyskQ7lamRRDuCHeEO8I9p2sA4Y5wt/PpZV9UCSfc3RRs3/mPHEpOlnKOAPDSWOHuhZ5dfRHuduUjGtEg3KNB3a45Ee7+5mPBh8uk21PjJeXfDcY7t20ire+ql+skf6zdKLe06CG33HSNDOzWyhyPcM8VW0wdgHCPqXSFJViEe1iwxtSgCHc704VwR7gj3BHuCPfsCbBpqp3PLhujSljh7lcyEO5+kYz+OAj36Ocg2hEg3KOdgejPj3D3Lwf79h+QK+t3MIK9/X0NZZ6zJ8qTT0+UuVMHm1Ju2bVdu/dK/XufEH0xrhucI9z9y4lNIyHcbcpGdGJBuEeHu02zItxtysb/x4JwR7gj3BHuCHeEuxKoULKQnQ+qGIkK4e4xUQh3jwAt6o5wtygZUQoF4R4l8BZNi3D3LxnzFy2TrgPGyvL3JkiB/PnMwFff0lHuaVxLOrRomOVEyYdTpGm7flKhXCnZ/c9eOblCGYS7fymxaiSEu1XpiEowCPeoYLdqUoS7VelICwbhjnBHuCPcEe4Id4S792c0wt0jQ4S7R4AWdUe4W5SMKIWCcI8SeIumRbj7l4yJr8+TydPmy+fvjk4btGn7/nLGqRXTJHrG2R7rN0ZWr/lbZk7oJ627DEW4+5cO60ZCuFuXkogHhHCPOHLrJkS4W5cSExDCHeGOcEe4I9wR7gh3789ohLtHhgh3jwAt6o5wtygZUQoF4R4l8BZNi3D3LxnDxr0p8xd9IR9Ofy5t0Jadn5aiRQrLyIGdMk00dupseenN/8qC14ZIiROKyX0PDz5GuB84dESSkoKLb8+SDyTv+P7BdeLoiBBI6TRIila9Nuxz7flsseQd0zvs8zBB8ARSOvaXoldXD75jkD3+j73zAK+i2trwR+/Su4KAoiiioIgiHem9Su+99957Cb33LiAdAojSQZqKIlxREZAiSC/Sk8Dda3OTGyAJOTlzMntOvv0/97n/JTN71rxrcibnnT1r3Tm4FzEm9nJxL24eGQQCmvdDwgKfu3SoJ0+eIG7siDfgdulgUXRjCvfQE3814AFKXliPiwH3vOLqWJ2mJPLETePSuWy5dxaNLm93aR9TN84XNy2WpynhUng3Hz9CuQu+OOV/26X9TN14hTr/vIqDK4NNU9k01ZXrJSpvS+HuZvYp3N0EaNDuFO4GJcOmUCjcbQJv0GEp3K1Lhqsr3POUaYn0qpTMm5le1UHs3P8z4saJjTJFP0G31jXx731/1ez8sUsBPj60A7FmDnZpH24cOQT82gxD9A8+8fjBHv+4B7Gm9ff4cXgA1wn4qTdeon/o+Ycuj38+gFiTKdxdz5Dn9/Br1hfRPy7s0oFix4qORPFiurQPN3aNAIV76Lwo3AEKdwp3CncKd9fuKlF3awp3N3NP4e4mQIN2p3A3KBk2hULhbhN4gw5L4W5dMkKq4S5SvX61EiHWcBdBf+PWv0EBrN/ynVoNHw9VyhTUjVdv3fXD3Qf+LgUY4/BuxJlF4e4StEjamCVlIgm0wYdhSRmDkxNJobGkjPWgpfG4n78/UiRLHOHJKdwp3MO6eCjcKdwp3CncI3yDiWI7Uri7mXAKdzcBGrQ7hbtBybApFAp3m8AbdFgKd+uSce/+A+Qu1QLN6pRDq/oVsOHbfeg7ai58Fw5HpgxpcfPWHVRo2ButG1ZC9XKFXjjw8yVlKNyty40JM1G4m5AFe2OgcLeXvwlHp3C3Lgt37t7XvU+OHj+lJ5U3xhZO6oU0KZO99CByb169aTe+WzcZSRInZA33MIhxhTtXuLOkDEDhTuH+0hsLN9AEKNzdvBAo3N0EaNDuFO4GJcOmUCjcbQJv0GEp3K1Nhu/W/eg+ZEbQpO2bVNECXsa1G7dRoFI7tGtcBc3rPv234IPC3dpcmDYbhbtpGYn8eCjcI5+5aUekcLcuI9I3ZcWGnVgzZzASxI+HGi0H6ofbU4d3DPMgC1dswcgpS/U2FO4vzweFO4U7hTuF+90nFO4v/7TkFkKAwt3N64DC3U2ABu1O4W5QMmwKhcLdJvAGHZbC3fpkBAQ8xrkLl5EudXLEjh0rwgfgCvcIozNyRwp3I9MSqUFRuEcqbiMPRuFuXVqKVOuIUkXyoGvLGnrSVRt3o9/ouTi2Y55qOB5yx/HdB46gTe8J6NuxHgb4zKdwD0c6KNwp3CncKdwp3MPxYclNNAEKdzcvBAp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5LxXCgU7ubmJiKRUbhHhJp37UPh7l35jMjZULhHhFrI++Qo2ggDOjdA5dIF9AaHj55A3bZDsXfdJCRNnOiFnU6cPo8qTfphTP9WuvxMtWYDKNzDkQ4Kdwp3CncKdwr3cHxYchMKdyuuAQp3KyiaMQeFuxl5sDMKCnc76ZtxbAp3M/IQUhQU7ubmJiKRUbhHhJp37UPh7l35jMjZULhHhNqL+zx58gTZCzfE6L4tUbpoHr3B8RNnULVpf2xeMgoZ0qd6Zicp6Va6Tnc0qlFal3T79Y+/XhDufv6PQwxuyeUTaHJphzWB2zxL6QQZsTxjMcSMET3ckZy/fxcFTq/BxYB74d7H5A03pC+Nz5O96lKIX105ifr/bHNpH1M3zhc3LTZnLuPSNXDpwX0UOb0Op/xvm3paLsW1Jn0plEz2mmv7XD2NWhe/dWkfUzfOFSclvs1cDvFjxgx3iNcfPcTnp9fj+KMb4d7H5A2/SlcC5ZJnDDHEuLFjmBy68bFxhbubKaJwdxOgQbtTuBuUDJtCoXC3CbxBh6VwNygZz4VC4W5ubiISGYV7RKh51z4U7t6Vz4icDYV7RKiFvI+scB/YpSEqlcqvNwhc4R5Ylz34Xit9d6G/zzyU/fxT/c9Xb9zCgR9/RdH8udDwi1LI8c4bkHtuSGP1zZNoenmndYHbOJMI9wVpiyJ69JBL7oQU2j+P7uHzc+u8RrivTVsK+ROlcykL62+dRsNL213ax9SNRbivea0UoodSdimkuK/5PUDJcxu8RrivSlsShRKldylFm2+fQZ1/trq0j6kbi3D3fa0M4kQPv1i+7f8Ipc/7eo1wX5amOIq9EvJDl2SJYpuaOkfEReHuZpoo3N0EaNDuFO4GJcOmUCjcbQJv0GEp3A1KxnOhULibm5uIREbhHhFq3rUPhbt35TMiZ0PhHhFqIe8jNdxLF/0EXVp8oTcIlOoh1XCX1e/S1DxwXLl6Exu3HUCNCkVQtWxBZM2SAZduPAjxQL53/0LzKzutC9zGmUop4T47ZWGXImBJGZaUYUkZlpRhSRmXPjaj9MYU7m6mn8LdTYAG7U7hblAybAqFwt0m8AYdlsLdoGRQuJubDAsio3C3AKLDp6Bwd3gCLQifwt0CiP+bYvS0ZVqyr54zGAnixUXNVoOQKUNaTB3eUW8xftZKbNl5SJeYeX6EVFKGwj3k3FC4U7hTuFO4U7hbd+/y9pko3N3MMIW7mwAN2p3C3aBk2BQKhbtN4A06LIW7QcmgcDc3GRZERuFuAUSHT0Hh7vAEWhA+hbsFEP83xZ2799G40ygc+/20/pe0qZJh0eQ++r9l9Bw2S61i349fts2lcP8fAa5wB1anKYk8cdO4dCFuuXcWjS57T0mZ5WlKuHT+FO4U7hTuLv3KROmNKdzdTD+Fu5sADdqdwt2gZNgUCoW7TeANOiyFu0HJoHA3NxkWREbhbgFEh09B4e7wBFoQPoW7BRCfm+L6zX/xyM8PaVI+Fe0RGQGPn7CkTCjguMKdK9wp3CncKdwjcmeJmvtQuLuZdwp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5JB4W5uMiyIjMLdAogOn4LC3eEJtCB8CncLIHpgCgr30KFSuFO4U7hTuFO4e+DG46VTUri7mVgKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwr3sC4rlpR5hHIXfHHK/7YHfvsif8oVqqRO3rhpXTrwtnvnUO/yNpf2MXXjXHFSqtJKpRArWvRwh0jhHm5UUX5DCnc3LwEKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwp3CvfQCXCFO1e4U7h74MbjpVNSuLuZWAp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5JB4W5uMiyIjMLdAogOn4LC3eEJtCB8CncLIHpgCgp3CncKdwr3sK4BrnD3Q4WLm3D80Q0PfAJH/pRfpi6GgvHSh3jgdMnjRX5AXnRECnc3k0nh7iZAg3ancDcoGTaFQuFuE3iDDkvhblAyKNzNTYYFkVG4WwDR4VNQuDs8gRaET+FuAUQPTEHhTuFO4U7hTuEeOgGucPfAjcdLp6RwdzOxFO5uAjRodwp3g5JhUygU7jaBN+iwFO4GJYPC3dxkWBAZhbsFEB0+BYW7wxNoQfgU7hZA9MAUFO4U7hTuFO4U7hTuQoAr3N27yVK4u8cPFO5uAjRodwp3g5JhUygU7jaBN+iwFO4GJYPC3dxkWBAZhbsFEB0+BYW7wxNoQfgU7hZA9MAUFO4U7hTuFO4U7hTuFO7u32Ap3N1kSOHuJkCDdqdwNygZNoVC4W4TeIMOS+FuUDIo3M1NhgWRUbhbANHhU1C4OzyBFoRP4W4BRA9MQeFO4U7hTuFO4U7hTuHu/g2Wwt1NhhTubgI0aHcKd4OSYVMoFO42gTfosBTuBiWDwt3cZFgQGYW7BRAdPgWFu8MTaEH4FO4WQPTAFBTuFO4U7hTuFO4U7hTu7t9gKdzdZEjh7iZAg3ancDcoGTaFQuFuE3iDDkvhblAyKNzNTYYFkVG4WwDR4VNQuDs8gRaET+FuAUQPTEHhTuFO4U7hTuFO4U7h7v4NlsLdTYYU7m4CNGh3CneDkmFTKBTuNoE36LAU7gYlg8Ld3GRYEBmFuwUQHT4FhbvDE2hB+BTuFkD0wBQU7hTuFO4U7hTuFO4U7u7fYCnc3WRI4e4mQIN2p3A3KBk2hULhbhN4gw5L4W5QMijczU2GBZFRuFsA0eFTULg7PIEWhE/hbgFED0xB4U7hTuFO4U7hTuFO4e7+DZbC3U2GFO5uAjRodwp3g5JhUygU7jaBN+iwFO4GJYPC3dxkWBAZhbsFEB0+BYW7wxNoQfgU7hZA9MAUFO4U7hTuFO4U7hTuFO7u32Ap3N1kSOHuJkCDdqdwNygZNoVC4W4TeIMOS+FuUDIo3M1NhgWRUbhbANHhU1C4OzyBFoRP4W4BRA9MQeFO4U7hTuFO4U7hTuHu/g2Wwt1NhhTubgI0aHcKd4OSYVMoFO42gTfosBTuBiWDwt3cZFgQGYW7BRAdPgWFu8MTaEH4FO4WQPTAFBTuFO4U7hTuFO4U7hTu7t9gKdzdZEjh7iZAg3ancDcoGTaFQuFuE3iDDkvhblAyKNzNTYYFkVG4WwDR4VNQuDs8gRaET+FuAUQPTEHhTuFO4U7hTuFO4U7h7v4NlsLdTYYU7m4CNGh3CneDkmFTKBTuNoE36LAU7gYlg8Ld3GRYEBmFuwUQHT4FhbvDE2hB+BTuFkD0wBQU7hTuFO4U7hTuFO4U7u7fYCnc3WRI4e4mQIN2p3A3KBk2hULhbhN4gw5L4W5QMijczU2GBZFRuFsA0eFTULg7PIEWhE/hbgFED0xB4U7hTuFO4U7hTuFO4e7+DZbC3U2GFO5uAjRodwp3g5JhUygU7jaBN+iwFO4GJYPC3dxkWBAZhbsFEB0+BYW7wxNoQfgU7hZA9MAUFO4U7hTuFO4U7hTuFO7u32Ap3N1kSOHuJkCDdqdwNygZNoVC4W4TeIMOS+FuUDIo3M1NhgWRUbhbANHhU1C4OzyBFoRP4W4BRA9MQeFO4U7hTuFO4U7hTuHu/g2Wwt1NhhTubgI0aHcKd4OSYVMoFO42gTfosBTuBiWDwt3cZFgQGYW7BRAdPgWFu8MTaEH4FO4WQPTAFBTuFO4U7hTuFO4U7hTu7t9go6xwv3X7Lvz8/ZEiWeKXUvTzD8DFS9eQMnkSxIsb+5ntKdxfis8xG1C4OyZVHguUwt1jaB0zMYW7uam6ddcPdx/4uxRgjMO7EWfWYJf24caRQ4DCPXI4m3wUCneTsxM5sVG4Rw5nV49C4U7hTuFO4U7hTuFO4e7q3fPF7aOccL9z9z6adBmNo8dPaRrp06TAwkm9kCZlshBpjp62DPOXfx30s1zvZcX4QW2QPOkr+t8o3N2/CE2ZgcLdlEzYFweFu33sTTkyhbspmXgxDgp3c3MTkcgo3CNCzbv2oXD3rnxG5Gwo3CNCzfP7ULhTuFO4U7hTuFO4U7i7f7+NcsLdZ/pyrNiwE2vmDEaC+PFQo+VAZMqQFlOHdwyR5pylm5A5Y1rkyZkNp85eRN22w1C/Wgl0aFqVwt3968+oGSjcjUqHLcFQuNuC3aiDUrgblY5ngqFwNzc3EYmMwj0i1LxrHwp378pnRM6Gwj0i1Dy/D4U7hTuFO4U7hTuFO4W7+/fbKCfci1TriFJF8qBryxqa3qqNu9Fv9Fwc2zEP0aJFeynRVj3H4fzFq1g/fyiF+0tpOWsDCndn5csT0VK4e4Kqs+akcDc3XxTu5uYmIpFRuEeEmnftQ+HuXfmMyNlQuEeEmuf3oXCncKdwp3CncKdwp3B3/34b5YR7jqKNMKBzA1QuXUDTO3z0hFq1PhR7101C0sSJwiTq5+ePvOVbo0ShjzGke2O97ZWbD13Kwt27TzBtdnRcu/5yue/SxNzYbQIi3Fs3e4JECd2eKswJHj58gulzY+Cffzx7HM7uOgER7m1bBCBJYs/+fqq2EJg5LxrOnfPscVwnwD1EuHdoHYBkSV3LTbJXYiNGdNf2iSq0Hz9+gguXriK1Kt0WK2aMl572jVv/4v79h0inSr4FHxTuL0XnqA0o3B2VLo8ES+HuEayOmpTC3cx0UbiHnperAQ9Q8sJ6XAy4Z2byXIxqdZqSyBM3jUt7bbl3Fo0ub3dpH1M3zhc3LZanKeFSeDcfP0K5C7445X/bpf1M3XiFOv+8ioMrY9u9c6h3eZsruxi7ba44KbE6TSnEihY93DHefeKHChc34fijG+Hex+QNv0xdDAXjpQ8xxHTJ45kcuvGxRSnh/uTJE2Qv3BCj+7ZE6aJ5dHKOnziDqk37Y/OSUciQPlWoCZN9W/caj72HjmLLUh+kTfW05rtfwGOXknz95mOMnfyYwt0lapGzsQj3zm2jI2Wy8H/YRiSyf+8GYOwUULhHBJ6H9xHh3rX9E9XTIaZHj/TgofocmPqYwt2jlCM2uQj37h2eIH1a166B6OoNKQr3F5lv3n4Q3YfOQMD/7pUdm1VDk1plQkzOP1euo3LjvpCm5jKSJUmElvUrolalovp/U7hH7Jo2dS8Kd1MzE3lxUbhHHmtTj0ThbmZmKNxDzwuFO0DhTuFO4U7hbubdy7yoopRwF/yywn1gl4aoVCq/zkbgCvfv1k1Wq1pDX9o8eNxCrPDdiXnjeuDDHFmDMsmmqeZd1BGNiCVlIkrOe/ZjSRnvyWVEz4QlZSJK7sX97t1/gE/KttKCXcT5xq370XvEbPguHK57pzw/Ll66hkUrv0Gtyp8jUYL4mDxvNZav34EDvlMRP15cCnfrUmPETBTuRqTB1iAo3G3Fb8TBKdyNSMMLQVC4U7iHdWVSuFO4U7hTuJt59zIvqign3KWGe+min6BLiy90Nlb67kJ/n3mh1nCXVXm9hs/C5h0HsWBCT+TM/uYzWaRwN++ijmhEFO4RJec9+1G4e08uI3omFO4RJffifpu2HUTXwdNw+JtZiBNbvTqghpRlq1O5GFo1qPjSA51WjcrL1uuJmaO74LPc2SncX0rMWRtQuDsrX56IlsLdE1SdNSeFu5n5onCncKdwD50AS8oAFO4U7mbevcyLKsoJ99HTlmnJvnrOYCRQK+ZqthqkV9pNHd5RZ2f8rJXYsvOQLjEjo0X3Mdhz8CjGDmiFNzK9GpTBDOlSIVasmKBwN++ijmhEFO4RJec9+1G4e08uI3omFO4RJffifrO/3Ii5yzZh33pVQ+t/o0bLQXjj9fRBfVDCOtqCFVswaspS7Fw1HimTJ6Fwty41RsxE4W5EGmwNgsLdVvxGHJzC3fo0SFk2P39/pEiW+KWT+6mmQvJ2mdxj48WNHbQ9hXvo6FhShiVlKNwp3FnD/aW3F27wPwJRTrjfuXsfjTuNwrHfT2sEUot90eQ+QTXZew6bhY3b9uOXbXP1z/OUaQnZ5/mxdt4QvKkEPIW79/wuUbh7Ty4jeiYU7hEl5z37Ubhbl0uf6cuxadsBbF8xLmjShh1HIKEqFzNpSLswDyT36FqtBqN6ucLo06Gu3vb+wwA8Uf/nyri3dztizhjkyi7cNpIIBLQbhni583r8aPf270bMqf08fhwewHUC/mrRS/xPC7i+o4t73P9+H2JM7OXiXtw8Mgj4N++H+PmKuHioaIgf5+UNuF2c1PGby/fVJl1G4+jxU/pc0qvG4wsn9VJ9iZ72HXt+yCK0+cu/DvrnXO9lxfhBbZA86SugcA/9cqBwp3CncKdwp3B3/C0z0k4gygn3QLLXb/6LR35+of4REt4MULiHl5T521G4m58jT0dI4e5pwubPT+FuXY4iusJdSslUbtIPH+V4C9NHdkKMGE8bWd954A//ANeEu9/+7Yg1c7B1J8WZLCPg13YYYuX61LL5QpvI79BuxJrW3+PH4QFcJ+CnhHus3E97Knly+B3ej1hKPHKYR8CvWV/E+tQ14R4zejQkjOdaY3Pzztz6iOQh94oNO7FG3uKOHw81Wg585i3u5484Z+kmZM6YFnlyZsMpdd+tqz6T61crgQ5Nq1K4h5EeCncKdwp3CncKd+vvYd46Y5QV7lYllMLdKpL2z0Phbn8O7I6Awt3uDNh/fAp363IQUg13eWtMvtCHVsNdVrbLl/78ed7DuAFtgmS7RHXrrh/uKunuyohxeDfizKJwd4VZZG3LkjKRRdrc47CkjLm5iYRIxmsAACAASURBVKzIWFLGOtLSp6xUkTzo2rKGnnTVxt3oN3puqH3Knj9yq57jcP7iVayfP5TCncI9zAuTTVPZNJU13FnD3bq7l3fPROHuZn4p3N0EaNDuFO4GJcOmUCjcbQJv0GEp3K1Lxr37D5C7VAs0q1MOrepXwIZv96HvqLnwXThcr7q7eesOKjTsjdYNK6nSMYX0a/BS4/3jnG+jT3tVRiZaNB1MIlWCJlUK1nC3LjNmzEThbkYe7IyCwt1O+mYcm8LdujzkKNoIAzo3QOXST8s0HT56Qj3AHoq96yYhaeJEYR7Iz89fNzUvUehj3WNFSspcvfUwxH3W/3saza7stC5wG2cqlSAj5qYqrP7cePr3RnjGlYAHKH5+HS4G3AvP5sZvsyZNKXwaP41LcW66cwaNLm93aR9TN84XNy1WpCuJ8F8BwA3/hyhzwRen/G+belouxbUyTQnki5/OpX2+vXsOdS9tdWkfUzfOFScl1qYrjdjRnr5RG55x57Efyl3YiOOPboRnc+O3WZq6GAon+H+/yuABp04a1/j4TQ6Qwt3N7FC4uwnQoN0p3A1Khk2hULjbBN6gw1K4W5sM36370X3IjKBJ2zepogW8jGs3bqNApXZo17gKmtcthxW+OzHAZ/4LAeT9KDtm+XThCndrU2P7bBTutqfA9gAo3G1Pge0BULhbk4InT54ge+GGGN23JUoXzaMnPX7iDKo27Y/NS0YhQ/pUoR5I9m3dazz2HjqKLUt9dF8zEe6hjQUXf0fjf3ZYE7jNs5RWwn1V5hKIFTP8ou3M3TvId3K11wh331dLo2TKDC5l4st/TqDexW0u7WPqxiLcv3mzHGK7cA1cvHcPBU+u9Rrhvu7VUiiTMqNLKVpx6SRqXvjWpX1M3ViE+443KyBBrPCXKrv24AEKnVznNcJ9RfoSqJQqU4gpiqHKuHFEnACFe8TZ6T0p3N0EaNDuFO4GJcOmUCjcbQJv0GEp3K1PRkDAY5y7cBnpUidH7NixInwAlpSJMDojd6RwNzItkRoUhXuk4jbyYBTu1qVFVrgP7NIQlUo97YsQuML9u3WTkSRxwlAPNHjcQv3Ae964HvgwR1a9HZumhp4X1nBnDXfWcGcNd9Zwt+7e5e0zUbi7mWEKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OS8VwoFO7m5iYikVG4R4Sad+1D4e5d+YzI2VC4R4RayPtIDffSRT9BlxZf6A1W+u5Cf595odZwl4fhvYbPwuYdB7FgQk/kzP5m0MQU7hTuYV2ZrOHOGu6s4c4a7tbdvbx7Jgp3N/NL4e4mQIN2p3A3KBk2hULhbhN4gw5L4W5QMijczU2GBZFRuFsA0eFTULg7PIEWhE/hbgHE/00xetoyLdlXzxmMBPHiomarQbpfytThHfUW42etxJadh3SJGRktuo/BnoNHMXZAK7yR6f+1ezOkS4XoMWLg0o0HIQbne/cvNPeiGu6zUxZ2KQlc4c4V7lzhzhXuXOHu0sdmlN6Ywt3N9FO4uwnQoN0p3A1Khk2hULjbBN6gw1K4G5QMCndzk2FBZBTuFkB0+BQU7g5PoAXhU7hbAPF/U9y5ex+NO43Csd9P63+RWuyLJvfR/y2j57BZ2LhtP37ZNlf/7zxlWkL2eX6snTcEmTOmp3APJTUU7hTuFO4U7hTu1t27vH0mCnc3M0zh7iZAg3ancDcoGTaFQuFuE3iDDkvhblAyKNzNTYYFkVG4WwDR4VNQuDs8gRaET+FuAcTnprh+81888vNDmpRPRXtEBkvKhE6Nwp3CncKdwp3CPSJ3lqi5D4W7m3mncHcToEG7U7gblAybQqFwtwm8QYelcDcoGRTu5ibDgsgo3C2A6PApKNwdnkALwqdwtwCiB6agcKdwD+uyYg131nBnDXfWcPfArccrp6RwdzOtFO5uAjRodwp3g5JhUygU7jaBN+iwFO4GJYPC3dxkWBAZhbsFEB0+BYW7wxNoQfgU7hZA9MAUFO4U7hTuoRPgCneucOcKdw/ceLx0Sgp3NxNL4e4mQIN2p3A3KBk2hULhbhN4gw5L4W5QMijczU2GBZFRuFsA0eFTULg7PIEWhE/hbgFED0xB4U7hTuFO4R7WNcAV7lzh7oFbj1dOSeHuZlop3N0EaNDuFO4GJcOmUCjcbQJv0GEp3A1KBoW7ucmwIDIKdwsgOnwKCneHJ9CC8CncLYDogSko3CncKdwp3CncQyfAFe4euPF46ZQU7m4mlsLdTYAG7U7hblAybAqFwt0m8AYdlsLdoGRQuJubDAsio3C3AKLDp6Bwd3gCLQifwt0CiB6YgsKdwp3CncKdwp3CXQikSx7PA3eZqDMlhbubuaZwdxOgQbtTuBuUDJtCoXC3CbxBh6VwNygZFO7mJsOCyCjcLYDo8Cko3B2eQAvCp3C3AKIHpqBwp3CncKdwp3CncKdwd/8GS+HuJkMKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwp3CncKdwp3CncKd/dvsBTubjKkcHcToEG7U7gblAybQqFwtwm8QYelcDcoGRTu5ibDgsgo3C2A6PApKNwdnkALwqdwtwCiB6agcKdwp3CncKdwp3CncHf/Bkvh7iZDCnc3ARq0O4W7QcmwKRQKd5vAG3RYCneDkkHhbm4yLIiMwt0CiA6fgsLd4Qm0IHwKdwsgemAKCncKdwp3CncKdwp3Cnf3b7AU7m4ypHB3E6BBu1O4G5QMm0KhcLcJvEGHpXA3KBkU7uYmw4LIKNwtgOjwKSjcHZ5AC8KncLcAogemoHCncKdwp3CncKdwp3B3/wZL4e4mQwp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5JB4W5uMiyIjMLdAogOn4LC3eEJtCB8CncLIHpgCgp3CncKdwp3CncKdwp392+wFO5uMqRwdxOgQbtTuBuUDJtCoXC3CbxBh6VwNygZFO7mJsOCyCjcLYDo8Cko3B2eQAvCp3C3AKIHpqBwp3CncKdwp3CncKdwd/8GS+HuJkMKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwp3CncKdwp3CncKd/dvsBTubjKkcHcToEG7U7gblAybQqFwtwm8QYelcDcoGRTu5ibDgsgo3C2A6PApKNwdnkALwqdwtwCiB6agcKdwp3CncKdwp3CncHf/Bkvh7iZDCnc3ARq0O4W7QcmwKRQKd5vAG3RYCneDkkHhbm4yLIiMwt0CiA6fgsLd4Qm0IHwKdwsgemAKCncKdwp3CncKdwp3Cnf3b7AU7m4ypHB3E6BBu1O4G5QMm0KhcLcJvEGHpXA3KBkU7uYmw4LIKNwtgOjwKSjcHZ5AC8KncLcAogemoHCncKdwp3CncKdwp3B3/wZL4e4mQwp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5JB4W5uMiyIjMLdAogOn4LC3eEJtCB8CncLIHpgCgp3CncKdwp3CncKdwp392+wFO5uMqRwdxOgQbtTuBuUDJtCoXC3CbxBh6VwNygZFO7mJsOCyCjcLYDo8Cko3B2eQAvCp3C3AKIHpqBwp3CncKdwp3CncKdwd/8GS+HuJkMKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwp3CncKdwp3CncKd/dvsBTubjKkcHcToEG7U7gblAybQqFwtwm8QYelcDcoGRTu5ibDgsgo3C2A6PApKNwdnkALwqdwtwCiB6agcKdwp3CncKdwp3CncHf/Bkvh7iZDCnc3ARq0O4W7QcmwKRQKd5vAG3RYCneDkkHhbm4yLIiMwt0CiA6fgsLd4Qm0IHwKdwsgemAKCncKdwp3CncKdwp3Cnf3b7AU7m4ypHB3E6BBu1O4G5QMm0KhcLcJvEGHpXA3KBkU7uYmw4LIKNwtgOjwKSjcHZ5AC8KncLcAogemoHCncKdwp3CncKdwp3B3/wZL4e4mQwp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5JB4W5uMiyIjMLdAogOn4LC3eEJtCB8CncLIHpgCgp3CncKdwp3CncKdwp392+wFO5uMqRwdxOgQbtTuBuUDJtCoXC3CbxBh6VwNygZFO7mJsOCyCjcLYDo8Cko3B2eQAvCp3C3AKIHpqBwp3CncKdwp3CncKdwd/8GS+HuJkMKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwp3CncKdwp3CncKd/dvsBTubjKkcHcToEG7U7gblAybQqFwtwm8QYelcDcoGRTu5ibDgsgo3C2A6PApKNwdnkALwqdwtwCiB6agcKdwp3CncKdwp3CncHf/Bkvh7iZDCnc3ARq0O4W7QcmwKRQKd5vAG3RYCneDkkHhbm4yLIiMwt0CiA6fgsLd4Qm0IHwKdwsgemAKCncKdwp3CncKdwp3Cnf3b7AU7m4ypHB3E6BBu1O4G5QMm0KhcLcJvEGHpXA3KBkU7uYmw4LIKNwtgOjwKSjcHZ5AC8KncLcAogemoHCncKdwp3CncKdwp3B3/wZL4R5Ohrdu34Wfvz9SJEv8zB4U7uEE6IDNKNwdkCQPh0jh7mHADpiewt3+JD1+/AQXLl1F6pTJECtmjKCAbt31w90H/i4FGOPwbsSZNdilfbhx5BCgcI8cziYfhcLd5OxETmwU7pHDOayjhPQdl8Kdwp3CncKdwp3CncLd/Xs0hftLGN65ex9NuozG0eOn9Jbp06TAwkm9kEaJABkU7u5fhKbMQOFuSibsi4PC3T72phyZwt3eTGzefhDdh85AQMBjHUjHZtXQpFYZ/f9TuNubG6uPTuFuNVHnzUfh7rycWR0xhbvVRMM/X1jfcSncQ+d4NeABSl5Yj4sB98IP2+AtV6cpiTxx07gU4ZZ7Z9Ho8naX9jF143xx02J5mhIuhXfz8SOUu+CLU/63XdrP1I1XqPPPqzi4MrbdO4d6l7e5soux2+aKkxKr05RCrGjRwx3j3Sd+qHBxE44/uhHufUze8MvUxVAwXvoQQ0yXPJ7JoRsfG4X7S1LkM305VmzYiTVzBiNB/Hio0XIgMmVIi6nDO+o9KdyNv8bDHSCFe7hRee2GFO5em9pwnxiFe7hRWb7hvfsP8EnZVlqwt6xfERu37kfvEbPhu3C4vu9SuFuO3NYJKdxtxW/EwSncjUiDrUFQuNuHP6zvuBTuoeeFwh2gcKdwp3CncLfv7uWsI1O4vyRfRap1RKkiedC1ZQ295aqNu9Fv9Fwc2zEP0aJFo3B31vUeZrQU7l6UzAieCoV7BMF50W4U7vYlc9O2g+g6eBoOfzMLcWLH0oHkLd8adSoXQ6sGFSnc7UuNR45M4e4RrI6alMLdUenySLAU7h7BGq5Jw/qOqyq74dKNByHO43v3LzS/sjNcxzB9o1IJMmJ2ysIuhUnhTuHOFe4AhTuFu0sfnFF4Ywr3lyQ/R9FGGNC5ASqXLqC3PHz0BOq2HYq96yYhaeJEFO5e9MtD4e5FyYzgqVC4RxCcF+1G4W5fMmd/uRFzl23CvvVTgoKo0XIQ3ng9PYZ0b0zhbl9qPHJkCnePYHXUpBTujkqXR4KlcPcI1nBNGtZ33FcSJaRwD4UihTuFO4U7hTtLyoTrNsONFAEK9zAugydPniB74YYY3bclShfNo7c8fuIMqjbtj81LRiFD+lQuX0RXbwRg6aoA3P7X5V25g4cJxE8A1KoSA6mT/79JnycOeftOABavDMAN7yj55QlEts0ZO/YT1KoaHelTP11d66lx/+FjLFrhhytXonnqEJw3ggRiqF//WlWjIUM6164Bef06RnTmM4LY9W7yevumbQewfcW4oGkadhyBhAniY9KQdnjo9xhxYoW/vqJMcvXQQURfv8CdsLivhwhEK1UTST/L76HZ/z/t1R9+QPS1cz1+HB4gAgSKV0OyAq6tLo3AUXDtp58QbdWsiOzKfTxNoEhFJCtS3KWjRORe4NIBosDGL/uOmz5tylD/pll78S+MuvGTV1DKEyc1RmX8RDVoD//fFn/dvYM2Z3fj+pOHXsGgT4oPUTpVBpfOxfefMxh2/bBL+5i68XuxkmFSpvyI7cI1cOHePbQ7uxcXHt819bRciqtH8pwon/p1l/b5+tI5DLr2g0v7mLrxmzETY8rrBZAwdsxwh3j1wQO0ObMXZwO8Q+p1TvY+qqTJHO7z54bhJ0Dh/hJW8vR/YJeGqFTq6ZfCwBXu362bjCSJE4afNLckARIgARIgARIIlcDLVrgTHQmQAAmQAAmQgDUE+B3XGo6chQRIgARIgARCI0Dh/pJrQ+rblS76Cbq0+EJvudJ3F/r7zAuq4c5LiwRIgARIgARIwH0CIdVwz1OmJepXK6FruHOQAAmQAAmQAAlYQ4Dfca3hyFlIgARIgARIgMI9gtfA6GnLtGRfPWcwEsSLi5qtBiFThrSYOrxjBGfkbiRAAiRAAiRAAs8TuHf/AXKXaoFmdcqhVf0K2PDtPvQdNRe+C4fr+y4HCZAACZAACZCANQT4HdcajpyFBEiABEiABCjcI3gN3Ll7H407jcKx30/rGdKmSoZFk/vo/+YAAgIe48HDR0gQP26YOO7df4iYMaIjdmzX6iKTsXcRWL1pN/J9nAOpUiTB7yfP4eKlayiU9wPvOskocjZSXuvYb6eQP0+OIBn6WNUxl7qgMdTvOgcJRISA79b96D5kRtCu7ZtU0QKe4ymBu/ceIE6cWOp+GnqvkfDel8nUuwkEv8dev/kvtu39EVXLFES0aOw14bTMn/37MvYcPIIsqoH0J7ne0eHLvdZf/Q0eK6Zn+w45jRXjDT8BfscNPytuSQIkQAIkQAIRIcCSMuGkJl9WHvn5IU1KivbgyLbvPYy2fSZi1+oJSJEscag0S9XuhvfffQMjejULJ3Fu5o0E3i3UANNHdlaS9j1Mmrsa3+7+EevnD/XGU/Xqc2raxQc//PI73s36OmpUKIKyxT7VX/7b9p6oz3vysPZeff48Oc8SEGF87sJlpEudnA9pg6EOfANgZO/m+ncutBHe+7Jns8jZ7SYQ/B57+OgfqNt2GI5smxPmwxq7Y+bxXyQw/6uvMXrqMmR/KxNyvvcmerSppTf6cs02jJv5Fb7f/P8HlORHAhEhwO+4EaHGfUiABEiABEjg5QQo3F/OiFuEQeDWv3dx8q+/keOdLGF+iZOVVvHixkGG9KnIMwoToHB3fvJlRZTU1V4+o78WADJWbdyNIRMW4dEjPxTOm5PC3flp5hkYSEDeIPn5PyeQOUO6MJu2h/e+bOApMiQLCVC4WwjTxqnK1uuJ8sXzBr3pI39z12o9BHIvjh8vDoW7jbnhoUmABEiABEiABEggLAIU7l56ffz6x19o03sCihfMrWTYLjxUIqxuleLo2qqGPuNug6cjc8Z0kFUNew/9ggbVS+oVcwN85uPbPT8qOR4bdSoXQ4MvSqo/6OPq1avzl38NWWlz49a/eDVtSvTrWF9/6W/Tazy2LPXRZSSmL1yPhSu36C8CsuK9s2o2W0Y1ne0xbCbefiODPo6sXhwzfTlW+O7UceX+4G2M6tMCyZO+gsC4K5TIp1bvbNWxNqlVBk1rl/XSTJlxWrJS6vufj+Oj99/S8vStLBkwrGcTzP5yI+Yt34z7Dx6h7Oefonndcjr3Mr77/hiGKsl6/uIVJE2cCA1rlNL5bdx5FKTciMjXZEkSoWOzaqhcuoDeh8LdjHy7E0XpOt1x5vwlpE6ZFNFVaYJvlo1R18dD/bkgDaXjxYlD4e4OYO7rSALFa3TBZx+/B1ldfvX6LeT9KDvGD2qjy62F9Pk6vFdTVSLiFwwcMx+Xr93Epx++q+9z8hkc1uervC02rGdT5Mz+Jk6dvYieQ2fi+J9n1P03BnKpf5s6oiNOq38Pfl/+7c+z6KbK9Iiok8/kTs2ro1Kp/EF/C8RUJSlOnP5blfk6i9zvv43eHeoqqc+a+Z66EOXvnHbqzcDB3Rpj6oJ16nq5ic1LRuHs35d0nuTn8lClXrXiQfdOKSnSe8RsXd5QyvMV+OR9jOnfCpPnrsGCFV9DyvZJyb6qZQqgV7s6umwMhbunMhh58w4etxDL1m1HwgTxkEj9x0fl/F31oPvSleu6x8XcpZso3CMvHTwSCZAACZAACZAACbhEgMLdJVzO2fj7n39Dgw4jdK3H6uULYdf+I1i35TtdvkNqQFZrNkB/qZMv9/KfXO9l1X/U/66+mMuXNRm9RsxCm4aVUatSUS0MRK7Wq1YCRT7Lie3f/YTEiRLg45xvB72m/MPPv2vZOrhbI2TN8hoO/Pgr/Pz90bJeBXzRfCBy5ciK7q1raok7cc4qtGtcRcvbUVOXqpreSbFsWj8lfZ/G/V62zGioZP/ps//oL4171k7SooDDMwTGz1qJWUt89RsIxQp8pPMiD1mGTlyMPh3qIWvmVzFqylL9gEUaBv+p5EyFhr31aubalT/Hn0rkHDx8XIvWqfPX4h1VakTqtG/efghzl20KKjlE4e6Z/EXmrF+t34GBYxfAp19LLQGkhnvg6NBvMvz9AyjcIzMhPJYRBOSzTXq7tG5YCf8oGTZNidSuLWugbtXiCOnz9UN13y1fvxca1yyNkoU/xupNe9Q9ei8ObZquxPiFUD9fg3+GVm7cV4v2fh3r6Qdei1Z+izEDWqnP5/NB9+VHj/xRsHI7vJnpVbSsXxG7D/ys7+eLJ/fW0l7+FhDR3kLdp6VE1OBxC/CJkv9Dujc2gqs3BhH4d46sTq5YMp9++69to8ooWKU93ns7s8pTBfUA5LxeALFx0QhdWqlQ1Q7qb6BX9HaPHz/WfxdtWjwSazbvUTW8Y+L1DGnwl/p7qfvQGfqzuVSRPBTuXnDxyMOy6s0H6L+98+TMhhzZsiDxKwn0mcmiFfm7jCVlvCDRPIUQCfipvyerNe2Pvuoe96H6DhkVh/S+2qoWwsl3r6g4eA1A/X3Ia4CfA1H7GnD6Zx+Fu9MzGEr8gV/oju2YF9QgK2/51mqFcnnUV3+4y5fsd7JmxMAuDfUMgbVhRRZ8+uHThkzy5f2fy9fw5dS+kNV7GV9Ng1k+XZ45YvC6oLuV1Jd67rLqqmi+XIgVK2bQtsGFu8z19psZMHFwO/1zeRDQa/gsLWVlZZ4I9+Bx5yzeVEt8WWHN4RkCIoQ2bTuAr78cjejRnzZUk5WUGV9Nra8ZGUd+PYmxM77Cj1tmYZgS8Wu/3ovDW2a+0IDNPyAAv6htf/n1FC6opqhLVn+LhRN76T+WKdw9k7/InFUEQJUm/bBvwxT90C34oHCPzEzwWCYRkM+22T5d8elH7+qwOg2Yin/v3NP3zJA+X+UB9kb1mTtlWAe9/SM/fzTqOBJLpvTR98TQPl+Df4bKZ7S8XTRaCdb0aVIE4Qh+X96hHo7L7+WWpaOD3k7KX7GtXo0vPVXkbwF5cC4PB2TIW2zzlm3W92MOzxAI/Ptsv+9UvJIwvj7Ijn0/qbcSJmCaekMh0f/+reugaaismpy+lfk1tOs7EWvnDdEPTp4fsnjip2Mn1N9rN7BY3W9lsYIsaOAKd8/kL7JnzVG0EUb3bYEShT5+5tAU7pGdCR4vsgnIQiC5f8rDyZTJk+iySvKQMqoM+W5esHJ7/QaTLDqTHg6DujQKs6Sct7HhNcBrgNcArwGnf65RuDs9g6HEH5Jwl4ZZKZK9gnED27zwJfuPU+dRqVEfvUIvuCiXlecLJvSE/MHfqVl1XWIm+Aj+xf6xKhXTY9gsbNl5SG8iq+YHdm2oX00PLtxFoHdoWlWLfxnyqrSIA1nh/uDhoxeEuzwo6NC0GqqXK+Sl2bL/tOQP2p37ftZf6AOH5Cm2emjy/JsF88f31G8/yJgzptszwd9WgukLtRrr73+uqtVY7yjBkwJfbdiJeeN6aKlD4W5/rt2NgMLdXYLc3xsJPC/cZy7egDmq3MPBjdO0MHj+8zWw8XAaVZop+OjSoga+XPu0nNrzn6/yb8E/Q6UkTacBU/SXcRES8nBUSrAFvy8vVg/OJ6g3yn765ulntgwRu1LnfdGkXi/8LSAlxeStM4mbwzMEQvr7LLAx5vN9buSNM1nZPlY1x/xl29wXAuo8cCq+3nEI76s+OlImUP7+qq3KAcrfWBTunslfZM9K4R7ZxHk8EwhIydNC6q0feaunfPHP9CrvkVO+xMzRXfTb21FhjFRvsMjq5vXzh+Hy1RsYMn6RPu1l0/u9sNjJG3nwGoC65nkN8HMgal8D3vDZRuHuDVkM4RxC+kKXu1RzVFGrpXq0qfXCl2x5HT1fhbb6C7iI8ueHPGGXWuvyqnLwEfyLfUz1arsMmevQT7/pP4yyZEyvV/gFF+4y12e5s+s6tDK27TmsV29tXT5G1wN/foU7hbvnL9KQhFCRah11nV/5Y/f5IW8k7Nz/M/atn/LMj2RVptSZ/W7d5KAVGCKIKNw9n8PIOgKFe2SR5nGcROB54d6q5zj9MNl34fAQhXufkXNwQj3olubD4f18le2CC3f539ITRcqPyKr4hSu2YM1caaZ4L6ikjMjY7qou+O41E3WfFBnylll2VbpkrCo/8/wKdwp3z191If19tmnbQbVgYQZ+/HrmM4seJBp5E0L67mxfMU73zggcl6/eRGFVakZKDRT89H39z/L2kZT5onD3fB4j6wgU7pFFmscxiYDct74/8hu+VX2CpEeYDGkgXLVsQd0vytuHfB8uUbMrRvZpHvSG9+4DR9BevbEW/AG6N3PgNcBrgNcArwFv+IyjcPeGLIZwDoFf6KQcjNT/lNVT0vRUVpFLffTnv2TLFBUb9lGvtfvpL2+yz8//OYl9PxzTXt45/AAAIABJREFUX9zk9feVauXb0O5N8Hn+XNilbvp37z3QNb9l5fyRbXPw7a4fdBNWed0vevToaNVzLJK8klCvqA8u3OUJvdSqnTS0vX7FvbN69f7ajVv4Vgn3H478TuFuwzUZknAfPXUZFq36Rj0w6arLwUh9WKnHLg9KAl9/l9fWpYa7NHuT1SdybcnqSSmLILmV1e1T5q2hcLchp546ZEjCXcoISa3oLoOm6vrCYwe0QRzVwC/wS5KnYuG8JGAKARHhcq+sXq4wvt39AwapWujysFIaoYb0+SpNp5t19VE9U2qjWtlCuK4eVK/dvFc1w8yBS2olm3yOPv/5Kv87uHCXZuQiHt5SPVOkpIjci+WzV34HA+/LN2/dgTw8lRWC0ixVvrDLQ9HAOt8U7pF/BYUk3ANX8n2e/yP071QfUJXd9hz4RffBEYEuOSz46Qd6wYR8rk6ZtxZdVFN6WZAg5YDk76693x/V5fka1ShN4R75afXYEZ8X7tJfRxrZr9m8W3+27Fo9UdXxj/HCgxqPBcSJScDDBI6fOIOqqnZ78DJtJ89c0H1PVs0ehLffyAD539KkXBpMSyk3ecvLm4a8BXdFNVQP/uaxPMh/+NAPc8Y+fbtYHtTKyvf86u+GLOoNJ28avAYAXgP8HIjq14C3fKZRuHtLJp87j8AvdLGV9Hr0yE//tJtqWBpYxkW+ZOfJlU1/YQscUgZEar1KPdDAIWVc+nduoGu8y6vrew4e1T+SL3zDejRFOlU3tm7boVq4Sw33Dv0n6xV3MkQCjB/URkn51KjRchByqQZtEsOdu/fRssc4/dq7DGkANXdsd/0HlAj3+u2HP1PDXb5QdmxWTUsJDs8QmDB7lWqs+zNWzxkcdICH6rrpN2oufLfuD/q3TKo8kKzYlCGNb2cs2vD/a6V8YfRVDVbrtRum5Y8MEfBHj5/C/PE99BsSIovkdVB5w2Hy3DX4RokpaeTL4RwCv588B2nWGLz+cGB9veBn0bVVjSixCsk5mWOkniQgn23B77dSb1lWpokIC+nzVWKRB+HSFyPwnin3woUTeuGNTOlD/HwVERv8M1Tuq/L5KkNkwxcViuh7+uGjIt+f3pflzbPN2w/qZpqBx6muPqu11FXj+b8F5PV1eYWZJWU8d7WE9HeOHE0azXcdPE0vXJAhf2cN7tYYFUp8psWS5FDKB8mQ/irSNFWuHyldJEPKv0kvgJoVi2rhHvwe+/w14bmz48xWE3gq3FuqGu659dTyN7r83gYfeT/K/kKPJavj4HwkEFkEGnYcgejRogeJZTmuPESW77PyVtiS1Vt1Lyl5s+fKtVv469xF9YZ2b/090htGoGxeMVP6rb2uT0n6aNVqNVj3xMr2ZkZIObEjv/4J+d3fpu4PZYp+4lXNznkNPJXNvAb4ORCVrwFv+DyXc6Bw95ZMPncegcJdvnBfv/GvfpU8vKtN5QudlIWR+u0iC4IPkbDXb9zWPwtpPll5I685J0wQDwnixw2TrhxDjhW82ZuXpsPRpyWrly9duaGa8yVUUufZnIrAuXTlOpInS6xXNAcO2V6ujxTq3zlIgARIwNsJBJaUyaoeNMeLGyfcq+3knikr2uXzUxqgBh+hfb4G30buoTfVvVQefoc1ZK5zFy6re3eSFz7HvT03Tjs/+dtI3hiSXEWL9rSJeeCQv6/ixo0d1GxV/l16p8ibDM/Xf3faeTNeEiABEhAC8nkmb/dIo1QZu9SCLlndHbjaW97IzvJ6etVjrIe+b0rZib/O/RNiiTanEpXealkzP22SLX8nlFOr+19Ll0o31m7RfYxeACdvHMsD2VNnL6q31Hvrt4nljWRvGLwGAF4D/ByI6teAN3yWyTlQuHtLJp87j5BeWfbSU+VpkQAJkAAJkICtBJ6v4W5rMDw4CZAACZAACXgBAXlYLCW1pLTWkO6NMXDsAsh33Dw5s2H15j1op0q3RVcLfOaqN312rZ4QdMYiqZ9/YOlUHIH9sbZ+NRbx4sTGZxXaqCbp5SD/Lgvghiou8sabvJFe9vNP9Wk+fvxElXd99oGtU8+f1wB0rqUcYHivASkj/KZ6YCNvlHvDcPUauKYWh8qb+N1b1wr3AhjTOUX1a8D0/IQVH4W7k7MXRuxS901eI69XrYSXniFPiwRIgARIgATMILBk9beqv8lHzzS1NCMyRkECJEACJEACziUgfVE+/iCbLkHaru9EJEv8CgZ0aYDTamV3v9HzdInSSqXyY2CXhrok2rJ12/TJliqcR0no+o5/q0vk4ZH//Iki+XLpZuylanfTZd/kbTr522Oc6uUg5XZ2rhqPC5euoafq73Lm/CWkTZVMnX9D9bDiPecm/3+R8xoI/zUgPT7kGpFSZKWL5nF87gNPILzXgDyYk0bz8rmwZalPuCs8mA7Klc8Bb70GTM9RaPFRuDs1c4ybBEiABEiABEiABEiABEiABEiABKIAARHME+esxtdfjgoqwyYlZ95UvU9mLN6Alb67VO+LRrr8is+05ZBSqJ2aV1MNyd/3Cjp+qk9HvoptdXNsWeUu49btu7pp9ntvZ0bZej0Ui1cxtEcT7P/hP0rGr1D920qiSe0ySJwogVcw4DUQ+jUgtfwbdxqlSwMH78u2Rr0NUuSzXPqhlZQilKbb0vdH+vw4cYR1Ddy8fUf3OZkzphs++fAdfXpSckoeQknfBxki7zO9llb3THLiCOtzIKpcA07KG4W7k7LFWEmABEiABEiABEiABEiABEiABEggihGQ0hJt+0zQZWVEGObK/qaSau+qZtO3UaJmV4zs3Rxliz0tqyJiMXep5ihXPC9G9GrmNaTk3Jt1G4MP3s2CcsXy6saq0jC204Cp+EU1Ut2oGmoH9tUKbKz9zTIfr+mZxmsA+voP6RqQhyxNuozGylkDdXNdGT+rtyNqtx6iGgv3QhLV8+Cr9TuUcN+j3oiYoN6SiO3I34vQroH48eKgcuO+SKqayItwDxx12gyF9KST5spHj59Cgw7D1YO46mhQvaQjz1+CjurXgJMSR+HupGwxVhIgARIgARIgARIgARIgARIgARKIogS27PweX23YAX//AMwf30OVkdmO4ZOW4PA3s4JW7c7/6muIcJba7tJcdY6q835OlWRpVLO045tMX7pyA3J+u/b/jG6taqJQ3g/0w4WmtcuiWZ2nK9+lrEShKu1RtUxBdG1VQ6+E79B/kmq0mk8/lHDq6ubAS57XwIvXgJRckjFxcDv939LLoEzdHnj9tTSYOrwjarUajCO/ntQlh7u3run4T4/nr4FzF67ocjqbl4xUv+Op9fnt3PczWvcaj3XzhuLWv3dRr90wXWZm9+qJ6gFEQkczCOlzIKpdA05IIIW7E7LEGEmABEiABEiABEiABEiABEiABEiABJ4hsOGbfeihapevXzAMWTKmw81bd1Cgcju0b1IVjZVgl7Fx2wFs+OY77Dl4FK0bVkKr+hW8imJ+VWomt6p1P3ZAK31eY6Z/pevZ71JiUVb+XlT13Zeu3YaVG3chvqr/PndcD8c/eAieQF4DQN7yrdGhaTVUL1dIo1m9aTf6jpqLbSvGIk3KZGiu3oz47c+zuH3nnn47ZNygNnglYXyv+T2QxqLy4E16HMjwUw/kilTtoErJfKCbLsu5V2nSD29leQ2nVZkZ+TcpweJNI6pfAybmksLdxKwwJhIgARIgARIgARIgARIgARIgARIggTAJSK32mi0HaYlW9vNPcfKvv/H3P1e1aFSLfPHrH38hVfIkSJs6OY79flqv9J0yrINqKJpDz7tl5yH8okpNdG1Zw7GkZbVvpwFT8P47WZBTyVRZAS+13CuWzAdZCXvh0lVkV3Xeo0WDaio5A3+cOgffhcP1+T5+/ARteo9Hx2bVdA14Jw5eA8DUBeswa4kvWtQtj8wZ06LX8FmoXbmYkvBVcfCn42jUcSSWz+iP119Ngy/XbEWTWmWx99AvyJPrnaAyRE7MfWDM0li0dJ3u6jrPhEol8+PHX37HKvXQYc+aSbp+vcj2hAniYcGEnrrHgYxMitOVqzfxXrbMTj71oNij+jVgYhIp3E3MCmMiARIgARIgARIgARIgARIgARIgARIIlUDDjiPQpmFlVdP8DXynmodu2n5QrWTfp0tofPZxdtRuNQTH/zyj95dVvrK6XUrNSGmZ+qq0xsIVWzBl/lpdaqVXu9qOI33op98wb/lmTBzSDtdu3MK2PT/qxrIp1QMGEeq7DxxByx7j9Cp3kdKl1YpeaRg5fdF6/KRK8Bw+ekLX9F63ZS92rByP5ElfcRyDqH4NBE/YCt+d+O7QMf27ED26Kp2yZiJix4qJYl90Ro533gh6A0L2+ePUeVRq1Edf98UK5EaqFEkcl/vnA5YGqdJU9bc/z6lr+w9dOkdK6MhDNelzELzcjOwrvxvyQE5qvr+eIY3jSy3JOUX1a8C0i5jC3bSMMB4SIAESIAESIAESIAESIAESIAESIIEwCYyeukyv5m7wRUlVJiMrBo1bgA9zvKXF4onT51GxYR8l2Ubh1bQpsW3vjxg0doFqsvovtn41VpfTkBWxV6/fQjcRc1WLqxXg0bSknrVkI2aM6qxFtcnj9NmLqN1mCBInSqAfJhz/4wwWrfoGq2cPxhuZ0qNpFx/Eixdb1/X+58p1zFi0QTfOrFDiMwzr2VSXmRkyfhHSpkqmm0rKWwAy6rcfjhqqMW2pInlMPn0dW1S/BkJKkOQ1RbLESqR/hN9PntPNRHeuGq8fxASOL5oPxKmzF/S1c/HydeR6L6turuoNQ85nyrw1GNiloa7Z3rjzKLyWNhUGdGkQdHo/HPldX+cZX02tzz9ANVYN/uaL0zlE9WvAlPxRuJuSCcZBAiRAAiRAAiRAAiRAAiRAAiRAAiQQbgKyknX5uh04cPhXLRilSWic2LFw/MQZVG3aX9Ur7448ObPhkVrhXUjVdJayM73a1dGlVopU64jKpQtoyZ4+TQp8ObWv3u+rDTvRv1P9cMdg54b37j9QJUK2YZOqU+8f8Bj9OtbDR++/pUNq3GmUaqD6EAuVSJVGqbLdiMlLsH3FOC1kB/jM1w8ipM71elXjfpZPV3ykHlhMmrsa+T5+L2geO88vPMeO6tdAWIwCa5vvkdXu6vdCxre7f0CHfpP1WxCZMqTFWdVQeOe+n3Tdc29pLhycidQ2b1mvAuqqh2oypIxSyVpd8U7W1zFe1bKX/71APbj7TF3zwyct9prmwoEMeA2E51PEM9tQuHuGK2clARIgARIgARIgARIgARIgARIgARKwicDkuWswbeE6ZHk9vZJqj3Vt9+/WTVIr1+OibZ+J+FOtgt+0eCQC1M/+PP23Xg28efsBTB/Z2aaIrT3sZVWfumKj3kq6P1Jld7KoutZ/oHWDSmhetxxOnrmA8vV7YZIqR1MkXy59/qnVSvf67YahZ9vaqgnr29YGY9NsUf0aEIkufQv+uXxNlx7K/lYmFKzSHqUK50Ff9XAm+AirubCUJBo3c4Uq4VRJ10J30ggsrVS++GcY3qupekC3HUMnLsY29aZL8FX/L2su7Lt1PxIliK8eUL3vpNPXD1Ki+jVgV8Io3O0iz+OSAAmQAAmQAAmQAAmQAAmQAAmQAAl4jICUjJFV6y26j0X/zg1QvVwhXbe5WrMBuoxKrvfe1Me+d/8hClZuhy9UKZVOzapjtWq4WKVMAV1mxskjQK16lzr20xesx+Fjf2DX6omIFTMGpPa5iPhl0/oFnd68ZZsxbtYK7Fbb/Ecxev21NHrlv9NHRK6BLi2+gO+3+9XDiJz6AY2Th1wDW1V9f2kUvGDF15i52Fc1E50YJM5FyL6sufCE2auwWJUr2rV6giN5nL94BSLUZVV7vopt0bRWGbRqUDEorS9rLnzr37soVKUDWtWvgKa1yzrucuA1YE/KKNzt4c6jkgAJkAAJkAAJkAAJkAAJkAAJkAAJRAKBk3/9jcwZ02mBLvJQajgHr1ntM325XvkqQvrGrX9RvEYXbFsxVjdb9Ybh5+evalVfQ4b0qfWK1w8+b4zlM/rrFc8y5JwLVm6vHzZITXwpOSL1r8f0b+UNp6/PwZVrQOr35ynTEj3a1EKlUvm9hsH0hev1qm55mCTDX9Uuf1lzYan/X7RaJwzq2ihoP6cCkfI5wyYu0n0NAkvsvKy5sJxrf5952L73MLar5sLywMrJI6pfA5GZOwr3yKTNY5EACZAACZAACZAACZAACZAACZAACdhGYPC4hfheCfdl0/rq1boXVKmZYkqwSyNRaSj63ffH0LLHWPyyba5tMXrywLLiW+S6NJctUehjfahew2fp85aHDFLvvXyD3ihT9BNdfsYbx8uuAXlA8UGxJvoNgPeyZfZGBPqcXtZcWBrqtuk1QTdY3bhohOPf+AgpkS9rLiwPauT3IbD8krddDLwGPJdRCnfPseXMJEACJEACJEACJEACJEACJEACJEACBhGQBqqNVENRKZuyc9V4dB8yHRcuXcf6+UN1lItWfqP/880ynyAp2VKVpOnQrJpuuuoNY9uew+g4YDIa1SiNUkXyoHLjvqp2fSdddkRGzuJN4dO3JYrmz6WbSo6etgwHVWPapUpAS1Nap4+XXQOBkvXQpulIED8ubt+5h9Y9xyNr5ldfqH3uZBYvay58+OgJ1G07FIsn90bO7E/LL3nbeFlz4RotByG6ejNGmip74+A14LmsUrh7ji1nJgESIAESIAESIAESIAESIAESIAESMJDAtRu3ceXaTVRp0u+ZlcwDxy7AJVVGY+rwjtiy83t0HTwNn+f/CCNUw8XAMhQGno7LIUkjzABVUkQayPqrMjMLJvTUc9y99wAfl24B34XDdfmRlj3G4djvpzFDNZP9OKd3NFMNhBXaNSAPJHoMm4HvN8/QDWWl5n2ihPExZ2x3yKpvbxqhNZaNFzcOStfpjjcyvapXd3vrCKu5sJSRkd+P9QuGIYsqSeWtI6pfA57KK4W7p8hyXhIgARIgARIgARIgARIgARIgARIgAaMJ/H7yHN7K8lpQjPXbD0eObFn0/567bBN6t6+LWpWKQkqxDPCZj90Hj+ja7tJgtXHN0kafW3iCu3nrDkS+p06ZVG8e2FR2zdwhaNxpJJImeQWzfboiVYok+mdtek/QLPJ+9C66t66FTBnShucwRm/z/DUwa4kvvt5xCC3qlUfngVNRWpXXGaxqmEvzTG+8BkJqLLvSd9fT2uUrxgVdG0Yn0Y3gQmouLNMVqdoBRfN9iAFdGrgxuzN2teoakAcYG77dhzy5sgX1iHAGAeujpHC3nilnJAESIAESIAESIAESIAESIAESIAEScCABqW8uJURix4qpRbPU8JYSJBUa9lYrwh9jxqjOWji36jkOtSsXQ4emVR14lqGH7Lt1vyqzM0M3TZWGoX071tN13WW1f6cBU9C1VQ2UKpwH0xasw+rNu7Fn7SQkTpTAqxj0HDYLX+88pPM+sEtDVC1bMEpcA4GNZe8/eIjPKrRFg+ol0b5JFa/KbVgnE7y58MzFGzBNNZmVslPedn2HxSCi14C8LXL+4hU06+qD5Elf0f9/ldIF0L+z9z+sCI0nhXuU+ejgiZIACZAACZAACZAACZAACZAACZAACYRF4IvmA/WPp4/qhKSJE+n/X1b7Dhq3QEnoGHq1e+sGlbBp2wFMmrsau1ZP8Cqgu/YfQYf+kzFAiTJpIivjyZMnSsC2gQjJFMkSY2iPpqqm9xv63+QNAGmw6k1j/KyV+GrDDswZ0w3Z3swY5a4BkaUDxyzA5GHtw1Wz/+zfl9C82xgsndoPSRIn9IpLYcaiDertjkSoXq5QuM5n9abd2LrnR12KyhuGq9fA7C83YtzMFbrk0tdLR0PenJE3Rz7Lnd0bcEToHCjcI4SNO5EACZAACZAACZAACZAACZAACZAACXgjARHM0VSjxMDRptcExI8XR6/uHjphMfb/+B+8/moa+Pn7Y/WcwV6HQBqlRo/+//MXoVqqdnddXuT7I79h8LiF+DBHVoicFyn9yYfveD2DqHYNuJJQKcP0w5HfkTBBPP17Ib8nH73/litTOHrbe/cfQN6MkZHrvaz6d6NOlWLqMyOuo8/LleBX+O7U5ZYCexysmj1YvQl0E3+cOo9333pdl2hq+EUpxFJvDkWVQeEeVTLN8yQBEiABEiABEiABEiABEiABEiABEnCZQJ+Rc1Qj1RuY5dNF73vk15PoPWI2mtQqg4ol87k8n9N2kHIRBSq1g9R1z5r5VV3zXUrKyCr/LWo1a/CHE047t/DGG9WugaPHT+Hn//yp3uj4XJcXCm3sOXgULbqP0Y2HpZTIkAmL9IMYefND3oZw8pgwexXKF8/70j4FI6cshaxwH9m7Of46948qRbMO/TrVd/ybH+G9BuSBg5QgavhFSbRpWBnb9v6IYgU+0s2WO/SdhIuXr2sR/82yMc88yHPytRGe2Cncw0OJ25AACZAACZAACZAACZAACZAACZAACURJAqfOXkRFVcO9Rb0Kqq51iSi1cjUw4dI89KdjJzBlWIegMivPvwngzReHu9fAnoO/oJ2Sj+nTpFBSshJKFv7YaFzSIHbcjBXY98MxXcf+U9Uk9/khPQ2KVOuoGuhmx/BeTfWPpf/Bp2VbYdKQdiiSLxdu3PoXSV5J6MiHMpKzgWPmo+CnH6Bjs2p6Bf/zQ0qvlKjZFSP7NEfZzz/VP75z9756QHcdo6ctQ9w4cVCqSB6UKJTb6HyHFFx4rgHZb9jEJVi3ZS/2rJmI2LFjPTPVj7/8gXrthmHuuO7IkzOb4xi4EzCFuzv0uC8JkAAJkAAJkAAJkAAJkAAJkAAJkIDXEzh+4gza9p6gV2u+leU1LJ7cO1ziXVbDp02VHKlSJHE0I5GrIhAXrfwGiV9JoOvY1678+UvPScrT7Nz3k5avTh8RuQZkxbOU4Dlw+Ff0aldbiefomLt0o3ozwCfMleOmsDp55gL6qjc84sWNoxtgZkifKii0+V99jbEzvtKr2QP7HRz48Vc07jwKa+cNwZuZXlUPqvrg45xvq3OvY8opuRSHf0AAFq/8FvOWb1YP3Mrji/JFnlml3bSLD65cu6nPN3B8u/sHyAOqulWKI12a5Jg4ZzVKK+nu1AaiYV0DZ/++rMpNdYNPv5b6wULwIQ/kytTtoR4ypQx6O8gl+A7fmMLd4Qlk+CRAAiRAAiRAAiRAAiRAAiRAAiRAApFDQBoBygpWqdP8siGlV6QUS+qUydC4ZmkU+CRHkJh82b6m/lxWMP909AQ+ePcNLd5fNpas/lavgF04sZd+UBHSKuGXzWHaz125Bq5ev6VXgcsDi5bqDYlmdcrq5rthlWkx7Xwlnu17D6s8LsbnqlRIu8aV8eiRPwpUbqfLxvguHK4fPsnvRY2WgxBTnZ8IaN+t+9F9yAx9rnHUyucin+VC7w518UrC+CaeYpgxSRPQUVOX6rc8BnVthNwfvA15AFO1aX+smDkA72R9Xe8fuMJfzrl765qoWfFz/HriL0gz5v2+Ux157oFgnr8GJOft+k7E3xevYtXsQS/wk2bT/X3mqVIyPvrNjqg2KNyjWsZ5viRAAiRAAiRAAiRAAiRAAiRAAiRAAhEmIKUWEid6uWyeOGeVWhn7NSqW+AwHfzqOM+cvYc5Y1WQ0l7ObjIpUDI80le2kmaRsKw1mb92+q1cJt21UOcLsTdkxvNfAwhVb4DN9uSrF0xHjZn6Fri1r6PIsHfpNVtL2LRxWDy8KqZIl5VStcNOHn38A5quV3lI25IRqhiklV6QhptR6r1AiH7bt+RH/qFIqvgtHqIdMSfXDpgrq2u/c4gvdVHX8rJWYP74HEsR3bjNRaQI6euoyTBjcVjdSlv8tfQ0Cx5rNezBIvdGwdGpf9B89D9du3MIXFYroc3e6cJdzDH4N1K9WAvIg4q6q4f68UA9sJFu9XGHdRDcqDgr3qJh1njMJkAAJkAAJkAAJkAAJkAAJkAAJkIDLBES0lq/fC1XLFkTzOuVeqFkcOKE0WS1WozP6dqyHamULQcoryGrY6NGj6xWxTh4zF29QDVMPYkiPxsj+VqZQT2WAz3zdQHH7yvGIFTOGErRH8fjxY1UT+30nn76OvWHHEbo2uZRKSZk85HJB8oChUNUOaFW/AprWLvvMOUtj0Z7DZ+qHECtnDQyqi+8EMFImR0qFTBvREfnz5MAKtZJZZHs6tYpZzlV4iGCWtxuk3IyshA4ca7/ei4FjFyB2rJi6jr2sAg/+cyecf1gxrtq4W537CuxZO0lvJuVlZJV3hvSpdWNZeTjRXtXyFyGd7+P3VG346s+U6XH6+cvDiPeyZdbnuWrjLpX/ifrBRFQcFO5RMes8ZxIgARIgARIgARIgARIgARIgARIggQgRuP/gEWYsWo/133ynVyw/X7tYJm3bZyL+PH0emxaPDGoY2W3wdL0iVsptSPmNcTNXqNW/1R0pHKU2fd9Rc/HG6+l1bXIpLRJ8SN1neTAR2Dwz8GfSRLN1z/E49vtpZHsjI1oqQVso7wcRyoPdO63b8p2uYf5F+cJaqMdSEjn4ED5Svz7wgUPwn0lt8KLVOum3HaThppOGPDySWu0hNVKV85BV7nJug7s1QuXSBYJObcTkL7F8/Q5MHtoeaVIlg/w+yAipHImTeASPVa5veaujkxLpDb4oqX/k5+eP6zf/xfc//4buQ2foh3VVyxTEkjVb1YOrA1g/fxhefy2NU0/5mbh37vtZfS7M0ecrJZTaNKrkFecVkZOgcI8INe5DAiRAAiRAAiRAAiRAAiRAAiRAAiQQpQlIA9XB4xZAVrMP7dEEb7+RQfOQOs912gzVK4ALfPJ0Nffde2pFa8W2kDIMHZpW1Y00l63bjk7Nq2tp/dnH2XXtaycNEa+yYllWM9esWFTXqQ+UzrVaDcZj9XNZ1Rs4Tp+9qGt858mVDX071MPO/T9DVsE7uczOvfujRlPTAAAUwUlEQVQPMXXBWi1Ou7euhRKFcuvT/fP036jQsLcqJdMhxAcKs7/cqJpprsIOtfo/edJXnJT2l8b6lZLqC1Vz3Q0LhgU9bDp/8QpK1OyqVzt/9P7b6Kfe/JDrp1iNLno1eLIkiV46r1M2kDJBzbv56Adp8vsvzYWlf8EnZVuh8Gc5MaJXs6BTadVznJbvb6nPDpHVFUvmc3TJHTmxwLIzk+au1g/URLxHxUHhHhWzznMmARIgARIgARIgARIgARIgARIgARKwhMCPv/yhV3V+lju7LjEi5TZExr+WLhXGD2qjhWpNJZqv3biNLV+OhqyCLVuvpy6pES1aNHyz63uUKpzHcSudA+FJeYzJc9fg652HMH1kZ2RSq3U7DZyKDk2qIIt6mBA4OvafrCT7EfVgITp6tq2NSqXyo9OAKYgXNw6G9WxqSS7smuTipWuqVMp8leN/sWBCTxyRkhqbdsOnX8sXQpLVv4WqtNe17J8vNWNX/FYfV1bwB3+AtHTtNkydvxZbvxqr3w6R3gZ5cr6tywx9v3mGFvHy4EqupUwZ0lodTqTPJw2TN28/iKPHT+myOX/+9TeqNRuARZN6I9d7bwbFI+crYn6jemAzRtX6lya78tZM3arFn4lZekBIo2JpPuuUIZ938p/gNe6dErsVcVK4W0GRc5AACZAACZAACZAACZAACZAACZAACURZArJa94Ra1SyCrd/oufhmmQ8mzl4F3637NRNpIjl1eEe9Cr5u22F4pITc8hn99c9Esv2rGoweP3EWl6/eQP5PciBLxnSOY/n3P1d1XfPQmmLmLtUcvdvXxRuZVBma4bPhrxqpysp/aRjaRTXWPHz0DyWqTyK3ErHvZn09aHW0k0D8fvKcXs0c0nj8+Imq4R8NPYbNxHeHjoZYasZJ5+pKrFLzv7/PXOzbMFXX8xe5PmTCIsSLExuj+rbArCW++k2JGOphjDyAGdiloX4gJWP3gSPq5xsxY1Rnx9YDD6x7/6Vqpvr+O1lCRffd98fQpvcELd1rVSqqt5Pfq+LqTYAx/VsFMXGFPbe1hwCFuz3ceVQSIAESIAESIAESIAESIAESIAESIAEvIzBBSXYRiq0aVNRnJqvZZUVzptfSatkqzTKljITUcX8z06t6GylL0lmtCD/y65/I+1F21Wj0MMoU/QRDujf2KjpFqnVEPVVSp0H1p7WtpQb6yClfqrIz/fHVhh2Yt2yzKjfyFn794y/dZHLuuO5InCiBVzAIbJbZsEYpSGPJycPao3DenF5xbuE5CSkz8nn1Tqo5bAZV271xUKNZeVA1SvFYuGKLFspSkmfjVlWeR9U6l7cl8ud5Tz2IOqOuj53o36l+eA5l7DbNu43B0d9OYYY6L3nzI3bsmNitPg86D5qGAPVGgDRRlTce1n+zD2fPX9KllmQ07eKDK9du6s8MWTkvvR/aNKyEhAniGXuuDAygcOdVQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIeJhDYKDN/nhzPyPQW3cfo0hpSVqVCic9wStU6r6jqf88b1wMf5sjq4agib/rVqsTKgDHzMbpvSxQr8JF+ACHCdZGq9z1yylKMHdBaC1d5AFG37VBdWkRKsgSuDI+8SD1zJFnlLWVn7j94iHXznp5fVBry8KnLwGk4cPhXpFVNU8cNbIOs6m0AefPh+fI6UqKoROHc6uHLGVWa5YCW704f8tBBHrYsW7dNreSPgZ2rxuuV66WL5EF99RBKSkvJSn+5/qXPg8h3KSXTqONI/TZM9rcyQR7oLV71DXatnuDIZstOz6Er8VO4u0KL25IACZAACZAACZAACZAACZAACZAACZBABAiIOF6hVnKXVPXaE7/ydOX2zVt38FmFNmhet5xuQJoqRVIMVSvbpblo/84NUPbzTyNwJHN3kVXtIt1lFFfSfWSf5nrl84c53nqmhv3Zvy+rsiPXkUzVv6/UqA+KF8ytJeSraVOae3LhiExWKE9fuB5zlm7ENlXPPGXyJOHYy7s2kf4Gx9VbDEXy5YKs/K/deoh+ACGlhoIPEc8FK7fDFxWK6JJD3jSkdnvcOHHwXpGG+roP/D33UXXcl6tmyrtWT1Q/j62EfGe8r2q3y+r/f9TvQ9FqnTCoayNUKVPAm3B45blQuHtlWnlSJEACJEACJEACJEACJEACJEACJEACphMQsVyqdjcc3DhN165esvpbjFO1rKXGu6yATZ40sRK06yCNWT/58B3daDRFssRBpyUr46XshpOGrPT/+difSJokka5Vn7N4U/RRtd1DkojC4SclZZeu2Ybt3x3G5KHtUeCT94NOV2rkJ0oQHwU//f+/OYGF1K4Prda9E+K3KkbpX1CwcnsM7dEEFUvme2ba4PL51u07GDx+oX47oEKJfPpNEGk4HDhu/XvXkeWHZi7eoFetly/+GTJnTKvr2Ae+6bJk9VZdcmn7inH6d75Nrwnq7ZcL2LhohCP7G1h1zThlHgp3p2SKcZIACZAACZAACZAACZAACZAACZAACXgVAT8/f+Sr2BaNapTWq9xl3Lp9F3u/P6prOks5CSkx06p+Bez74ZhaEXxS1Tzvpxtznjh9XpWe6YOFE3s5uvRMnTZDcVs1jV09ZxBiqlIbgUNKsPx17qJ60PAucmZ/A7O/3Ih5yzdj3/opTzkpyVqoSgfNRspvOFW6etUFHYGTmaYeKE1bsE7lsSKyZn4VH6o6/nfv3kcxVW4lUD437jwKF1TzUFntLpI62xsZMV01UZV+CX+qZsUVVAmmJVP64AO1GtxpQ8rGfP/Tb1iw4mukTZ0C6+c//X2QBxEt6pbXnwuHj57QZZYWT+6tfhfedNopRsl4KdyjZNp50iRAAiRAAiRAAiRAAiRAAiRAAiRAAiYQ+P7n39BMNVT84N0sKFcsL97J+jrefiMDhk1cgjWbd2PFzIF4/bU0OtQ+I+foGs9S23znvp+QTW0r9bCdPM5fvKLLiog8za9Wr5cvnlevgJcVztJYVJrJRo8eHTneyYJDSk7K2wAy+vvMw3bVYHb7yvHw8/PTglIacpYs/LGTcUTJ2HcfOIIFX23BXVVqZcnkPmjdaxwuXLqu5bMMKbEkbzLM8umiyzCVq99Tr4qXtx2u3biN/T/+B6VUqaYYMaI7lp+8rZIyeWL9uz9QlV3aomq6S2mZmOqcStfprkruvIpJQ9o59vyiWuAU7lEt4zxfEiABEiABEiABEiABEiABEiABEiABowhcunID87/6Grv2/4xurWqiUN4PkKdMS106o1e7OkGxSikSKa+xSwnK4ZOWqLIzE5BMlWZx+pDa5pu3H1Ry/SS6tvwCzbuNRfa3M6F765r61KT2e6/hs3RzzRb1yuPkX3+jfIPeWkBKLfARk79UDyf2YPeaiYgTO5bTcUTp+H/78yyqNOmn3+TI8np6VWopNn4/eQ7Vmw9A6aKfYLhqLnzm/CX9ECqwqeietZO84vdAEi/NVYtU7YABnRuiaP5cWOm76+nDJVVaJnXKpFH62nDSyVO4OylbjJUESIAESIAESIAESIAESIAESIAESCBKEJDa5j3b1EL18oWfOd87qtxG/krtdBkVKacidbDPXbiMd9Vq99heIptlJb88fJg9ppsunzNs4mJIvfZd6gFDrFgx9Yrn6KqG95dT+yKwDv6ovi1QRglZDucTEMEueZfrIEe2zPp34Njvp1Gr1WD1QKYG6lYtDmlCHLypqPPP+v9nINJd3viQ5qqfVWiLBtVLon2TKt50il5/LhTuXp9iniAJkAAJkAAJkAAJkAAJkAAJkAAJkIDTCIhs3LLzkGqSOBKpUiQJCn/I+EXYtP2Als+yGljks4j2ANWMtGfb2qhZsWjQtlLvupAqyyK1sZ00pLZ918HTdaNUGQEBjzF2QGuUKJRbl5Fp22ci1i8YppuuNu40Cjdu/atqwA920iky1nAQWLVxN/qNnqtKBTVCOdVYVHoapEyeRF0LrVSD4f83FU2SOCHmLdus35J4U5VeqVOlGN5Tot7pQ8otDRyzAJOHteebGw5LJoW7wxLGcEmABEiABEiABEiABEiABEiABEiABLyfgJRZ6Tlslpbu6dOkQP/ODZAudXKUrdcT4we1QbECH+k673sOHsGmxSNx8PBxVQveJ2gFsL8S8LVbDUGVMgVeWCXvJHpSamezaqC6fEb/oHIbRfN9iAFdGmD/D/9Bky6jsXLWQGR7M6OTTouxhpPADtWrYLi6zv9WTVOlRvv88T10PfPgTUXb9Z2ofg+OolOzavptD5Hxc8d1R56c2cJ5FG5GAtYSoHC3lidnIwESIAESIAESIAESIAESIAESIAESIAHLCFy8dA2//nFG1SrPiXrthuPBw0eqkeoAPf/ho3+gbtthCCynsm3PYTx+8ljL+DHTv0Ll0vmRKUNay2KxayJ5eBAzRgzIiv1pC9er2vXjkTB+PBSr0Rm5338bI/s0tys0HjeSCFy5dhNx4sTGKwnjP9NU9IBqmNqi+1hd8z1wVXvngVN1qaUFE3pGUnQ8DAk8S4DCnVcECZAACZAACZAACZAACZAACZAACZAACRhOQOo6dxowRTcOlUapx347rZurLlyxBSOnLMWY/q1QsvDH+ix27vsZrXuNx7p5Q9Vq4PSGn1n4w5uxaAOSqnOvXq4QFq38BqOnLcOOlf9t785DrKrCAIB/42Sl5dJmpLZvRAUR0b5pUE0FlaNoC6WpkC0uLYqVFqXjFGqmpmgqk6XZUJmapdlQUamhRBO4RBtNtIfl0mJu3Xs1oSAse47vvfnd/2Z475zz/c6Zf7459/tGxQH7Nf/3g/hkQQv8valo38Fj49O6r2N21dDtcaVvhnz4SV1WZqjuy2+TJrwj4plxgyMtPeMhUB8CEu71oWwOAgQIECBAgAABAgQIECBAgECOBKbPrIlHJ1bHzClDou0hB8UjScL9xflvx8LZj0d6G7xded+44KxTYsiA7rFly5Z4f9nHse8+TbL61sXwpEnX0y+7OWsamzaP9TQsgT+biqZR97xreFLXvUVUDOyZIaSNRtt17Bcdr7ggK690Y59hsbT2w+yfVIe2bpX1OSiG+u4Na8cLL1oJ98LbMysmQIAAAQIECBAgQIAAAQIEGrDA5s1b4t7KSTEvqe/e5cr2Sf3qD7Kmis9PejAmTZ8boyc/H2/NHJPUPN+YlJwZuq3+dWnsl9zwrRo1MA5r06rg9T75/KskjoOj8R6lBR+LAHZeoHrOG1mJmenjBiX/UGoT1982ND774ptYMGN4rPioLik3MyKeGnNPknBvHlXPzou5NYvilWmPxIH7t9j5SX2TwA4EJNwdEQIECBAgQIAAAQIECBAgQIBAAQqkN9dfrlkcq9f8HANuuzaL4MLyPnHnzZ3jxk6XRIfug7Ka72k5jWZJ7etu/Srjx9Xr/lJ+owDDtmQCfxEY9cRzMWXGy7Fp0+bsJvvYir5x0vFHRvtO/eLs006KYfdsvf2eNiI+9eKe2Zshxx1VHG97OAr5KSDhnp/7YlUECBAgQIAAAQIECBAgQIAAgf8kMGDIhFhSuzK53Tsiapd/nDVUTetYH3/0odk4S95fGV37VsayN6qyn39cvTZaNt83SkpK/tM8Pkwg3wTSZPs336+KQ1odEI0alURV9bwYOaE63nzhseTNjmbZctNSTJVjp0Xta5Od+XzbwCJbj4R7kW2ocAgQIECAAAECBAgQIECAAIGGKbD4veWxZ+PGcerJx2blM8ZPnRXvzh2/HWPslJkxcdqc+KBmSva7q7rdFycce3j0v7XL9qRkw5QTdTEJbNiwMU6/vFf0ThoMd+tSloWW1nY/58rbo1vnS6N39/JiClcseSgg4Z6Hm2JJBAgQIECAAAECBAgQIECAAIH/IzA3KTUzsGJi1FSPTJpKtoxP676O8h6Do0PZeTGo3w3x0muLIr0Rn9ay/mHV6jj6iDZJ6ZlBsU/Tvf/PtL5LIC8E0hr/h7c9OPYo3Vrjv2L00zFr/jtJb4PRsWfS78BDYFcKSLjvSl1jEyBAgAABAgQIECBAgAABAgR2g8DGTZuiY4/7Y93Pv0RZ+zNjxqyarI77S1Mro7S0UZx/de/ocNn5MeDWa2LNul+ia59h0bb1QTH6od67YbWmJLDrBOq+/C7Krusfwwf3Sv4Wzth1ExmZwDYBCXdHgQABAgQIECBAgAABAgQIECBQhAJpaY30Vu/CpcvimCNaR9fOZdG0yV6RNpmc9sKCrL510yZbb7Tf9/DkpOzG+hj5wC1FKCGkhiyQ/h2kb3xcdem5DZlB7PUoIOFej9imIkCAAAECBAgQIECAAAECBAjsToG0seRFne6Ih/rflN1wT59VP62NC8v7xIN33yQpuTs3x9wECBSFgIR7UWyjIAgQIECAAAECBAgQIECAAAECOxaonv16TH3u1ZjzZEWUlJRkX0hruS+pXRkLZozIys14CBAgQGDnBSTcd97ONwkQIECAAAECBAgQIECAAAECBSeQ1nf/s5nkio8+j449749Jw++Os047seBisWACBAjkm4CEe77tiPUQIECAAAECBAgQIECAAAECBOpJ4JaBj8b69Rti8sj+9TSjaQgQIFDcAhLuxb2/oiNAgAABAgQIECBAgAABAgQI/KPAr7/9Hr/+tj72b9mMEgECBAjkQEDCPQeIhiBAgAABAgQIECBAgAABAgQIECBAgAABAhLuzgABAgQIECBAgAABAgQIECBAgAABAgQIEMiBgIR7DhANQYAAAQIECBAgQIAAAQIECBAgQIAAAQIEJNydAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkAMBCfccIBqCAAECBAgQIECAAAECBAgQIECAAAECBAhIuDsDBAgQIECAAAECBAgQIECAAAECBAgQIEAgBwIS7jlANAQBAgQIECBAgAABAgQIECBAgAABAgQIEJBwdwYIECBAgAABAgQIECBAgAABAgQIECBAgEAOBCTcc4BoCAIECBAgQIAAAQIECBAgQIAAAQIECBAgIOHuDBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwISLjnANEQBAgQIECAAAECBAgQIECAAAECBAgQIEDgD+1XYgyQLspHAAAAAElFTkSuQmCC",
+ "text/html": [
+ " "
]
- ]
- },
- "colorway": [
- "#636efa",
- "#EF553B",
- "#00cc96",
- "#ab63fa",
- "#FFA15A",
- "#19d3f3",
- "#FF6692",
- "#B6E880",
- "#FF97FF",
- "#FECB52"
- ],
- "font": {
- "color": "#2a3f5f"
- },
- "geo": {
- "bgcolor": "white",
- "lakecolor": "white",
- "landcolor": "#E5ECF6",
- "showlakes": true,
- "showland": true,
- "subunitcolor": "white"
- },
- "hoverlabel": {
- "align": "left"
- },
- "hovermode": "closest",
- "mapbox": {
- "style": "light"
- },
- "paper_bgcolor": "white",
- "plot_bgcolor": "#E5ECF6",
- "polar": {
- "angularaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "bgcolor": "#E5ECF6",
- "radialaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- }
},
- "scene": {
- "xaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- },
- "yaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- },
- "zaxis": {
- "backgroundcolor": "#E5ECF6",
- "gridcolor": "white",
- "gridwidth": 2,
- "linecolor": "white",
- "showbackground": true,
- "ticks": "",
- "zerolinecolor": "white"
- }
- },
- "shapedefaults": {
- "line": {
- "color": "#2a3f5f"
- }
- },
- "ternary": {
- "aaxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "baxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- },
- "bgcolor": "#E5ECF6",
- "caxis": {
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": ""
- }
- },
- "title": {
- "x": 0.05
- },
- "xaxis": {
- "automargin": true,
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": "",
- "title": {
- "standoff": 15
- },
- "zerolinecolor": "white",
- "zerolinewidth": 2
- },
- "yaxis": {
- "automargin": true,
- "gridcolor": "white",
- "linecolor": "white",
- "ticks": "",
- "title": {
- "standoff": 15
- },
- "zerolinecolor": "white",
- "zerolinewidth": 2
- }
- }
- },
- "title": {
- "text": "F1 Metrics for single-label (averaged and per label)"
- },
- "xaxis": {
- "anchor": "y",
- "autorange": true,
- "domain": [
- 0,
- 0.2888888888888889
- ],
- "range": [
- -0.5,
- 2.5
- ],
- "type": "category"
- },
- "xaxis2": {
- "anchor": "y2",
- "autorange": true,
- "domain": [
- 0.35555555555555557,
- 0.6444444444444445
- ],
- "range": [
- -0.5,
- 2.5
- ],
- "type": "category"
- },
- "xaxis3": {
- "anchor": "y3",
- "autorange": true,
- "domain": [
- 0.7111111111111111,
- 1
- ],
- "range": [
- -0.5,
- 5.5
- ],
- "type": "category"
- },
- "yaxis": {
- "anchor": "x",
- "autorange": true,
- "domain": [
- 0,
- 1
- ],
- "range": [
- 0,
- 0.7552973342447026
- ],
- "type": "linear"
- },
- "yaxis2": {
- "anchor": "x2",
- "autorange": true,
- "domain": [
- 0,
- 1
- ],
- "range": [
- 0,
- 0.8348457350272233
- ],
- "type": "linear"
- },
- "yaxis3": {
- "anchor": "x3",
- "autorange": true,
- "domain": [
- 0,
- 1
- ],
- "range": [
- 0,
- 0.9090909090909091
- ],
- "type": "linear"
+ "metadata": {},
+ "output_type": "display_data"
}
- }
- },
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAFoCAYAAABNITkUAAAgAElEQVR4XuydCbxVU9vAn1uaSzQPROaZvMgUKUkTFVGI0qCBiJLSXIoGolkTmaKBNL0hkiHhzVCEEErzrPl2u99+Vvb9bnc85+x9zlnnnP/6ft/P2717rfXs/7P33ff+9zrPSkp1mtAgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhDwRCAJ4e6JH50hAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAoYAwp0LAQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgAwGEuw8QGQICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggHDnGoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI+EAA4e4DRIaAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCDcuQYgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAj4QQLj7AJEhIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIId64BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAPBBDuPkBkCAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAAwp1rAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgAwGEuw8QGQICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggHDnGoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI+EAA4e4DRIaAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCDcuQYgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAj4QQLj7AJEhIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIId64BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAPBBDuPkBkCAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAAwp1rAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgAwGEuw8QGQICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggHDnGoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI+EAA4e4DRIaAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCDcuQYgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAj4QQLj7AJEhIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIId64BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAPBBDuPkBkCAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAAwp1rAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgAwGEuw8QGQICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggHDnGoAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI+EAA4e4DRIaAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCDcuQYgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAj4QQLj7AJEhIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIId64BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgIAPBBDuPkBkCAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAAwp1rAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCDgAwGEuw8QGQICEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQggHCPwDWQmpoqycmHJV++4yQpKSkCM4Z3iv0HDsmh5GQpUrigHJc3b3gnSzf6J8u+l2XfrJI9e/bLqZXKSYs7bo7Y3NlNtGfvfkk5ckSKFysS1ljeeGeRbNu+Wx68v5Gv8/yxdqPMmr9Eql99iVx64VlBjb3ki+/k6+9+lnub1JZSJYoH1Te7g0M5z5279sjkafMlT5480rFFQ3Of0QIj8Mvv62Tu+5/LTdUvlwvOrhxYpwgc9fL0hXLoULK0ubt+BGbzPoWX++j3vzbIOws+kRuuqSJVLjjTezDOCJ8sWyFffbtK7rntJilT6gT57c/1Mvu/n8qJxYtJy6Z1fJmDQSAAAQhAAAIQgAAEIAABCEAAAhDImgDCPcgrY9Ib8+XZ8W9l2+v6qy6WMYM7H/P9uR8slW4Dx8uw3u2lTo2qAc94Uc37JSXliFx47mkybWzvTP3Sx/Li0C5yzeUXBDy2Hvj+kq/l46XfSbt7b5GTypcOuG+H7s+Zfs/27Si1HVEXifbM6DdkqiPh3Fa0SCFZNm9sJKbOcY7L6zwg+/YflKVzx8jxRQuHLZ46dz8uf/29WX5Y/JKvc3z46XJ5qOcL0rFlI+lw361Bjd1ryGQj698c38c3WRvKeT4+YJzMW/SFPPHgXdL89puCOodEP/gdR8I++fRE6dHpbrm7cS1rcFx9S0fRF3vfvDfBmphyCsTLfbRw8ZfyaN8x8kib2317wTDguakybfaH8tronnLJ+WeY50jbx4fJF//7UYb36SA333BFTHAlSAhAAAIQgAAEIAABCEAAAhCAQCwSQLgHmbUJr82VERNmmBW95cuWzNT7uisvNuLyyJFUWfTp/2TV6j9l4uvzjPAIVbjrJNNf7CvnnXVq2nw6/rUNH5Rdu/ear4175jGpVvXCoM5m0AuvymuzPpCpL/SQ/1wU+OrmoWOmyYefLZe+XVpK1SrnBjVnKAfv239ALq/TTvLnzycvjXhCLnJeQGzdvktKlzwhlOF87XNXhwGyY9c/MnNifylcqKCvY6cfLBQRHUgwXkShDcL9ux9/E81B7epXOC+AOgRyyhyTjgDC3Z/Lwct9FAnhrmepnxiofvsj5ln00YwRzs+rAv6cPKNAAAIQgAAEIAABCEAAAhCAAAQgcAwBhHuQF4Qr3HNbEaqrnnX1c/rmRbhnXDm/4MNl0qX//6/wjqRwDxKZ58N//m2tNG7VS7L69IDnwWNkAIR75kTpS6d6zbvJ3xu3yqK3nrXiBUyMXE5pYSLc/clYLAh3PdP5i5ZJ1wFjzSdB9BMhNAhAAAIQgAAEIAABCEAAAhCAAAT8J4BwD5JpoMJd67arKNb26sz35W2nRm8owr1iuVJS/PiismLV7/LetGGi/9Z2S4snZe36zVLz2ktF5XtG4a6rrgc894p8sfwHswpeV+TfXv96Z/V9Q8mbN49MmbZAxr3yrmgNcncOHbflnXWkbs2qpgTOxi3bZdKzj8sbby+ST79cIf/s2SfDnTIyHzor99/572fyTM8H5LRK5dMI/rrmb9HSLz/8ssaMW6liWWesK+U+p8a31nv/9odf5bkXp8uPv/whB53VlhrT1ZddkGNJGz3vx/qNMVJVy8jomNp6PtJcLj7vdKecywEZ9MJrTombb2X7zn+kfJkS0vDmatLBqeWdJ8/Revn68uO+hwfLFZecI63uqicvvblAvln5q6m7PmrQw9leAXr+z42fLp9/vVJ2/bPXzK+r61s1qyeXO2Np6z5ogsnDq6OeNP9evuIXGTzydad2ci2nBMwmk/dNW3aYc1XBlbGk0IbN26XvsCny5bc/mRWolSqWkTNPO0k2bNouLwzsZM5HW3bCXUupjH9ljvyxdoOT17xy9ukny4DH75czK58U0JWdlSj88pufZOjYaSZ+zaNeL6eeXF7a3lNf6t94Vdq47gp3LS00573Pnfr6P5q8XnTu6TLUKZ/kxu52+OnXv2TgiFec6+OPtHN99IE7pNZ1l6WNGcyLBVce6nXdz/m0Rfqmn4DQa/iX39ea3OmqXs3BnbfcYMp2aJ13/fRJ76FT5Ioq50jX9k2P6a/n3bLzM1L55HIypFc7873DKSkyavLbpua55k2vh2suv1D6PHqfc48ereHv5v9+p052ZefeeNMp67HKOW99WdSkfvVcY0ofxGuz3jf3qc6ln+644eoq8ue6jWasTq1uSzs0t3vdPVD3kRgy5g1Tfkd/JpQ4oZhT3/tE0bzk9gJRx9B49BMxW7btNPeUnr/WfddSKFr2ym1a+mnO+0ul+0N3m/Nf7NybylOvSf2Zoddo+rZ8xWp56vlXTBx6rV183hny3Y+/mus5t5IyLu9mDWvIaufnz3zn3DT3eh/17nyfXHXZ+cfMFQgrN/7hfdqL/kxTXuvWbzE/U5R9Vs3LfeSucNfrUn+eLVz8Vdo5ZPUpokDuo4wlZdLHfH3jh834n80eJScULxrQzwkOggAEIAABCEAAAhCAAAQgAAEIQCBwAgj3wFmZIwMV7umHHfPSOzLa+f9QhXvPR+6Vtl2HSeO61xmZquL67o4DjahWmatSN71w37x1p1n5q1JMReC5Z5ziiPcfTUi31r5GBnVvIyMnz3I2mlxgxKceU7BAfvP9B51a3jrPjXc8akSfSlP9r9venjzQSLT09YH1e7qBZvsnnjOHqWgs4AjC1WvWGdE55bkn5PhiheW21kfr0Kt4K+bUO//p1z9NjE8+3FzualQzy0z87/tfnBrjzxtBqNLxxH8F0ZCe7Yxwr31XV8OgbOkTzbjKRuWeltdRJtpUuF7doKMpoXDYiUfPWZuOl53QU/FVu1nXNIl/iiNeVb6pqEq/0j6jIHblmXsyOqeWmtF+2t596Sk5/dSK5n+vd14i3OzUZndlsL5MUEGs8ZtjXx4kp59SwfzvrES07iWgdfy16Yanf2/cYlhoe995OVPh35czWYL994tZiUIVjvriRAW1xqQsVPJpU/lcz3mJos0V7u74moMdzgamyldl7Cdvv2AYa8t4fRQqWMC8eMk4ZjDCvXOfUfLex1/L62N6mWshfdNc3drySZPz0ypVMIL9+1W/GdaN6lSTgd1aSfLhFLmibjsTr+4HoDG77XXnJZNK4FbN6oq+FNAXaHc80M/ErFL4qv+cn/aSRM/7/WnDzdfd/OvX3FzomPpiqVvHZrnG5M7f79mX5a13PzJj6v2bfPhw2gu89Nd2IPe6jqnx6/2nLwE1J2c598q2HbvS7u1AhPsDjw83L95UZquo37x1h9lXQGOcO/Vp8/Wsrgu9jvQaciX9p47ozXfc0c2WdS8I3RNCm/vi7+ff/jJ5yun+dDllvN/cFx9uqa30+wsEysq9rjUefdHntq4dmma7UbOX+yjjOeh1qEzdc9ByVeecUSmo+ygn4a4l0fQ59syTD0j9Wv//Au2YG4h/QAACEIAABCAAAQhAAAIQgAAEIBAyAYR7kOhc4a4iT6Vx+nbBOZXlhQGdMo3oVbgveG1ImgDXVYlPDBrvrLr+wRGaI81K5IzC/ZHeo8yGqD063WNEdlJSkuzdd0BqNX3MSJxF05+VcqVLOCvDs6/h7gp3XQXbreNd8p+Lz3Y2MTxopNgQR8amF+5ubWAde+zTnUXr2GvTOYc58d3mrECeOW+JEYjppZVKwNkLP5OyjrzLuBI1PUSV7vd2GuRs6nijOSe3uZvG3nT9Zc5GgB3NinYVeypG1/y1wazOv/LS89KEu/ZTMdveWeV/7pmVHBZ70uR3xqQt+mS5dOr1ghGlE4Z1Sfu2rsZV+ey+IMhOuCs3jUlXT2tzWbsCV7/Wpssws3r+geYNjlmxrC8uVFDnJNz1/Orf2928aJj+Yj8peeLxZp5XZrwnT4963axE19XEubWsRKG+CEjKk+eYFep63s0fekouc66Dl5/vboZ1xaQK4IHdWhtBr6uomzu50k8m6KcQmjWsacT29Y07mWsvvTx0pbiy+uSdkWbMYIR71Xrtnb0SjshXC8ZnOk29Dv5ct8nJ8ylp39vpvAy4oUlnR+amyPeLJpuvu2I740sf/QTJb3/8LR84pWr0pdP0uYudTyK8JHqtPe2ISn2hpFJYXwapNH66R1tpcNPVacJdx9aV9/rySu+ZAwcPmRXlgcSk15fKcZXHMyf0T9sr4ncn5w2cnKcX7oHe67q5reZLV5frpzHc/QZ0xbpem4EId5X1ei7pX0zoiv+xU2cfs+Gne13ovaafdNA+eg00adPHvISb/Fw3s/eDfmLghtseMS+19OdmzWqXmpzo16+55UE55FxLua1wd2W15mjEgIfSNu8dPu4t54Xi/GNejgXKyo1fpbd+kqCG8ymiQs4LSX0B4N5nGS84L/dRdufginH9ZIN+EieY+ygn4f7L7+uk0f09A/4ZkdvPEL4PAQhAAAIQgAAEIAABCEAAAhCAwLEEEO5BXhGucFcZo9ItfdNSGip5MzY/hLtK9Z7PTDIlSbSEjFtGQ7+WXrhrXesLa7Q0UmyJs8I4jyPb3aZi7a05i2XM4M5GRAUi3FV4uauU3XEyypxl36yS+53yGznVWHfn0rIaKvcyjplTGrIT7g1b9jQC78Ppzxnx7LbFn38rHXuMSFvJ7K5w101ndfPZQJq78lZXzWtOsxNt2Ql3LbOhJSLcpgK6afv+aZt7ps/T0jlj0srf6PFam19znJNwf37iTHnx1TlGat9e7/q0eXY7ZX+ua9RJTjmprMx/9Rlnxfw6meHI4gy3vXnxoauMc6o9ravydUX3RmfVvK6GVrmqUv3jWc+b4bLbNNW9HlSgqkj9+rufTUkfFZfP9jl2Y9N6zZ8wq4i//u+LUqhg/qCE+/nVWxiBPGvSgGxTquJ95U9/yPpNW00pFF29r4JXBb8KcJXqKtf1Uxlzpw4247gvM1QY6+p5bU3a9jUsNCeVKhxdya3tw8++kUf7jk57GZS+PIheA1m13GLST5+Mm/quKVVzh1MCx226Yr6G88LAFe7B3OvNHxpkyt24LwbcMUOp4f7H2o3mvtMV7qtW/2V+/rifnMnputDSRy9Mmin9u94vt9W7zryU0Xsi/QsXN66rb+novOA7FLBwz3i/ad+q9dqZn9H6QiYYVu51rRs0u6Wjsr3A3Ovg0+XOy5cXpKPzCSHdNDt9y+0+ym7TVD2Hy25ua36W6ycwgrmPchLuWvbp0pvamE/FvDKyR26nxvchAAEIQAACEIAABCAAAQhAAAIQCJIAwj1IYNEoKaMr3HV149UNOpiyDNrceu4ZhbuWeFAJnFNzVx7nJtw3O4LSXQmcfryMMsctv6GlN3QFd1Zt5c9r5E5n5bk2fVmhLyeqVb3I2byvVtpq2+xizk6466a0WiIm4ypYV0y6wtQV7ulXZ+eW9oy8VbxffsnZ0sKpce/W0dcxAhXubl7c1aruv3UFfsaXNIEId119r6vws2v6CQwVjVp/+vEB4zId9tWCcYZ7VsJdhfTDvUYaQZuxBSLctX+1hg+ZMhi6ol0/2aAryXNqC157xpSvCXSFu75YuKp+ByPxRzq17jM2XSU92Kntr5/EyKrpSwM9F23uavY5jnDXPQm0nI6K+Wf7djAvSLTpanq31E9W47l5zU6eap9AY3Jzm/7TANo/o3AP5l5Xga2fMHBfNLjnEIxw13u4Y/cRaeWR0nPQ1f0q87Vl9yLGvQ7cnz/uS0S3xE/68bwKdx3LrVW+4sMpsm7DloB/LmYXf07Xr5f7KKdrJv056IuzQO+jnIS7nkcVR7jrpwL0pRwNAhCAAAQgAAEIQAACEIAABCAAAX8JINyD5Bkt4a5huitEtWSLlm7RllG4u+UoVKbc62xWmlW75vILTCkVv4T7xNfnmc1QtdyLln3Jrqkg1HI0S5Z9Z8pxaNOV7m84q4jdGsVZ9c1OuF9U8/60Fazp+7nC113RHopw1/G037Cxbzp1wr86RrbqBp36CQNtgQp3LdNSq2kXs/GllodwV1Znteo+EOHe6tEhpi5/iztuPmZ1v8uhSOFCZhWxStbf/vw7A9YkqXLBGabUUFai8CYnTl11ri8s9Bo6w7lWSpc8Qarf/ogc75RRym2Fu5ZuuebWB8U9N7f0j67M1hI9WTUtvaIreQMV7m5O3VX0GcfsN/wl82kOleodnc0uzzv7VFNGSTdSVW7phbtbLubuxrXMxrZXOS+2tJyJvpQ4ztm4U5tea3rNah32rJreT3pf5SRPA42pXbfh8smyFZJxhXVG4R7Mva7xZ7UJaaDC3exd4Gy2qU0FuW50q58K0E1I7+owwJTTyU24z5j7sfRxNgh2hftLb/7XlMRS5s1vv+kYrH4K95UfTTG167VMTyA/F/0S7oHeR4EIdz0H3XND920I5D5CuGf7GOIbEIAABCAAAQhAAAIQgAAEIACBsBNAuAeJOJrCXVfY6uartzsi1d14M6Nw1xXwuvJbNzDUlfE5NVe4uzWV0x+rNdwDXeHuSlstf6FlMAJpWpLi+Qkz5aPPv0krj5Ndv+yEuytndSW3ruh2W8byLaEK9/TxaDmS6Y7AVf4q7bS2t7ZQhbubJ13t/817E82qf7cFItzd3Onqbl3lHWrLKNz1PKs7dbXTn6M7tq6KDUS4u/zdOvJuiZ+mt9aQXp3vzTHUQIW7DqIlZdxV9BkH1RX2+uLl09kjnY12i6V92934M71w11xcWb+9eXkz3Cl5ozX0M+4XUPeebqb++pfzx0mRwgWzPYec5GmgMelmrfqpkQfvbyTt7/3/8iQZhXsw97q7J8Nyp0RU+lJYgQp33Wuhx+AJoiWh+nZpkXb+bh3+UIS7y+o+56XO4xleZHgV7lo2RX8Oau4118Gw8kO4B3MfZXfN6CcitPRL8WJFzCcTgrmPchLuus/CJbVaU1Im1B+a9IMABCAAAQhAAAIQgAAEIAABCORCAOEe5CUSTeGeVagZhbse40pL3TRTpWf69smy7+Ws0042q6K1TrTWi06/Yts9NhjhvnnrTrnBWf2s0ljrqbulOnQsrTtczhHU3/7wq1xxyblSptQJaeF8s3K13PPgU3LhuafJtLG9s81EdsLdPfeM9Zs79xnlrEr/Wno7cvdOR/KGItw1bhWTGpvbdHPYyxyJpyudf1j8kvlyqMJd+7oS163VrXWmFzsvILo7YlNfruRUw90V5VreRkuhpJeoer5f/O9HpxzK5ble3RmF+6rVf8rtzuaWGV/YuKupAykp06H7c2Yj0aeeaC0Nb77WlCDR1dF6fcyd+rQZ220qFd91ZK6ucM+KZ04noGVetGl964zNXZGumwyfULyo+bYK+Dva9pENm7cfs8Jdv6cr3+d+sNS8uFE565a4ccd1BWb6WuXu93Qz053OSm+tiZ2TcA80Jles6kuPGc6mqRr/th275RlnM1wtEZR+09RA73WtL665Tr85rF7HuuJcS7vktmmq+ymWjC9N3nhnkQwc8UpIK9z/+nuTc/90M5vDLnrrOVPDX5t++qNRq15ZrsjPmOfseLv7ZqQvVxMoKz+EezD3UXbn4JbqqlfzShnSq11Q91FOwv23P9fLLff1EHfcXH9IcAAEIAABCEAAAhCAAAQgAAEIQAACQRFAuAeFSyRQ4a4iUaWPts++XCla/1hFmZbZ0A04tXxFbk0FnQrVnFaqZyXcl69YLc0fesoMryVM/nPRWY5k3OaU0lhlZNZro3vKJeefIUu//kFadxlqyro0v62WHDiYbI5VURuMcNd53LrXKiybNaxpVpYuXvqtEe5TnntCxk59R7785iez6auWM9n1zz6ZNe9jIz9HD3pEql99SbY4shPuuoq0prMSX8Whrrw998xK8vEX3xnZqxsxfjRzhCkJEopwdwXjFVXOkav+c74UKJBfPljyP1PXPP3qZy/CXcuGaPkQbZqDFOeacUvt6NdyEu76fS3l8d2PvxlhqRunFnPKvXzvbET5scP9grMrp234mdN1llG460uFqk5tdP1vlQvONP//4+o/jMDXlpVwV4Fe15GCRZ0yNu8v+drEpLL4vWnD0zaDHTt1ttl0VaX7bY5cP+Wkcs6GrmvNNaJlb7J7gZFT7G6t8xkT+jm5P+WYQ3WTVr329P65sdp/zMavH3zydRrf9CvctaO7Kl//d1ar5rVmvL40UC66UetN118uuoparwedx90sMyfhHkxMjR3hrGVQtLkvAdwTTC/cA73X0++hoPeg5ko/XaIvQ7TlJtzT99cyPieVKy2fOz8/9JMq2kJZ4a793M1c9Xqpce1/zIa1n3+9Mu2eyLg/Q8brweWt989NTpmb8mVLmlxq2SC91j6aMSJtw+NAWfkh3IO5j9xz0JJKt9a+Vk4qX0p++PkP8wJIm36aRvloC/Q+ykm4uy8j3BdiOd1jfA8CEIAABCAAAQhAAAIQgAAEIACB4Akg3INkFmi98v0HDsllNx/dRDBjUxmsJQJya8EI9xeHdjE1pN2mIvDJpyeK1k1P33STzsHO5obuSvMRE2aIrlJ1N4R0Nz7NSbjrilbto6vS3RXg+oJBX0aMfXn2MdJY64AP79tRPvrsG3l+4oxjaqGrEGvX/Bbp4NTYzqnpuaiY0zrPWu85fctqI0cVpqMHP2JqdmtzN9gMZtNUlfw9n8nMT8u3DOnZLm01bkbhrsL5kd6jJOOq+w2btsmNdz4mGWuO60uI8a++K1qaQ+VwvRuvNC9GVISn3+Ayq1IruhL7hUkznfIjHxzDXAW81i0P5KWOK9wfur+xtLv3FsPrs69WyoNPPm/kstvualRT3nQ2P3VLdOjX+w57SbT+uV7Punrcbcp/3DOPmrrv6ZvW8H5m9OtpG//q9/Qa0E9hDOrexhwaTEmZOe99Lk8MelGyKlWjvPWlk77QcZte+1scwawvnZa8/UKaiHW/75ZdyU5E6li9h0xOE8JuPy3v1PPh5qIvZ7LLvx4bTEwq83VfhE+/XGFexOiLOv0UQNuuwxwpe00aLx030Htda9prHXm3ad70ZZKums9NuGufF1+d49zDM9P664sAXUH+2qwP5JabrnF+rhzNoXtdTH+xr4nbbTPnLZHeQyebslNafkqbrtzX/Qhcca9f0zFVQme1IfIxF5Tzj/SyOv2mtvoSaNRTD6eV3nL7BcIqu/gzzp3+317uI/ea0XEPCswAACAASURBVPtWXz65TQW83kf60it9C+Q+yupntDtGjSadzQa8GTfQzen8+B4EIAABCEAAAhCAAAQgAAEIQAACgRNAuAfOKiaPVCmrpRsKFyooFcqVTNsEMv3JpKamypq1G0197vTlYEI5YR1royMm9+474MxX6pja6jqebrKoG3LqClsVzPnyHRfKNJn6bNyy3QjNyieXTysh4sfA+/YfkLXrt5ihTq5Q2nAMd8vpZUdWcxvmjkDbsXO3w7S0WfHutekLI3ez1dOczTFzO29lr5+iOLlCmUyiPWMs7jVQusQJ5sWPbt4aStNPA6ig19y/N21Y2gsWdywt0aPnoNeixqWfLPGj6cslfZGlIlx5p98/ILfxvcS0cPFX8mjf0dKp1W3yQPMGmaYK5F5Xka9y+4TjizorqUvnFm6m7+uGuFpCR2WwbqabJ09oucs4sF4/utr+jMonpb3MCiS49J8o0A1+9WdLyROOz/UeCIRVIPPndkyw95Hy/WOd87PYqdte+eRyOd4bodxHumpeyydl3KMgt/Pg+xCAAAQgAAEIQAACEIAABCAAAQgETgDhHjgrjoSArwRUXL7urA6+9ooLpdJJZWWvU7f9NWe1uq7cdjcc9XXCOBzMLQWjq9cnPft43Jyhlg4pXqyos0L8FLNp5qrVf0m/Z18ynxBZ+MbQkGR53MBJdyI5lfCJx/P1ck5aWktf5uXJc7TUTjAvirzMS18IQAACEIAABCAAAQhAAAIQgECiEUC4J1rGOV9rCGjtb63rnbGd6azyVXns14psa044TIG4+xjc56xwfrxjszDNEtlhm7TtKz/+8kemSXs+0tzskUA7SgDhHtiVoJ9suPOBfubTDSMHdnLq5V8aWEeOggAEIAABCEAAAhCAAAQgAAEIQCBoAgj3oJHRAQL+EFAJpjXcdfPQXbv3mFIsZ552kuhqbVrgBHTV9wxnA15tdzkyWjfQjPWmZaC++vZnp9b2dkk5csSUSrr8knOkbOkTY/3UfI1/3YYtzma4/zP3jO4dQMuagG5GqxtK66cltEY+DQIQgAAEIAABCEAAAhCAAAQgAIHwEUC4h48tI0MAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEACEUC4J1CyOVUIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAIHwGEe/jYMjIEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgkEAGEewIlm1OFAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACB8BFAuIePLSNDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAAhFAuCdQsjlVCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQCB8BhHv42DIyBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIJBABhHsCJZtThQAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgfARQLiHjy0jQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQAIRQLgnULI5VQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEAgfAYR7+NgyMgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCQQAYR7AiWbU4UABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHwEUC4h48tI0MAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEACEUC4J1CyOVUIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAIHwGEe/jYMjIEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgkEAGEewIlm1OFAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACB8BFAuIePLSNDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAAhFAuCdQsjlVCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQCB8BhHv42DIyBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIJBABhHsCJZtThQAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgfARQLiHjy0jQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQAIRQLgnULI5VQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEAgfAYR7+NgyMgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCCQQAYR7AiWbU4UABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAIHwEUC4h48tI0MAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEACEUC4J1CyOVUIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAIHwGEe/jYMjIEIAABCEAAAhCAQAwR2Lf/gBw6dFiKH19EkpKSYihyQoUABCAAAQhAwCuBVav/lPmLlkmTBtWlUsUyAQ+38uc1svCjr6RpwxpSsVypgPtld+DE1+fJ8UULyx233OB5LAaAAASiQwDhHh3uzAoBCEAAAhCAAAQgYBmBOx/oJ/pH8wdvDpfyZUtaFh3hQAACEIAABCAQTgJvvfuR9Hv2ZRn3zKNSrepFAU/12qwPZNALr8rEYV3lqsvOD7hfdgdWrddeSpc8QeZOHex5LAaAAASiQwDhHh3uzAoBCEAAAhCAAAQgYBmBAc9Nlf99/4tMevZxKXni8ZZFRzgQgAAEIAABCISTAMI9nHQZGwKJRQDhnlj55mwtJJCammrFx9YTLY5AzzfQ4yy8tAgJAhCAAAQcAln9HI/Gz/ZozJnVBRCpOAKdJ9DjuJghAAEIQCAxCQTynAjkmEDoRVq4Zxc3K9wDyRbHQMBuAgh3u/NDdDFMYNEny2Xk5FnS7t5b5J3/fiKff/2D5M2bV2pXv1wGdmsl7yz4VCa9MU/++nuzFC1SSB5t20TuvLVG2hkPG/emUz/uC9m6fZekpBwx9WRrV79COjvHaT03tx1OSZExL70jCz5cJn9v3GrGuuKSc6Vjy4ZyZuWTpNWjQ8zH4jWOSU4tuJU//yFVLjhTenS6W7RWbX9nNd9Hn30je/bul7KlT5T77rhZ7mtSO1fyOp+e34bN2516t8mSP38+qVrlHOnaoZmcfkoF87VmHQaY2nfP9XvwmPGWr1gt/Z2P6t1zWy25vf715nvv/PdTGf/Ku4aHjnWpE2O/ri3lpPKlzfddngOfaCU/rf5LPvjka9mybZcM6fmAvO30DYTVvv0HZcjoN2TBR8vM+ZY4oZicd9apsmnLjmNWMyYfTpERE6bL3PeXGv7K9OYbrpBuHZtJ4UIFc2XDARCAAAQgEB0CG7dsl3aPPyu31r7GPBPnvP+5+Xl/8Xmny/MDHpJ1G7bI0yNfl1W//mkCvOWma6RvlxZynPN81vbCpJny4affyMyJ/Z1ndh7zNZ6z/j9n9dmqH9n/4n8/OL+LHJRSJYpL67vqmd8LqJ0fnXuHWSEAAQjYQMB9jtetWdU8x99f8rXs2r1XTj+1ogzr3V7OOu2ktDADeZaMmDBDFn/+rbw2uqdMnjZfli1fZZ7r08b2zvJ0sxLugfxd7paU0b8XP/7iO9G/d1Ocea694kLn79V25u9JtwUSN8LdhquRGCDgjQDC3Rs/ekMgWwLuQ1cPUFn+n4vOllW//GEEdeFCBcwfmCrET3aE9MdLvzVS/asF49KEbuNWveRQ8mG55PwzzANaP+L+o9P/ykvPM3JYm74Rv8OpN6tfP/v0k+XSC8+S3/78W7785idpc3d9eaTN7XJ5nQfkoCO/dXxtOpbO+/Lz3aXO3Y+bX2Suu/JiOcP5JWbRp/+TP9dtkrsb1zJCPqc2dOw0eXfhZ3K5I/dV1K91RPlHn39jzu3jWS+Y/7Z6bIjzx/SP8s6UgWZOtz3U8wVHaCw3NekqVyovz0+cKS++OsdwUvmxes06009jXTzzeSlUML+4PFXGu4Jfx9M6eU89/0qurI4cSZWG9/eU3/742wj9+jdeZWT6Z1+tMGzS1+t1a/jqL3bXO2z0lybtd/VlF8iEYV246iEAAQhAwFICa/7aIPXv7W6iU2Fetcp58s/efbJi1e/mZ78+P1TuXnz+6fL1dz+bP+LT12nt1OsF84L32w8mSb7j8vKcDcNzdvvOf6TmHY+aXOjvNGc68mTeB0tFv961Q1Np4bz4p0EAAhCAQGISSP8c1+f2Zc7f0D/8ssY8r/W5/vm7o83fiIE+Szp0f875W/u7tL+/9W9U/dv4+0WTswSclXAP5O/yjH/7X3TuaWbBnf6deaHzv13BH2jcCPfEvP456/gigHCPr3xyNhYRcB+6Kq/1Tbf+gqAPdxXg2l4a0d0R5Gea/z3bEdc9Bk+QZ/t2NCvgtekqa/1jP327rXVv+enXv8wvCDqergp/8umJcv1VF8uYwZ3TDtVfVDZv2+mIhnPNfCr3Vb5rLPpLhjb3lwlXzOvX9BeCRo7oV7mc24ZxWcWnKwgmvDZXpr7Qw3nBcJZ8smyFtOs23Kxi79elpZl31z975eoGHeWCsyvLm+P7yHpH+Ndq2sW8MJg1aUDaOejO7M+9OF36PHqf2Z3d5ani/ukn28o5Z1RKOzYQVrPmL5FeQyYbVs8P6JTGVmX9628vSjtfXdXe7anx0rJpHenS7s60OVp2ftq8yFjw2pCgdqy36JIkFAhAAAJxT8D9Q12fMS8O7WJe5GpzX6Q+7jyP3U9xbd66U264/ZFjnlEZhTvP2aOXjJ/P2ScGvShz3vtcJg1/XK78z3lmfF1teHmddpI/33GybN7YuL9OOUEIQAACEMiagPsc14Vk+kK8SOGCoguneg+dLG8v+EQefeAOadWsrgT6LHGFe72aV4r+DqAv3XNqWQn3QJ6B7t+q+rd1p1a3SZ48SeYTdk3b9xc9J/3knP79GmjcCHfuEAjEPgGEe+znkDOwlEB2O5XrqnJdWf3VgvFpkf+65m+5teWTRgLoLwLa9BeLhYu/lCVffO+sOt9o+uhH7FSK65t9lQiP9h1jjnnBEcg1q12aJQkV7hXLlTarzNM3t+/Hs54/5hePt+Ysln7DX5KhvdqLfpQvp6YflfuvU57l59/WOuVddpr/V7k/vE8HU4JFV+Bfc+uD5peNr53z1VUKL731Xxk6ZlraMa7M0NXj7h/eOueGTdvkjXcWyV2NasqTDzdPE+5Z7fweCKtuA8fLXGcFnb6YUOnutozC/fEB42SeU8qnxZ03OyVn/n/DvCXOKnddDTlq0MNyw9VVLL3qCAsCEIBAYhNw/1DXn+Fd2zdNg6GboU6b/aHz0vQZ56Vp2bSvV7mpjZxcoYy8+9JT5msZhTvP2aOo/HzOVmv4kHn5/nDr24+5WKdOX5j2+5G7OCCxr2bOHgIQgEDiEcjuOf7F8h9NqVT9G1P/1gz0WeIK95UfTQmoZFlWwj2QZ2B2f/s/O/4tp4zsfHnqidbS8OZrA44b4Z541z5nHH8EEO7xl1POyBIC2T10b2nxpCOTtx4j3LVuuYr45rffJE88eJeR1i0fedqpt77GrEjXOuMqBLTWqZakcYW7u+I9fSmajKefnXB3+674cIp5A+82Fcvtn3jOrIjXN/TZtadHvS6vzHjPrLQ/94xT5NSTy5kXAiqlXeGufbVUjJaMcX/JuNH5GLn+of3F3LGmr7sqXs8zn7OyLWNrXPc6s9I8O56BsnJXN2ZklVG4N2nb15TocVdFZoxHzwPhbslNRhgQgAAEMhDI7g913b/jZUfoZhTu+owsW7qEKXGmLaNw5zkrAf9OEshztlyZEnLBDUc/8Zbdc3beK0/LicWLcW1DAAIQgEACEsjuOb5z1x6zkOsKZ8+wyc92C/hZ4lW4B/q3ZnZ/qy5c/JWzSG602YdNV+YH+gxEuCfgxc8pxx0BhHvcpZQTsoWAF+HuPpjr1Khqyqe4m7n1fGaS+SidK9zdXyBeGdnD1G/PqmUn3FWqq1zXenJaV85t+jFv/ajbgMfvF5XdWTWtoXf1LR2dlfOl5K3xfeWE4kXNYfMXLZOuA8YeI9zdX460ZEyfx1rIXc5GqvrLhn4cUJuWc1Hpnb6cTlZz5vZLTG6sHuzxvKkx//qYXmbzPLdlFO4u06VzxxyzOa0t1xVxQAACEIBA9gSCFe4Z/6DNKNx5zorzSbqjssCv56z+XlK8WBH54K1nuZQhAAEIQAACxxDI7jmuG5927DFCGtWpJgO7tTJlUwN5lngV7oE+A7P7W9X9NPeQXu1Ey9oEGjfCnRsDArFPAOEe+znkDCwl4EW4ux89y1jWReuha110V7iPeekdGe38f8ZNTrUW6vqN20yt8eyEu9u33b23yEP3N06j+MDjw+XTL1ek1ZnLCu+yb1bJ/Z2fSfuFxz1GV7zryvf0K9z1e67AUOmu5Wc+mjFCypQ6wXTTjey0tl36zWTc8XRFga6GL++siMvtY3q5sdLa8rqa/tba1xjxX8Apb6Ob1uj56op2t2b9+FfmyAuTZkrHFg2lg/P/6Zuu4D++aOG0jW0tvfQICwIQgEDCEvBbuPOcFQn0d5JAn7PNHxoky1f8krbfS/qL9Xenzu1pzmbqNAhAAAIQSEwC2T3H3YVn7qKwQJ8lXoV7oM/A7P5Wve/hweYT4O4n7AKNG+GemNc/Zx1fBBDu8ZVPzsYiAl6E+6JPlhtJrZu63HNbLXNWc5zNPHUzU22ucN+774BUv+1h83Hvuxvf6GxUerasXb/ZlHrRt/9aFiY74a511as16uTUhE8xG7ucddpJTj32L80GrlpLXTczy66pqNa6eVoSRsvgVChb0pH0K82KeW0ZhbvWem/+0NH6uFqrfcKwLscM7f4ipBvJNGtY08jwFT/9LtPnfuzUeL1NWtxxc7bCPVBW+/YfkOsbH2WlteS1RI/LU4Nxhfv+A4ek5h2dRVfx165+hdS4torsdVh9pb8ofbhM3p480LCiQQACEICAfQT8Fu48Z0X8fs7+8vs6aXR/z7TfIS5yPmW3dv0W+Xjpd6aU3jfvTbDvwiIiCEAAAhCICAH3Oa5lx+5pXEtKO4u0vv72Z7MXly7CWvjGMPP8CPRZ4lW4B/oMdP/210+dN65bzfmb84C8/NZC+XvjVql13WUyov+Dhl+gcSPcI3K5MQkEwkoA4R5WvAyeyATcUikqrtNvBtqwZU/nwbvlmBru6zZskdrNusq9zqap3f7dNHX4uLfk1Vnvy6FDyQbjmZVPMr9c/PTrX/L5HGfTVOfj2Np++3O9PPHUi2aVtttKnFBMBnVvI9WqXmSEu8rlWZMGZEqHrjZv/8SzsmnLjrTv6YaiQ3q2k6JFCuWYPt1YVGvi6mau2vT4qpeea/4wf7ZvByOr0zet3a71518c2kWuufyCY76nknvU5Fnyysz3zKawbtMV+gO7tXZeJJyVVnomI089NlBWm7fulMEjXzWr6osWKWz4bHJWreu5fDl/nBQpXNBMrSvZ+w6bYj5NkL7pL1D6y1LJE/9/M9VEvsY5dwhAAAK2Efhj7Uap1/wJadm0jtn/w226Wbdu2r3gtSHm019u0z9otYZ7dpum6nE8Z/1/zn6zcrX0GDxBdA8bt+nvOPVvvMr8/kKDAAQgAIHEJOAKd93fSxdKuU1Lgj4/4CEpXfLop6S1BfIsCVq4z1ks/Ya/JOOeecz5W/FCM08gf2u6f/vriwJduOW2GtdeKs84JWILFzr6d2agcWf8/SQxrwbOGgKxTQDhHtv5I/o4J5B8OMWI9DKlTjRv9HNq+guJinuVwcEKYRXRGzZvkzNOrZgmnQNFqy8AdLNT/Qh4UtL/b74aaP/0x6Wmpjqye4dZUV6hXMmgSrcEwyr9nI1b9ZI1jqDJakWdluZZ56y601axfGnJd1zeUE6LPhCAAAQgEAcEeM4G/jtJoM9ZZaqLEPQleFnnd530m7jHwSXDKUAAAhCAQJAE0n9STT+FrQvDSpU4Pse/CyPxLAnmb01dZLZh0zY5/ZQK2W4QrlgiEXeQ+DkcAhDwkQDC3UeYDAUBCNhNQGv/6crGM52SMEnO/2mJGP14opax6flIc7uDJzoIQAACEICA5QR4zlqeIMKDAAQgYDmB7ErDWR424UEAAhDIRADhzkUBAQgkDIEaTTofUz5HT1w/5vd0j7ZBr+xPGGicKAQgAAEIQCBAAjxnAwTFYRCAAAQgkCUBhDsXBgQgEC8EEO7xkknOAwIQyJWA1sP/Zc062bZ9t/OxxAJS2SmDoxvT0iAAAQhAAAIQ8E6A56x3howAAQhAIJEJ6HPkB6ekavmyJaWcs8cKDQIQgECsEkC4x2rmiBsCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASsIoBwtyodBAMBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKxSgDhHquZI24IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCwigDC3WM61m/b73EEukMAAhCAQKwTKHtiQcmbJynWT8Pq+HftTZa9Bw5bHSPBQQACEIBAeAkUKXicFC+SL7yTJPjoKUdSZdOOAwlOgdOHAAQgAIEKJQsBwQMBhLsHeNoV4e4RIN0hAAEIxAEBhHv4k4hwDz9jZoAABCBgOwGEe/gzhHAPP2NmgAAEIBALBBDu3rKEcPfGD+HukR/dIQABCMQDAYR79lk84qyUW79pq5QtXULyHZc3oHT/9fdmOal8acmT7lMDCPeA0HEQBCAAgbgmgHAPf3oR7uFnzAwQgAAEYoEAwt1blhDu3vgh3D3yozsEIACBeCCAcM86iws+XCbdnhovKSlHzAGd2zaR1nfVyzblIyfPkldnvi+Hko+WjqlX80oZ2K2V+d8I93i4UzgHCEAAAt4IINy98QukN8I9EEocAwEIQCD+CSDcveUY4e6NH8LdIz+6QwACEIgHAgj3zFnct/+AXFm/gxHs7e9rKPM+WCpPPj1R5k4dLJUrlc/UYfmKX6T5Q4NkzODOcv1VF8tPv/4lt7XuLZOf6yZVq5yLcI+HG4VzgAAEIOCRAMLdI8AAuiPcA4DEIRCAAAQSgADC3VuSEe7e+CHcPfKjOwQgAIF4IIBwz5zF+YuWSdcBY2X5exOkQP6jG9xdfUtHuadxLenQomGmDos//1Y69hghs6c8JWdUrmi+X+WmNtK1fVO5q1FNhHs83CicAwQgAAGPBBDuHgEG0B3hHgAkDoEABCCQAAQQ7t6SjHD3xg/h7pEf3SEAAQjEAwGEe+YsTnx9nkyeNl8+f3d02jebtu8vZ5xaMa1MTPpeBw8lS6P7e8q6DVukzd315Z89+2Xh4i+NgD+heFGEezzcKJwDBCAAAY8EEO4eAQbQHeEeACQOgQAEIJAABBDu3pKMcPfGD+HukR/dIQABCMQDAYR75iwOG/emzF/0hXw4/bm0b7bs/LQULVJYRg7slKlDamqqDBv7prz73mdmRfyGzdulUZ1q0uexFmaz1YPJKVIgX2CbrsbDNcU5QAACEIBAZgI8C8J/VSDcw8+YGSAAAQjEAgGEu7csIdy98QtJuCdJksdZ6R4uAqmSGq6hjxmXayAimEOahGsgJGxx1SmUawDhnvkSCHaF+38/+lIe6zdGPps9yqxoX/TJcuncd5Q82LKRtL2nQUgr3PlZa++tGcp9FsrZcA2EQi0yfbgGIsPZ5llCuQZY4R7+jCLcw8+YGWKbQDz9bhHKz+F4On+9EhOdQU7nj3D39rMK4e6NX9DCff/+JJn/3zyy+x+ku0f0vncvXCRV6tc5IkUKh1e6HzoksuC9vLJ9O9eA70n0OGCBAkekft0jcnwxjwPl0v3IEZH5C/PIli15wjsRowdNIG/eVLm1/hEpXjy4nwMI98yos6rhXrVee7mvSe0sa7j3GTZFPvx0uXzyzsi0we58oJ+zIr6QTHr28ZCEe97V30m+ua8EfR3QIfwEkmvdISkXXBH2ifL+tlLyvftS2OdhguAJJNdoLCkXXx18xyB75F2zSvK9MynIXhweCQLJ198iKZdeF9RUCPegcIV0MMI9JGx0ShACO48ckt7blsmGlH1xccadT7hIri5YPqhzWX5wswze8U1QfWw9+Mx8x0u/ElUlX1Lgf5fvTU12roEv5a/De2w9raDierD4BXJ9oaP7Z2VsCPegUGY6GOHujV9Iwv3FSXlkG7LVI3n/u6tga9cmMsJ94kvHycaN/p8DI3ojULiwSIcHDkdEuE96Oa+sXctLF28Z8793Pmdvz04dUhDuPqDdt/+AXF6nnVmd3uG+W2XO+59LryGTZe7UwVK5UnnZuWuP3NrySenorGC/o0F1eWvOYuk3/CUZ2qu91Klxhfz2x3rzfe3/cOvbQhPuy5dIgQkDfDgbhvCbwMGOT0VGuH/3uRQY18fv8BnPBwIH2/WLjHBf+aUUGP2kDxEzhN8EDrbphXD3G6oP4yHcfYDIEHFLQIV7g/Vz5ffDu+PiHKeXqx20cF+0b63cu3lRXJz/pQVKy6xydYIW7rdumC+rDu2ICwavl62FcA9TJhHuHsGu37Y/qBF0hTvCPShkETsY4R4x1NZOhHC3NjURCwzh7i/quR8slW4Dx6cNquJcBbq2bTt2y3WNOkmnVrfJA80byJEjqfL0qNdl9sJPZf+Bg6aOe72aV8mTD98j+fIdh3D3NzVRHw3hHvUURD0AhHvUUxD1ABDuUU9BlgEg3O3MC1HZQQDhLoJwTxaEux33o+1RINw9Zgjh7hGgRd0R7hYlI0qhINyjBN6iaRHu/icjJeWIrF2/WSqULSn5HYkeSPvr701yUvkykifP/38KZNfeZNl74HAg3dOOycsK96B4RfJghHskads5F8LdzrxEMiqEeyRpBz4Xwj1wVhyZeAQQ7gh3LSmDcE+8ez+UM0a4h0ItXR+Eu0eAFnVHuFuUjCiFgnCPEniLpkW4W5SMDKEg3O3NTSiRIdxDoRZffRDu8ZXPUM4G4R4KtfD3QbiHnzEzxC4BhDvCHeEeu/dvpCNHRCFftgAAIABJREFUuHskjnD3CNCi7gh3i5IRpVAQ7lECb9G0CHeLkoFwtzcZPkSGcPcBYowPgXCP8QT6ED7C3QeIYRgC4R4GqAwZNwQQ7gh3hHvc3M5hPxGEu0fECHePAC3qjnC3KBlRCgXhHiXwFk2LcLcoGQh3e5PhQ2QIdx8gxvgQCPcYT6AP4SPcfYAYhiEQ7mGAypBxQwDhjnBHuMfN7Rz2E0G4e0SMcPcI0KLuCHeLkhGlUBDuUQJv0bQId4uSgXC3Nxk+RIZw9wFijA+BcI/xBPoQPsLdB4gZn5W790ry4cNSqkTxgAbfs3e/HDyULCVPPD7teIR7QOg4KEEJINwR7gj3BL35QzhthHsI0NJ3Qbh7BGhRd4S7RcmIUigI9yiBt2hahLtFyUC425sMHyJDuPsAMcaHQLjHeAJ9CB/h7gPEf4dQcd66y1BZsep385WK5UrJ1JE9pFzpEllO8vfGrfJYvzHy4y9/mO+fVL60DOreRi45/wxBuPuXF0aKPwIId4Q7wj3+7utwnRHC3SNZhLtHgBZ1R7hblIwohYJwjxJ4i6ZFuFuUDIS7vcnwITKEuw8QY3wIhHuMJ9CH8BHuPkD8d4hh496U6XMWy9uTBkiRwoWkaft+UrlSeRkzuHOWk7R6dIjs2PWPTBvbW/LkzSOder4gm7bskJkT+yPc/UsLI8UhAYQ7wh3hHoc3dphOCeHuESzC3SNAi7oj3C1KRpRCQbhHCbxF0yLcLUoGwt3eZPgQGcLdB4gxPgTCPcYT6EP4CHcfIP47RI0mnaVOjarStX1T85WZ85ZI76GTZeVHUyQpKSnTRHXuflwqVSwr44c8Zr43dfpCGTl5lny1YDzC3b+0MFIcEkC4I9wR7nF4Y4fplBDuHsEi3D0CtKg7wt2iZEQpFIR7lMBbNC3C3aJkINztTYYPkSHcfYAY40Mg3GM8gT6Ej3D3AeK/Q1xU837p+1gLaVz3OvOV5StWS/OHnpJPZ4+UE4sXyzTR3PeXSrenxsvF550udzW6UQaNfFXa3t1AWtx5M8Ldv7QwUhwSQLgj3BHucXhjh+mUEO4ewSLcPQK0qDvC3aJkRCkUhHuUwFs0LcLdomQg3O1Nhg+RIdx9gBjjQyDcYzyBPoSPcPcBojNEamqqXHBDSxnaq73UrVnVDLpq9Z9ye5s+suC1Ic5K9jKZJlrz1wa5+8GBcvopFeW7H3+VvHnzymujnpTzzjrVCHcaBCCQNYEN+/bJ9b+9I78f3h0XiGafVEfqlT4lqHOZvuk3abb+/aD62HrwpQVKy0dn3ipF8h0XcIjbDhyQ6r/NllWHdgTcx+YDp1esLY3KVM4yxLx5Mn9CyuZzsS02hLvHjCDcPQK0qDvC3aJkRCkUhHuUwFs0LcLdomRkCGXX3mTZe+BwUAHmXb5ECkwYEFQfDo4MAYR7ZDjbPAvC3ebsRCY2hLt/nHWFe78uLaVRnWpmUHeF+2ezR8kJxYtmmkhL0NxY7T/So9M9suufvfJI75Hyv+9/keXvTXBK0OSRrbsO+hccI0EgjgjsOHxQ6q2fGzfCfUa52nJt4QpBZej9vWul+aYPgupj68Eq3N+pUFfyOz/3Am17jiRLg/Xz4ka4v1G2ltxQ5KQsT7/siQUDxcJxWRBAuHu8LBDuHgFa1B3hblEyohQKwj1K4C2aFuFuUTIyhIJwtzc3oUSGcA+FWnz1QbjHVz5DORuEeyjUsu6jAr1uzSulS7s7zQEz5n4sfYZNybKG++49++Sq+h3k6R5tpcFNV5vjl6/4xSlBM0jeHN9Hzj3zVNm044B/wTESBOKIACVlKClDSZk4uqHDfCoId4+AEe4eAVrUHeFuUTKiFArCPUrgLZoW4W5RMhDu9ibDh8gQ7j5AjPEhEO4xnkAfwke4+wDx3yGGjp1mJPusSQOkSKGC0qxDf6lcqbyMGdzZHDFiwgxZuPhLU2JGW9V67aViuVIyYVhXKVqkkPQeMlk+/3qlfDRzhFnhjnD3LzeMFF8EEO4Id4R7fN3T4TwbhLtHugh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkId3uT4UNkCHcfIMb4EAj3GE+gD+Ej3H2A+O8Qe/bul1aPDpGVP68xXylfpoS8Mqqn+a+27oMmyLxFS+X7RZPNv79ZuVqGjpnm1G//zanfnkfOPr2SdOvYTC67+Gw2TfUvLYwUhwQQ7gh3hHsc3thhOiWEu0ewCHePAC3qjnC3KBlRCgXhHiXwFk2LcLcoGQh3e5PhQ2QIdx8gxvgQCPcYT6AP4SPcfYCYYYjtO/+RQ8nJUq70UdGeW9PyMsnJh6XkicenHaqbprLCPTdyfD9RCSDcEe4I90S9+4M/b4R78MyO6YFw9wjQou4Id4uSEaVQEO5RAm/RtAh3i5KBcLc3GT5EhnD3AWKMD4Fwj/EE+hA+wt0HiGEYAuEeBqgMGTcEEO4Id4R73NzOYT8RhLtHxAh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkId3uT4UNkCHcfIMb4EAj3GE+gD+Ej3H2AGIYhEO5hgMqQcUMA4Y5wR7jHze0c9hNBuHtEjHD3CNCi7gh3i5IRpVAQ7lECb9G0CHeLkoFwtzcZPkSGcPcBYowPgXCP8QT6ED7C3QeIYRgC4R4GqAwZNwQQ7gh3hHvc3M5hPxGEu0fECHePAC3qjnC3KBlRCgXhHiXwFk2LcLcoGQh3e5PhQ2QIdx8gxvgQCPcYT6AP4SPcfYAYhiEQ7mGAypBxQwDhjnBHuMfN7Rz2E0lY4b5r915JPnxYSpUoHjDkQ4eSZf2mbVK+bEkpkD+f6YdwDxif9Qci3K1PUdgDRLiHHbH1EyDc7U3Rrr3JsvfA4aACzLt8iRSYMCCoPhwcGQII98hwtnkWhLvN2YlMbAj3yHAOdhaEe7DEOD6RCCDcEe4I90S6472da8IJ9z1790vrLkNlxarfDbmK5UrJ1JE9ctzJ/Zff18kjvUfKn+s2mT4Pt75N2t7TAOHu7dqzrjfC3bqURDwghHvEkVs3IcLdupSkBYRwtzc3oUSGcA+FWnz1QbjHVz5DORuEeyjUwt8H4R5+xswQuwQQ7gh3hHvs3r+RjjzhhPuwcW/K9DmL5e1JA6RI4ULStH0/qVypvIwZ3DlL9n9v3Co3Ne0iV1Q5R1rfVV+qXHCG7Nt/MG1lPCvcI33Jhm8+hHv42MbKyAj3WMlU+OJEuIePrdeREe5eCdrVH+FuVz6iEQ3CPRrU7ZoT4W5XPtxoEO525oWo7CCAcEe4I9ztuBdjIYqEE+41mnSWOjWqStf2TU1+Zs5bIr2HTpaVH02RpKSkTDl7YtCLsnDxV/LVgnFyXN68mb6PcI+FyzywGBHugXGK56MQ7vGc3cDODeEeGKdoHIVwjwb18M2JcA8f21gZGeEeK5kKX5wI9/Cx9TIywt0LPfrGOwGEO8Id4R7vd7l/55dwwv2imvdL38daSOO61xmKy1esluYPPSWfzh4pJxYvlolstYYPmXrtZUqdKJu37pBzzjhFHu/YTCpVLGOORbj7dzFGeySEe7QzEP35Ee7Rz0G0I0C4RzsD2c+PcLc3N6FEhnAPhVp89UG4x1c+QzkbhHso1MLfB+EefsbMELsEEO4Id4R77N6/kY48oYR7amqqXHBDSxnaq73UrVnVsF61+k+5vU0fWfDakDSJnj4J51dvIaefWlGaNawh+R0TM/bld2TfgYOyeMYIye+I+H/2B7eB2+5/jsgLY0W2bc+8mj7SyWe+YwmocH+4gzgvXvKEFc2+fUdk5ItJsnFjWKdh8BAIqHDv/OARp2RU5k+zhDBctl0OJafKqBdTZe1afg74ydWPsVS4P9YpVcqWDu7nQOECeSVvHvLpRw6yGwPhHk66kR8b4R555rbNiHC3LSORjwfhHnnmgcyIcA+EEsckKgGEO8Id4Z6od3/w551Qwl3x6Ar3fl1aSqM61Qwtd4X7Z7NHyQnFi2YiqMJ9UPc2cmvta8z3Vq9ZJw1b9pRpY3vLheeeJv/sSw6K+u5/UuWFcQj3oKBF6GAj3NurcA+vNNu3X4V7HoR7hPIazDRGuHdU4R6cbA1mDj3WCPcJgnAPFlwEjj8q3I9I2VLBXQOFCx6HcA9zfhDuYQYc4eER7hEGbuF0CHcLkxLhkBDuEQYe4HQI9wBBcVhCEkC4I9wR7gl564d00gkn3LWGe92aV0qXdncaYDPmfix9hk3Jtoa7Hn/LTdfII21uN8f/+Msf0qRtX3n5+e5y2cVnU1ImpMvOzk6UlLEzL5GMipIykaRt51yUlLEzLxoVwt3e3IQSGcI9FGrx1QfhHl/5DOVsEO6hUAt/H4R7+BkzQ+wSQLgj3BHusXv/RjryhBPuQ8dOM5J91qQBUqRQQWnWob9UrlRexgzubNiPmDDD2ST1S1Nixv33y9MXysyJ/aV4sSLSZ+gU+ezrlfKZU/O9sNOfGu6RvmTDNx/CPXxsY2VkhHusZCp8cSLcw8fW68gId68E7eqPcLcrH9GIBuEeDep2zYlwtysfbjQIdzvzQlR2EEC4I9wR7nbci7EQRcIJ9z1790urR4fIyp/XmPyUL1NCXhnV0/xXW/dBE2TeoqXy/aLJ5t8HDyVLu27D5ctvfjL/LlyogIwe1FmuqHKO+TfCPRYu88BiRLgHximej0K4x3N2Azs3hHtgnKJxFMI9GtTDNyfCPXxsY2VkhHusZCp8cSLcw8fWy8gIdy/06BvvBBDuCHeEe7zf5f6dX8IJdxfd9p3/OHWUk6Vc6aOiPbe2c9ce2b1nn5xcobQkJf1/jW+Ee27kYuf7CPfYyVW4IkW4h4ts7IyLcLc3Vwh3e3MTSmQI91CoxVcfhHt85TOUs0G4h0It/H0Q7uFnzAyxSwDhjnBHuMfu/RvpyBNWuPsFGuHuF8noj4Nwj34Ooh0Bwj3aGYj+/Aj36OcguwgQ7vbmJpTIEO6hUIuvPgj3+MpnKGeDcA+FWvj7INzDz5gZYpcAwh3hjnCP3fs30pEj3D0SR7h7BGhRd4S7RcmIUigI9yiBt2hahLtFycgQCsLd3tyEEhnCPRRq8dUH4R5f+QzlbBDuoVALfx+Ee/gZM0PsEkC4I9wR7rF7/0Y6coS7R+IId48ALeqOcLcoGVEKBeEeJfAWTYtwtygZCHd7k+FDZAh3HyDG+BAI9xhPoA/hI9x9gBiGIRDuYYDKkHFDAOGOcEe4x83tHPYTQbh7RIxw9wjQou4Id4uSEaVQEO5RAm/RtAh3/5Nx5EiqrN+0Vco6e6bkOy5vwBNs3rrTHFum1Anmv6xwDxhdTByIcI+JNIU1SIR7WPHGxOAIdzvThHC3My9EZQcBhDvCHeFux70YC1Eg3D1mCeHuEaBF3RHuFiUjSqEg3KME3qJpEe7+JmPBh8uk21PjJSXliBm4c9sm0vquetlOonJ++Lg35fV3FsmhQ8mSN28e+X7RZIS7v2mxYjSEuxVpiGoQCPeo4rdicoS7FWnIFATC3c68EJUdBBDuCHeEux33YixEgXD3mCWEu0eAFnVHuFuUjCiFgnCPEniLpkW4+5eMffsPyJX1OxjB3v6+hjLvg6Xy5NMTZe7UwVK5UvksJ+r5zCSZt+gLaXN3fWlS/3o56Ej3k8qXRrj7lxZrRkK4W5OKqAWCcI8aemsmRrhbk4pjAkG425kXorKDAMId4Y5wt+NejIUoEO4es4Rw9wjQou4Id4uSEaVQEO5RAm/RtAh3/5Ixf9Ey6TpgrCx/b4IUyJ/PDHz1LR3lnsa1pEOLhpkm2rBpm9x452PyeMdmcl+T2pm+T0kZ/3Jjw0gIdxuyEN0YEO7R5W/D7Ah3G7KQOQaEu515ISo7CCDcEe4IdzvuxViIAuHuMUsId48ALeqOcLcoGVEKBeEeJfAWTYtw9y8ZE1+fJ5OnzZfP3x2dNmjT9v3ljFMrysBurTJNNHvhZ9Jj8ASpdd1l8svvayW/k4wmDa6Xux1Brw3h7l9ubBgJ4W5DFqIbA8I9uvxtmB3hbkMWEO52ZoGobCWAcEe4I9xtvTvtiwvh7jEnCHePAC3qjnC3KBlRCgXhHiXwFk2LcPcvGcOcWuzznfIwH05/Lm3Qlp2flqJFCsvIgZ0yTTTm5dkyesrb0vz2m+SCsyvLyp/XyCsz3pPene+VO2+tIQeTj8hxeZOCCnDn4vcl77j+QfXh4MgQOPLwYCl+1bVhn2zXJx9JntG9wz4PEwRP4EjHAVK8WvXgOwbZY9fSTyXP892D7MXhkSCQ0q63nFD96EvVQNvhlFQpkC9PoIdzXAgEWOEeAjS6JAwBhDvCHeGeMLe75xNFuHtEiHD3CNCi7gh3i5IRpVAQ7lECb9G0CHf/khHsCncV7m+8/YF88s7ItCDadBkm+w8clFdHPSm79yXL/kMpQQWY9PXHkv/FAUH14eDIEDj04FOSelHVsE+WtPwzyT+uT9jnYYLgCRxq309Sq1wTfMcgeyR9v0zyOz9DaPYRONS2l6Redn1QgRXKn1eOL3y0TBktPAQQ7uHhyqjxQQDhjnBHuMfHvRyJs0C4e6SMcPcI0KLuCHeLkhGlUBDuUQJv0bQId/+SkVUN96r12pv67FnVcF/w4TLp0n+sfPv+RMmX7zgTyH3OKugDBw7Jm+P7UFLGv9RYMRIlZaxIQ1SDoKRMVPFbMTklZaxIQ6YgEO525oWo7CCAcEe4I9ztuBdjIQqEu8csIdw9ArSoO8LdomREKRSEe5TAWzQtwt2/ZOzbf0Aur9NO2t7TQDrcd6vMef9z6TVkssydOlgqVyovO3ftkVtbPikdWzaSOxpUl12790q1Rg/JbXWvkycfaS7Llq+Stl2HSadWt8kDzRsg3P1LjRUjIdytSENUg0C4RxW/FZMj3K1IA8LdzjQQlaUEEO4Id4S7pTenhWEh3D0mBeHuEaBF3RHuFiUjSqEg3KME3qJpEe7+JmPuB0ul28DxaYM+3Po2I+C1bduxW65r1ClNqOvXFn2yXDr3HSUpKUfMMbWrXyFDej3g1G7Pi3D3NzVRHw3hHvUURD0AhHvUUxD1ABDuUU9BlgGwwt3OvBCVHQQQ7gh3hLsd92IsRIFw95glhLtHgBZ1R7hblIwohYJwjxJ4i6ZFuPufDJXna9dvlgplS0r+/LnX3T2ckiLr1m+RUiWKOxusFkoLaNfeZNl74HBQAeZdvkQKTKCGe1DQInQwwj1CoC2eBuFucXIiFBrC3X/Q+mmx5MOHzTM00HboULKs37RNyjvP6QLOcxrhHig5jktEAgh3hDvCPRHv/NDOGeEeGre0Xgh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkZQkG425ubUCJDuIdCLb76INzjK5+hnA3CPRRqWffZs3e/tO4yVFas+t0cULFcKZk6soeUK10i20l++X2dPNJ7pPy5bpM5xv0UGsLdv7wwUvwRQLgj3BHu8Xdfh+uMEO4eySLcPQK0qDvC3aJkRCkUhHuUwFs0LcLdomQg3O1Nhg+RIdx9gBjjQyDcYzyBPoSPcPcB4r9DDBv3pkyfs1jenjRAihQuJE3b9zP7pYwZ3DnLSf7euFVuatpFrqhyjrS+q75UueAM2bf/oFkZj3D3Ly+MFH8EEO4Id4R7/N3X4TojhLtHsgh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkId3uT4UNkCHcfIMb4EAj3GE+gD+Ej3H2A+O8QNZp0ljo1qkrX9k3NV2bOWyK9h06WlR9NkaSkpEwTPTHoRVm4+Cv5asE4s09K+oZw9y8vjBR/BBDuCHeEe/zd1+E6I4S7R7IId48ALeqOcLcoGVEKBeEeJfAWTYtwtygZCHd7k+FDZAh3HyDG+BAI9xhPoA/hI9x9gPjvEBfVvF/6PtZCGte9znxl+YrV0vyhp+TT2SPlxOLFMk1UreFDpl57mVInyuatO+ScM06Rxzs2k0oVy7DC3b+0MFIcEkC4I9wR7nF4Y4fplBDuHsEi3D0CtKg7wt2iZEQpFIR7lMBbNC3C3aJkINztTYYPkSHcfYAY40Mg3GM8gT6Ej3D3AaIzRGpqqlxwQ0sZ2qu91K1Z1Qy6avWfcnubPrLgtSFGomds51dvIaefWlGaNawh+Z1ffsa+/I7sO3BQFs8YIXmPO0503xQaBCCQmcC25ANy89o58vvh3XGBZ2b5m6V6sYpBncuC3X/KPRs/CKqPrQdfWqC0zD25nhTIc+wnfXKKd/fhQ1J33VxZdWiHracVVFzTyt0ktY4/Ocs+JYrlD2osDj6WAMLd4xWBcPcI0KLuCHeLkhGlUBDuUQJv0bQId4uSkSEUNk21NzehRIZwD4VafPVBuMdXPkM5G4R7KNSy7qMr3Pt1aSmN6lQzB7gr3D+bPUpOKF40UycV7oO6t5Fba19jvrd6zTpp2LKnTBvbW847u7IkHz7iX3CMBIE4IrDpwH6psWZ23Aj3tyvWkZtLZC1bs0vb21vXyF0b3o+LrKpwf/+0BlLYedEYaNt+6KDcuObduBHub1WoLQ1KnpLl6RfMH/iLiED5JdJxCHeP2Ua4ewRoUXeEu0XJiFIoCPcogbdoWoS7RcnIEArC3d7chBIZwj0UavHVB+EeX/kM5WwQ7qFQy7qP1nCvW/NK6dLuTnPAjLkfS59hU7Kt4a7H33LTNfJIm9vN8T/+8oc0adtXXn6+u1S58CzZtOOAf8ExEgTiiAAlZSgpQ0mZOLqhw3wqCHePgBHuHgFa1B3hblEyohQKwj1K4C2aFuFuUTIQ7vYmw4fIEO4+QIzxIRDuMZ5AH8JHuPsA8d8hho6dZiT7rEkDpEihgtKsQ3+pXKm8jBnc2RwxYsIMZ5PUL02JGfffL09fKDMn9pfixYpIn6FT5LOvV8pnTs33AgUKINz9Sw0jxRkBhDvCHeEeZzd1GE8H4e4RLsLdI0CLuiPcLUpGlEJBuEcJvEXTItwtSgbC3d5k+BAZwt0HiDE+BMI9xhPoQ/gIdx8g/jvEnr37pdWjQ2Tlz2vMV8qXKSGvjOpp/qut+6AJMm/RUvl+0WTz74OHkqVdt+Hy5Tc/mX8XLlRARg/qLFdUOYdNU/1LCyPFIQGEO8Id4R6HN3aYTgnh7hEswt0jQIu6I9wtSkaUQkG4Rwm8RdMi3C1KRoZQKCljb25CiQzhHgq1+OqDcI+vfIZyNgj3UKjl3Gf7zn/kUHKylCt9VLTn1nbu2iO79+yTkyuUlqSkJHN4ypFUVrjnBo7vJywBhDvCHeGesLd/0CeOcA8a2bEdEO4eAVrUHeFuUTKiFArCPUrgLZoW4W5RMhDu9ibDh8gQ7j5AjPEhEO4xnkAfwke4+wAxDEPkJNz3pCbLwdSUMMwa+SGTJElK5CkQ1MTJqUdkd+qhoPrYfHD+pLxSLClfUCHG0zUgzjVQMshrAOGOcEe4B/UjI6EPRrh7TD/C3SNAi7oj3C1KRpRCQbhHCbxF0yLcLUoGwt3eZPgQGcLdB4gxPgTCPcYT6EP4CHcfIIZhiJyE+wf71skT25eGYdbID1m9UEUZVvLqoCbemnJA7t30vmw+Eh+byo4uVU2qFiwXFIPF+/+WLts+D6qPrQdfUaCMjCl9fVDhIdwR7gj3oG6ZhD4Y4e4x/Qh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkId3uT4UNkCHcfIMb4EAj3GE+gD+Ej3H2AGIYhchLuc/f+IQ9sWRyGWSM/ZJ0ip8jE0jcENbEK95vXvysbUvYF1c/Wg2eVuzlo4b5w319y/+YPbT2loOK6tmB5ebNc7aD6INwR7gj3oG6ZhD4Y4e4x/Qh3jwAt6o5wtygZUQoF4R4l8BZNi3C3KBkId3uT4UNkCHcfIMb4EAj3GE+gD+Ej3H2AGIYhEO7ZQ0W4iyDcD0mD9XPl98O7w3D3RX7I6c4Lh6udFw/BtEX71sq9mxcF08XaYy8tUFpmlasj+ZLyBBwjwj1gVAl/IMLd4yWAcPcI0KLuCHeLkhGlUBDuUQJv0bQId4uSgXC3Nxk+RIZw9wFijA+BcI/xBPoQPsLdB4hhGALhjnDP6bJCuCPcEe7JcuuG+bLq0I4w/ASO/JCvl60l1zsltrJqFUoWinxAcTQjwt1jMhHuHgFa1B3hblEyohQKwj1K4C2aFuFuUTIQ7vYmw4fIEO4+QIzxIRDuMZ5AH8JHuPsAMQxDINwR7gj37AlQUoaSMqxwD8ODJ06HRLh7TCzC3SNAi7oj3C1KRpRCQbhHCbxF0yLcLUoGwt3eZPgQGcLdB4gxPgTCPcYT6EP4CHcfIIZhCIQ7wh3hjnDP6RpghTsr3MPw6InLIRHuHtOKcPcI0KLuCHeLkhGlUBDuUQJv0bQId4uSgXC3Nxk+RIZw9wFijA+BcI/xBPoQPsLdB4hhGALhjnBHuCPcEe7ZE2CFexgePHE6JMLdY2IR7h4BWtQd4W5RMqIUCsI9SuAtmhbhblEyEO72JsOHyBDuPkCM8SEQ7jGeQB/CR7j7ADEMQyDcEe4Id4Q7wh3hrgSo4e7tIYtw98ZPEO4eAVrUHeFuUTKiFArCPUrgLZoW4W5RMhDu9ibDh8gQ7j5AjPEhEO4xnkAfwke4+wAxDEMg3BHuCHeEO8Id4Y5w9/6ARbh7ZIhw9wjQou4Id4uSEaVQEO5RAm/RtAh3i5KBcLc3GT5EhnD3AWKMD4Fwj/EE+hA+wt0HiGEYAuGOcEe4I9wR7gh3hLv3ByzC3SNDhLtHgBZ1R7hblIwohYJwjxJ4i6ZFuFuUDIS7vcnwITKEuw8QY3wIhHuMJ9CH8BHuPkAMwxAId4Q7wh3hjnBHuCPcvT9gEe4eGSLcPQK0qDvC3aJkRCkUhHuUwFs0LcLdomQg3O1Nhg+RIdx9gBjjQyDcYzyBPoSPcPcBYhiGQLgj3BHuCHeEO8Id4e79AZuwwn3X7r2SfPiwlCpR3BNFhLsnfFZ1RrhblY6oBINwjwp2qyZgAHTPAAAgAElEQVRFuFuVjmOC2bU3WfYeOBxUgHmXL5ECEwYE1YeDI0MA4R4ZzjbPgnC3OTuRiQ3hHhnOwc6CcEe4I9wR7gh3hDvCPdinZ+bjE06479m7X1p3GSorVv1uaFQsV0qmjuwh5UqXyJVmryGTZdb8JfLZ7FFyQvGi5niEe67YYuYAhHvMpCpsgSLcw4Y2ZgZGuNubKoS7vbkJJTKEeyjU4qsPwj2+8hnK2SDcQ6EW/j4Id4Q7wh3hjnBHuCPcvT9vE064Dxv3pkyfs1jenjRAihQuJE3b95PKlcrLmMGdc6Q5dfpCeWb0G+YYhLv3C8/GERDuNmYlsjEh3CPL28bZEO42ZuVoTAh3e3MTSmQI91CoxVcfhHt85TOUs0G4h0It/H0Q7gh3hDvCHeGOcEe4e3/eJpxwr9Gks9SpUVW6tm9q6M2ct0R6D50sKz+aIklJSVkSXfLFd/Lgk89Lr873St9hLyHcvV93Vo6AcLcyLRENCuEeUdxWToZwtzItCHd70xJyZAj3kNHFTUeEe9ykMuQTQbiHjC6sHRHuCHeEO8Id4Y5wR7h7f9QmnHC/qOb90vexFtK47nWG3vIVq6X5Q0/Jp7NHyonFi2UiunrNOrmtdW8Z3qeDKT/TpG1fhLv3687KERDuVqYlokEh3COK28rJEO5WpgXhbm9aQo4M4R4yurjpiHCPm1SGfCII95DRhbUjwh3hjnBHuCPcEe4Id++P2oQS7qmpqXLBDS1laK/2UrdmVUNv1eo/5fY2fWTBa0OkUsUyxxDdtmO31L2nm9zftK480LyB/PjLH5mE++GUI0FlYfvOIzJ81BHZtj3r1fRBDcbBvhJQ4d7loTxSukQeX8fNONg/e1Nk+GiRjRvDOg2Dh0BAhXvXh1OlfOnjQugdeJcDB52fA2OOyNq1/BwInFpkjlTh3u2RVDmpfHDXgH5CKm8e8hnOLFFSJpx0Iz82wj3yzG2bEeFuW0YiHw/CPfLMA5kR4Z49pa0pB+Tm9e/KhpR9gaC0/phZ5W6WqgXLBRXnwn1/yf2bPwyqj60HX1uwvLxZrnZQ4e08ckgarJ8rvx/eHVQ/Ww+e7pz/1Q6HYNqifWvl3s2Lguli7bGXFigts8rVkXxJgTugvanJcuuG+bLq0A5rzyuYwF4vW0uuL1Qxyy4VShYKZiiOzUAgoYS7nruucO/XpaU0qlPNoHBXuKevy+4ymjH3Y+kzbIrUv/Eq86WtO3bJF//7UWpWu1Ra3llHqlxwpmzeeTCoi2rf3lQZOzEPwj0oapE5WIV7h7apUuzofrhhawcPpsr4yXkR7mEjHPrAKtwfbJfibIocXnGakiLy4pQkhHvoqQpbTxXuD3dMkRInBncNlDw+P8I9bFk5OjDCPcyAIzw8wj3CwC2cDuFuYVIiHBLCPcLAA5wO4Z49KIS7CMId4Y5wR7gH+DhJ+MMSTrhrDfe6Na+ULu3uNMl3pXpWNdx19fvcD5amXSRbtu6UeYu+kKa31pDb618v5555iqzftj+oi2j//iR5cRLCPShoETqYkjIRAm3xNJSUsTg5EQqNkjIRAh3CNAj3EKBZ3AXhbnFyIhQawj1CoC2eBuFuZ3IQ7gj3nK5MhDvCHeGOcLfz6WVfVAkn3IeOnWYk+6xJA6RIoYLSrEN/qVypvIwZ3NlkZ8SEGbJw8ZemxEzGllVJGYS7fRd1qBEh3EMlFz/9EO7xk8tQzwThHiq58PdDuIefcSRnQLhHkradcyHc7cxLJKNCuEeSduBzIdwR7gj37AlQUkYE4Y5wD/yJkthHJpxw37N3v7R6dIis/HmNyXz5MiXklVE9zX+1dR80wVnFvlS+XzQZ4Z5g9wbCPcESnsXpIty5BhDu/l8DR46kyvpNW6Vs6RKS77i8IU+AcA8ZnZUdEe5WpiWiQSHcI4rbyskQ7lamRRDuCHeEO8I9p2sA4Y5wt/PpZV9UCSfc3RRs3/mPHEpOlnKOAPDSWOHuhZ5dfRHuduUjGtEg3KNB3a45Ee7+5mPBh8uk21PjJeXfDcY7t20ire+ql+skf6zdKLe06CG33HSNDOzWyhyPcM8VW0wdgHCPqXSFJViEe1iwxtSgCHc704VwR7gj3BHuCPfsCbBpqp3PLhujSljh7lcyEO5+kYz+OAj36Ocg2hEg3KOdgejPj3D3Lwf79h+QK+t3MIK9/X0NZZ6zJ8qTT0+UuVMHm1Ju2bVdu/dK/XufEH0xrhucI9z9y4lNIyHcbcpGdGJBuEeHu02zItxtysb/x4JwR7gj3BHuCHeEuxKoULKQnQ+qGIkK4e4xUQh3jwAt6o5wtygZUQoF4R4l8BZNi3D3LxnzFy2TrgPGyvL3JkiB/PnMwFff0lHuaVxLOrRomOVEyYdTpGm7flKhXCnZ/c9eOblCGYS7fymxaiSEu1XpiEowCPeoYLdqUoS7VelICwbhjnBHuCPcEe4Id4S792c0wt0jQ4S7R4AWdUe4W5SMKIWCcI8SeIumRbj7l4yJr8+TydPmy+fvjk4btGn7/nLGqRXTJHrG2R7rN0ZWr/lbZk7oJ627DEW4+5cO60ZCuFuXkogHhHCPOHLrJkS4W5cSExDCHeGOcEe4I9wR7gh3789ohLtHhgh3jwAt6o5wtygZUQoF4R4l8BZNi3D3LxnDxr0p8xd9IR9Ofy5t0Jadn5aiRQrLyIGdMk00dupseenN/8qC14ZIiROKyX0PDz5GuB84dESSkoKLb8+SDyTv+P7BdeLoiBBI6TRIila9Nuxz7flsseQd0zvs8zBB8ARSOvaXoldXD75jkD3+j73zAK+i2trwR+/Su4KAoiiioIgiHem9Su+99957Cb33LiAdAojSQZqKIlxREZAiSC/Sk8Dda3OTGyAJOTlzMntOvv0/97n/JTN71rxrcibnnT1r3Tm4FzEm9nJxL24eGQQCmvdDwgKfu3SoJ0+eIG7siDfgdulgUXRjCvfQE3814AFKXliPiwH3vOLqWJ2mJPLETePSuWy5dxaNLm93aR9TN84XNy2WpynhUng3Hz9CuQu+OOV/26X9TN14hTr/vIqDK4NNU9k01ZXrJSpvS+HuZvYp3N0EaNDuFO4GJcOmUCjcbQJv0GEp3K1Lhqsr3POUaYn0qpTMm5le1UHs3P8z4saJjTJFP0G31jXx731/1ez8sUsBPj60A7FmDnZpH24cOQT82gxD9A8+8fjBHv+4B7Gm9ff4cXgA1wn4qTdeon/o+Ycuj38+gFiTKdxdz5Dn9/Br1hfRPy7s0oFix4qORPFiurQPN3aNAIV76Lwo3AEKdwp3CncKd9fuKlF3awp3N3NP4e4mQIN2p3A3KBk2hULhbhN4gw5L4W5dMkKq4S5SvX61EiHWcBdBf+PWv0EBrN/ynVoNHw9VyhTUjVdv3fXD3Qf+LgUY4/BuxJlF4e4StEjamCVlIgm0wYdhSRmDkxNJobGkjPWgpfG4n78/UiRLHOHJKdwp3MO6eCjcKdwp3CncI3yDiWI7Uri7mXAKdzcBGrQ7hbtBybApFAp3m8AbdFgKd+uSce/+A+Qu1QLN6pRDq/oVsOHbfeg7ai58Fw5HpgxpcfPWHVRo2ButG1ZC9XKFXjjw8yVlKNyty40JM1G4m5AFe2OgcLeXvwlHp3C3Lgt37t7XvU+OHj+lJ5U3xhZO6oU0KZO99CByb169aTe+WzcZSRInZA33MIhxhTtXuLOkDEDhTuH+0hsLN9AEKNzdvBAo3N0EaNDuFO4GJcOmUCjcbQJv0GEp3K1Nhu/W/eg+ZEbQpO2bVNECXsa1G7dRoFI7tGtcBc3rPv234IPC3dpcmDYbhbtpGYn8eCjcI5+5aUekcLcuI9I3ZcWGnVgzZzASxI+HGi0H6ofbU4d3DPMgC1dswcgpS/U2FO4vzweFO4U7hTuF+90nFO4v/7TkFkKAwt3N64DC3U2ABu1O4W5QMmwKhcLdJvAGHZbC3fpkBAQ8xrkLl5EudXLEjh0rwgfgCvcIozNyRwp3I9MSqUFRuEcqbiMPRuFuXVqKVOuIUkXyoGvLGnrSVRt3o9/ouTi2Y55qOB5yx/HdB46gTe8J6NuxHgb4zKdwD0c6KNwp3CncKdwp3MPxYclNNAEKdzcvBAp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5LxXCgU7ubmJiKRUbhHhJp37UPh7l35jMjZULhHhFrI++Qo2ggDOjdA5dIF9AaHj55A3bZDsXfdJCRNnOiFnU6cPo8qTfphTP9WuvxMtWYDKNzDkQ4Kdwp3CncKdwr3cHxYchMKdyuuAQp3KyiaMQeFuxl5sDMKCnc76ZtxbAp3M/IQUhQU7ubmJiKRUbhHhJp37UPh7l35jMjZULhHhNqL+zx58gTZCzfE6L4tUbpoHr3B8RNnULVpf2xeMgoZ0qd6Zicp6Va6Tnc0qlFal3T79Y+/XhDufv6PQwxuyeUTaHJphzWB2zxL6QQZsTxjMcSMET3ckZy/fxcFTq/BxYB74d7H5A03pC+Nz5O96lKIX105ifr/bHNpH1M3zhc3LTZnLuPSNXDpwX0UOb0Op/xvm3paLsW1Jn0plEz2mmv7XD2NWhe/dWkfUzfOFSclvs1cDvFjxgx3iNcfPcTnp9fj+KMb4d7H5A2/SlcC5ZJnDDHEuLFjmBy68bFxhbubKaJwdxOgQbtTuBuUDJtCoXC3CbxBh6VwNygZz4VC4W5ubiISGYV7RKh51z4U7t6Vz4icDYV7RKiFvI+scB/YpSEqlcqvNwhc4R5Ylz34Xit9d6G/zzyU/fxT/c9Xb9zCgR9/RdH8udDwi1LI8c4bkHtuSGP1zZNoenmndYHbOJMI9wVpiyJ69JBL7oQU2j+P7uHzc+u8RrivTVsK+ROlcykL62+dRsNL213ax9SNRbivea0UoodSdimkuK/5PUDJcxu8RrivSlsShRKldylFm2+fQZ1/trq0j6kbi3D3fa0M4kQPv1i+7f8Ipc/7eo1wX5amOIq9EvJDl2SJYpuaOkfEReHuZpoo3N0EaNDuFO4GJcOmUCjcbQJv0GEp3A1KxnOhULibm5uIREbhHhFq3rUPhbt35TMiZ0PhHhFqIe8jNdxLF/0EXVp8oTcIlOoh1XCX1e/S1DxwXLl6Exu3HUCNCkVQtWxBZM2SAZduPAjxQL53/0LzKzutC9zGmUop4T47ZWGXImBJGZaUYUkZlpRhSRmXPjaj9MYU7m6mn8LdTYAG7U7hblAybAqFwt0m8AYdlsLdoGRQuJubDAsio3C3AKLDp6Bwd3gCLQifwt0CiP+bYvS0ZVqyr54zGAnixUXNVoOQKUNaTB3eUW8xftZKbNl5SJeYeX6EVFKGwj3k3FC4U7hTuFO4U7hbd+/y9pko3N3MMIW7mwAN2p3C3aBk2BQKhbtN4A06LIW7QcmgcDc3GRZERuFuAUSHT0Hh7vAEWhA+hbsFEP83xZ2799G40ygc+/20/pe0qZJh0eQ++r9l9Bw2S61i349fts2lcP8fAa5wB1anKYk8cdO4dCFuuXcWjS57T0mZ5WlKuHT+FO4U7hTuLv3KROmNKdzdTD+Fu5sADdqdwt2gZNgUCoW7TeANOiyFu0HJoHA3NxkWREbhbgFEh09B4e7wBFoQPoW7BRCfm+L6zX/xyM8PaVI+Fe0RGQGPn7CkTCjguMKdK9wp3CncKdwjcmeJmvtQuLuZdwp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5JB4W5uMiyIjMLdAogOn4LC3eEJtCB8CncLIHpgCgr30KFSuFO4U7hTuFO4e+DG46VTUri7mVgKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwr3sC4rlpR5hHIXfHHK/7YHfvsif8oVqqRO3rhpXTrwtnvnUO/yNpf2MXXjXHFSqtJKpRArWvRwh0jhHm5UUX5DCnc3LwEKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwp3CvfQCXCFO1e4U7h74MbjpVNSuLuZWAp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5JB4W5uMiyIjMLdAogOn4LC3eEJtCB8CncLIHpgCgp3CncKdwr3sK4BrnD3Q4WLm3D80Q0PfAJH/pRfpi6GgvHSh3jgdMnjRX5AXnRECnc3k0nh7iZAg3ancDcoGTaFQuFuE3iDDkvhblAyKNzNTYYFkVG4WwDR4VNQuDs8gRaET+FuAUQPTEHhTuFO4U7hTuEeOgGucPfAjcdLp6RwdzOxFO5uAjRodwp3g5JhUygU7jaBN+iwFO4GJYPC3dxkWBAZhbsFEB0+BYW7wxNoQfgU7hZA9MAUFO4U7hTuFO4U7hTuQoAr3N27yVK4u8cPFO5uAjRodwp3g5JhUygU7jaBN+iwFO4GJYPC3dxkWBAZhbsFEB0+BYW7wxNoQfgU7hZA9MAUFO4U7hTuFO4U7hTuFO7u32Ap3N1kSOHuJkCDdqdwNygZNoVC4W4TeIMOS+FuUDIo3M1NhgWRUbhbANHhU1C4OzyBFoRP4W4BRA9MQeFO4U7hTuFO4U7hTuHu/g2Wwt1NhhTubgI0aHcKd4OSYVMoFO42gTfosBTuBiWDwt3cZFgQGYW7BRAdPgWFu8MTaEH4FO4WQPTAFBTuFO4U7hTuFO4U7hTu7t9gKdzdZEjh7iZAg3ancDcoGTaFQuFuE3iDDkvhblAyKNzNTYYFkVG4WwDR4VNQuDs8gRaET+FuAUQPTEHhTuFO4U7hTuFO4U7h7v4NlsLdTYYU7m4CNGh3CneDkmFTKBTuNoE36LAU7gYlg8Ld3GRYEBmFuwUQHT4FhbvDE2hB+BTuFkD0wBQU7hTuFO4U7hTuFO4U7u7fYCnc3WRI4e4mQIN2p3A3KBk2hULhbhN4gw5L4W5QMijczU2GBZFRuFsA0eFTULg7PIEWhE/hbgFED0xB4U7hTuFO4U7hTuFO4e7+DZbC3U2GFO5uAjRodwp3g5JhUygU7jaBN+iwFO4GJYPC3dxkWBAZhbsFEB0+BYW7wxNoQfgU7hZA9MAUFO4U7hTuFO4U7hTuFO7u32Ap3N1kSOHuJkCDdqdwNygZNoVC4W4TeIMOS+FuUDIo3M1NhgWRUbhbANHhU1C4OzyBFoRP4W4BRA9MQeFO4U7hTuFO4U7hTuHu/g2Wwt1NhhTubgI0aHcKd4OSYVMoFO42gTfosBTuBiWDwt3cZFgQGYW7BRAdPgWFu8MTaEH4FO4WQPTAFBTuFO4U7hTuFO4U7hTu7t9gKdzdZEjh7iZAg3ancDcoGTaFQuFuE3iDDkvhblAyKNzNTYYFkVG4WwDR4VNQuDs8gRaET+FuAUQPTEHhTuFO4U7hTuFO4U7h7v4NlsLdTYYU7m4CNGh3CneDkmFTKBTuNoE36LAU7gYlg8Ld3GRYEBmFuwUQHT4FhbvDE2hB+BTuFkD0wBQU7hTuFO4U7hTuFO4U7u7fYCnc3WRI4e4mQIN2p3A3KBk2hULhbhN4gw5L4W5QMijczU2GBZFRuFsA0eFTULg7PIEWhE/hbgFED0xB4U7hTuFO4U7hTuFO4e7+DZbC3U2GFO5uAjRodwp3g5JhUygU7jaBN+iwFO4GJYPC3dxkWBAZhbsFEB0+BYW7wxNoQfgU7hZA9MAUFO4U7hTuFO4U7hTuFO7u32Ap3N1kSOHuJkCDdqdwNygZNoVC4W4TeIMOS+FuUDIo3M1NhgWRUbhbANHhU1C4OzyBFoRP4W4BRA9MQeFO4U7hTuFO4U7hTuHu/g2Wwt1NhhTubgI0aHcKd4OSYVMoFO42gTfosBTuBiWDwt3cZFgQGYW7BRAdPgWFu8MTaEH4FO4WQPTAFBTuFO4U7hTuFO4U7hTu7t9go6xwv3X7Lvz8/ZEiWeKXUvTzD8DFS9eQMnkSxIsb+5ntKdxfis8xG1C4OyZVHguUwt1jaB0zMYW7uam6ddcPdx/4uxRgjMO7EWfWYJf24caRQ4DCPXI4m3wUCneTsxM5sVG4Rw5nV49C4U7hTuFO4U7hTuFO4e7q3fPF7aOccL9z9z6adBmNo8dPaRrp06TAwkm9kCZlshBpjp62DPOXfx30s1zvZcX4QW2QPOkr+t8o3N2/CE2ZgcLdlEzYFweFu33sTTkyhbspmXgxDgp3c3MTkcgo3CNCzbv2oXD3rnxG5Gwo3CNCzfP7ULhTuFO4U7hTuFO4U7i7f7+NcsLdZ/pyrNiwE2vmDEaC+PFQo+VAZMqQFlOHdwyR5pylm5A5Y1rkyZkNp85eRN22w1C/Wgl0aFqVwt3968+oGSjcjUqHLcFQuNuC3aiDUrgblY5ngqFwNzc3EYmMwj0i1LxrHwp378pnRM6Gwj0i1Dy/D4U7hTuFO4U7hTuFO4W7+/fbKCfci1TriFJF8qBryxqa3qqNu9Fv9Fwc2zEP0aJFeynRVj3H4fzFq1g/fyiF+0tpOWsDCndn5csT0VK4e4Kqs+akcDc3XxTu5uYmIpFRuEeEmnftQ+HuXfmMyNlQuEeEmuf3oXCncKdwp3CncKdwp3B3/34b5YR7jqKNMKBzA1QuXUDTO3z0hFq1PhR7101C0sSJwiTq5+ePvOVbo0ShjzGke2O97ZWbD13Kwt27TzBtdnRcu/5yue/SxNzYbQIi3Fs3e4JECd2eKswJHj58gulzY+Cffzx7HM7uOgER7m1bBCBJYs/+fqq2EJg5LxrOnfPscVwnwD1EuHdoHYBkSV3LTbJXYiNGdNf2iSq0Hz9+gguXriK1Kt0WK2aMl572jVv/4v79h0inSr4FHxTuL0XnqA0o3B2VLo8ES+HuEayOmpTC3cx0UbiHnperAQ9Q8sJ6XAy4Z2byXIxqdZqSyBM3jUt7bbl3Fo0ub3dpH1M3zhc3LZanKeFSeDcfP0K5C7445X/bpf1M3XiFOv+8ioMrY9u9c6h3eZsruxi7ba44KbE6TSnEihY93DHefeKHChc34fijG+Hex+QNv0xdDAXjpQ8xxHTJ45kcuvGxRSnh/uTJE2Qv3BCj+7ZE6aJ5dHKOnziDqk37Y/OSUciQPlWoCZN9W/caj72HjmLLUh+kTfW05rtfwGOXknz95mOMnfyYwt0lapGzsQj3zm2jI2Wy8H/YRiSyf+8GYOwUULhHBJ6H9xHh3rX9E9XTIaZHj/TgofocmPqYwt2jlCM2uQj37h2eIH1a166B6OoNKQr3F5lv3n4Q3YfOQMD/7pUdm1VDk1plQkzOP1euo3LjvpCm5jKSJUmElvUrolalovp/U7hH7Jo2dS8Kd1MzE3lxUbhHHmtTj0ThbmZmKNxDzwuFO0DhTuFO4U7hbubdy7yoopRwF/yywn1gl4aoVCq/zkbgCvfv1k1Wq1pDX9o8eNxCrPDdiXnjeuDDHFmDMsmmqeZd1BGNiCVlIkrOe/ZjSRnvyWVEz4QlZSJK7sX97t1/gE/KttKCXcT5xq370XvEbPguHK57pzw/Ll66hkUrv0Gtyp8jUYL4mDxvNZav34EDvlMRP15cCnfrUmPETBTuRqTB1iAo3G3Fb8TBKdyNSMMLQVC4U7iHdWVSuFO4U7hTuJt59zIvqign3KWGe+min6BLiy90Nlb67kJ/n3mh1nCXVXm9hs/C5h0HsWBCT+TM/uYzWaRwN++ijmhEFO4RJec9+1G4e08uI3omFO4RJffifpu2HUTXwdNw+JtZiBNbvTqghpRlq1O5GFo1qPjSA51WjcrL1uuJmaO74LPc2SncX0rMWRtQuDsrX56IlsLdE1SdNSeFu5n5onCncKdwD50AS8oAFO4U7mbevcyLKsoJ99HTlmnJvnrOYCRQK+ZqthqkV9pNHd5RZ2f8rJXYsvOQLjEjo0X3Mdhz8CjGDmiFNzK9GpTBDOlSIVasmKBwN++ijmhEFO4RJec9+1G4e08uI3omFO4RJffifrO/3Ii5yzZh33pVQ+t/o0bLQXjj9fRBfVDCOtqCFVswaspS7Fw1HimTJ6Fwty41RsxE4W5EGmwNgsLdVvxGHJzC3fo0SFk2P39/pEiW+KWT+6mmQvJ2mdxj48WNHbQ9hXvo6FhShiVlKNwp3FnD/aW3F27wPwJRTrjfuXsfjTuNwrHfT2sEUot90eQ+QTXZew6bhY3b9uOXbXP1z/OUaQnZ5/mxdt4QvKkEPIW79/wuUbh7Ty4jeiYU7hEl5z37Ubhbl0uf6cuxadsBbF8xLmjShh1HIKEqFzNpSLswDyT36FqtBqN6ucLo06Gu3vb+wwA8Uf/nyri3dztizhjkyi7cNpIIBLQbhni583r8aPf270bMqf08fhwewHUC/mrRS/xPC7i+o4t73P9+H2JM7OXiXtw8Mgj4N++H+PmKuHioaIgf5+UNuF2c1PGby/fVJl1G4+jxU/pc0qvG4wsn9VJ9iZ72HXt+yCK0+cu/DvrnXO9lxfhBbZA86SugcA/9cqBwp3CncKdwp3B3/C0z0k4gygn3QLLXb/6LR35+of4REt4MULiHl5T521G4m58jT0dI4e5pwubPT+FuXY4iusJdSslUbtIPH+V4C9NHdkKMGE8bWd954A//ANeEu9/+7Yg1c7B1J8WZLCPg13YYYuX61LL5QpvI79BuxJrW3+PH4QFcJ+CnhHus3E97Knly+B3ej1hKPHKYR8CvWV/E+tQ14R4zejQkjOdaY3Pzztz6iOQh94oNO7FG3uKOHw81Wg585i3u5484Z+kmZM6YFnlyZsMpdd+tqz6T61crgQ5Nq1K4h5EeCncKdwp3CncKd+vvYd46Y5QV7lYllMLdKpL2z0Phbn8O7I6Awt3uDNh/fAp363IQUg13eWtMvtCHVsNdVrbLl/78ed7DuAFtgmS7RHXrrh/uKunuyohxeDfizKJwd4VZZG3LkjKRRdrc47CkjLm5iYRIxmsAACAASURBVKzIWFLGOtLSp6xUkTzo2rKGnnTVxt3oN3puqH3Knj9yq57jcP7iVayfP5TCncI9zAuTTVPZNJU13FnD3bq7l3fPROHuZn4p3N0EaNDuFO4GJcOmUCjcbQJv0GEp3K1Lxr37D5C7VAs0q1MOrepXwIZv96HvqLnwXThcr7q7eesOKjTsjdYNK6nSMYX0a/BS4/3jnG+jT3tVRiZaNB1MIlWCJlUK1nC3LjNmzEThbkYe7IyCwt1O+mYcm8LdujzkKNoIAzo3QOXST8s0HT56Qj3AHoq96yYhaeJEYR7Iz89fNzUvUehj3WNFSspcvfUwxH3W/3saza7stC5wG2cqlSAj5qYqrP7cePr3RnjGlYAHKH5+HS4G3AvP5sZvsyZNKXwaP41LcW66cwaNLm93aR9TN84XNy1WpCuJ8F8BwA3/hyhzwRen/G+belouxbUyTQnki5/OpX2+vXsOdS9tdWkfUzfOFScl1qYrjdjRnr5RG55x57Efyl3YiOOPboRnc+O3WZq6GAon+H+/yuABp04a1/j4TQ6Qwt3N7FC4uwnQoN0p3A1Khk2hULjbBN6gw1K4W5sM36370X3IjKBJ2zepogW8jGs3bqNApXZo17gKmtcthxW+OzHAZ/4LAeT9KDtm+XThCndrU2P7bBTutqfA9gAo3G1Pge0BULhbk4InT54ge+GGGN23JUoXzaMnPX7iDKo27Y/NS0YhQ/pUoR5I9m3dazz2HjqKLUt9dF8zEe6hjQUXf0fjf3ZYE7jNs5RWwn1V5hKIFTP8ou3M3TvId3K11wh331dLo2TKDC5l4st/TqDexW0u7WPqxiLcv3mzHGK7cA1cvHcPBU+u9Rrhvu7VUiiTMqNLKVpx6SRqXvjWpX1M3ViE+443KyBBrPCXKrv24AEKnVznNcJ9RfoSqJQqU4gpiqHKuHFEnACFe8TZ6T0p3N0EaNDuFO4GJcOmUCjcbQJv0GEp3K1PRkDAY5y7cBnpUidH7NixInwAlpSJMDojd6RwNzItkRoUhXuk4jbyYBTu1qVFVrgP7NIQlUo97YsQuML9u3WTkSRxwlAPNHjcQv3Ae964HvgwR1a9HZumhp4X1nBnDXfWcGcNd9Zwt+7e5e0zUbi7mWEKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OS8VwoFO7m5iYikVG4R4Sad+1D4e5d+YzI2VC4R4RayPtIDffSRT9BlxZf6A1W+u5Cf595odZwl4fhvYbPwuYdB7FgQk/kzP5m0MQU7hTuYV2ZrOHOGu6s4c4a7tbdvbx7Jgp3N/NL4e4mQIN2p3A3KBk2hULhbhN4gw5L4W5QMijczU2GBZFRuFsA0eFTULg7PIEWhE/hbgHE/00xetoyLdlXzxmMBPHiomarQbpfytThHfUW42etxJadh3SJGRktuo/BnoNHMXZAK7yR6f+1ezOkS4XoMWLg0o0HIQbne/cvNPeiGu6zUxZ2KQlc4c4V7lzhzhXuXOHu0sdmlN6Ywt3N9FO4uwnQoN0p3A1Khk2hULjbBN6gw1K4G5QMCndzk2FBZBTuFkB0+BQU7g5PoAXhU7hbAPF/U9y5ex+NO43Csd9P63+RWuyLJvfR/y2j57BZ2LhtP37ZNlf/7zxlWkL2eX6snTcEmTOmp3APJTUU7hTuFO4U7hTu1t27vH0mCnc3M0zh7iZAg3ancDcoGTaFQuFuE3iDDkvhblAyKNzNTYYFkVG4WwDR4VNQuDs8gRaET+FuAcTnprh+81888vNDmpRPRXtEBkvKhE6Nwp3CncKdwp3CPSJ3lqi5D4W7m3mncHcToEG7U7gblAybQqFwtwm8QYelcDcoGRTu5ibDgsgo3C2A6PApKNwdnkALwqdwtwCiB6agcKdwD+uyYg131nBnDXfWcPfArccrp6RwdzOtFO5uAjRodwp3g5JhUygU7jaBN+iwFO4GJYPC3dxkWBAZhbsFEB0+BYW7wxNoQfgU7hZA9MAUFO4U7hTuoRPgCneucOcKdw/ceLx0Sgp3NxNL4e4mQIN2p3A3KBk2hULhbhN4gw5L4W5QMijczU2GBZFRuFsA0eFTULg7PIEWhE/hbgFED0xB4U7hTuFO4R7WNcAV7lzh7oFbj1dOSeHuZlop3N0EaNDuFO4GJcOmUCjcbQJv0GEp3A1KBoW7ucmwIDIKdwsgOnwKCneHJ9CC8CncLYDogSko3CncKdwp3CncQyfAFe4euPF46ZQU7m4mlsLdTYAG7U7hblAybAqFwt0m8AYdlsLdoGRQuJubDAsio3C3AKLDp6Bwd3gCLQifwt0CiB6YgsKdwp3CncKdwp3CXQikSx7PA3eZqDMlhbubuaZwdxOgQbtTuBuUDJtCoXC3CbxBh6VwNygZFO7mJsOCyCjcLYDo8Cko3B2eQAvCp3C3AKIHpqBwp3CncKdwp3CncKdwd/8GS+HuJkMKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwp3CncKdwp3CncKd/dvsBTubjKkcHcToEG7U7gblAybQqFwtwm8QYelcDcoGRTu5ibDgsgo3C2A6PApKNwdnkALwqdwtwCiB6agcKdwp3CncKdwp3CncHf/Bkvh7iZDCnc3ARq0O4W7QcmwKRQKd5vAG3RYCneDkkHhbm4yLIiMwt0CiA6fgsLd4Qm0IHwKdwsgemAKCncKdwp3CncKdwp3Cnf3b7AU7m4ypHB3E6BBu1O4G5QMm0KhcLcJvEGHpXA3KBkU7uYmw4LIKNwtgOjwKSjcHZ5AC8KncLcAogemoHCncKdwp3CncKdwp3B3/wZL4e4mQwp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5JB4W5uMiyIjMLdAogOn4LC3eEJtCB8CncLIHpgCgp3CncKdwp3CncKdwp392+wFO5uMqRwdxOgQbtTuBuUDJtCoXC3CbxBh6VwNygZFO7mJsOCyCjcLYDo8Cko3B2eQAvCp3C3AKIHpqBwp3CncKdwp3CncKdwd/8GS+HuJkMKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwp3CncKdwp3CncKd/dvsBTubjKkcHcToEG7U7gblAybQqFwtwm8QYelcDcoGRTu5ibDgsgo3C2A6PApKNwdnkALwqdwtwCiB6agcKdwp3CncKdwp3CncHf/Bkvh7iZDCnc3ARq0O4W7QcmwKRQKd5vAG3RYCneDkkHhbm4yLIiMwt0CiA6fgsLd4Qm0IHwKdwsgemAKCncKdwp3CncKdwp3Cnf3b7AU7m4ypHB3E6BBu1O4G5QMm0KhcLcJvEGHpXA3KBkU7uYmw4LIKNwtgOjwKSjcHZ5AC8KncLcAogemoHCncKdwp3CncKdwp3B3/wZL4e4mQwp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5JB4W5uMiyIjMLdAogOn4LC3eEJtCB8CncLIHpgCgp3CncKdwp3CncKdwp392+wFO5uMqRwdxOgQbtTuBuUDJtCoXC3CbxBh6VwNygZFO7mJsOCyCjcLYDo8Cko3B2eQAvCp3C3AKIHpqBwp3CncKdwp3CncKdwd/8GS+HuJkMKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwp3CncKdwp3CncKd/dvsBTubjKkcHcToEG7U7gblAybQqFwtwm8QYelcDcoGRTu5ibDgsgo3C2A6PApKNwdnkALwqdwtwCiB6agcKdwp3CncKdwp3CncHf/Bkvh7iZDCnc3ARq0O4W7QcmwKRQKd5vAG3RYCneDkkHhbm4yLIiMwt0CiA6fgsLd4Qm0IHwKdwsgemAKCncKdwp3CncKdwp3Cnf3b7AU7m4ypHB3E6BBu1O4G5QMm0KhcLcJvEGHpXA3KBkU7uYmw4LIKNwtgOjwKSjcHZ5AC8KncLcAogemoHCncKdwp3CncKdwp3B3/wZL4e4mQwp3NwEatDuFu0HJsCkUCnebwBt0WAp3g5JB4W5uMiyIjMLdAogOn4LC3eEJtCB8CncLIHpgCgp3CncKdwp3CncKdwp392+wFO5uMqRwdxOgQbtTuBuUDJtCoXC3CbxBh6VwNygZFO7mJsOCyCjcLYDo8Cko3B2eQAvCp3C3AKIHpqBwp3CncKdwp3CncKdwd/8GS+HuJkMKdzcBGrQ7hbtBybApFAp3m8AbdFgKd4OSQeFubjIsiIzC3QKIDp+Cwt3hCbQgfAp3CyB6YAoKdwp3CncKdwp3CncKd/dvsBTubjKkcHcToEG7U7gblAybQqFwtwm8QYelcDcoGRTu5ibDgsgo3C2A6PApKNwdnkALwqdwtwCiB6agcKdwp3CncKdwp3CncHf/Bkvh7iZDCnc3ARq0O4W7QcmwKRQKd5vAG3RYCneDkkHhbm4yLIiMwt0CiA6fgsLd4Qm0IHwKdwsgemAKCncKdwp3CncKdwp3Cnf3b7AU7m4ypHB3E6BBu1O4G5QMm0KhcLcJvEGHpXA3KBkU7uYmw4LIKNwtgOjwKSjcHZ5AC8KncLcAogemoHCncKdwp3CncKdwp3B3/wZL4R5Ohrdu34Wfvz9SJEv8zB4U7uEE6IDNKNwdkCQPh0jh7mHADpiewt3+JD1+/AQXLl1F6pTJECtmjKCAbt31w90H/i4FGOPwbsSZNdilfbhx5BCgcI8cziYfhcLd5OxETmwU7pHDOayjhPQdl8Kdwp3CncKdwp3CncLd/Xs0hftLGN65ex9NuozG0eOn9Jbp06TAwkm9kEaJABkU7u5fhKbMQOFuSibsi4PC3T72phyZwt3eTGzefhDdh85AQMBjHUjHZtXQpFYZ/f9TuNubG6uPTuFuNVHnzUfh7rycWR0xhbvVRMM/X1jfcSncQ+d4NeABSl5Yj4sB98IP2+AtV6cpiTxx07gU4ZZ7Z9Ho8naX9jF143xx02J5mhIuhXfz8SOUu+CLU/63XdrP1I1XqPPPqzi4MrbdO4d6l7e5soux2+aKkxKr05RCrGjRwx3j3Sd+qHBxE44/uhHufUze8MvUxVAwXvoQQ0yXPJ7JoRsfG4X7S1LkM305VmzYiTVzBiNB/Hio0XIgMmVIi6nDO+o9KdyNv8bDHSCFe7hRee2GFO5em9pwnxiFe7hRWb7hvfsP8EnZVlqwt6xfERu37kfvEbPhu3C4vu9SuFuO3NYJKdxtxW/EwSncjUiDrUFQuNuHP6zvuBTuoeeFwh2gcKdwp3CncLfv7uWsI1O4vyRfRap1RKkiedC1ZQ295aqNu9Fv9Fwc2zEP0aJFo3B31vUeZrQU7l6UzAieCoV7BMF50W4U7vYlc9O2g+g6eBoOfzMLcWLH0oHkLd8adSoXQ6sGFSnc7UuNR45M4e4RrI6alMLdUenySLAU7h7BGq5Jw/qOqyq74dKNByHO43v3LzS/sjNcxzB9o1IJMmJ2ysIuhUnhTuHOFe4AhTuFu0sfnFF4Ywr3lyQ/R9FGGNC5ASqXLqC3PHz0BOq2HYq96yYhaeJEFO5e9MtD4e5FyYzgqVC4RxCcF+1G4W5fMmd/uRFzl23CvvVTgoKo0XIQ3ng9PYZ0b0zhbl9qPHJkCnePYHXUpBTujkqXR4KlcPcI1nBNGtZ33FcSJaRwD4UihTuFO4U7hTtLyoTrNsONFAEK9zAugydPniB74YYY3bclShfNo7c8fuIMqjbtj81LRiFD+lQuX0RXbwRg6aoA3P7X5V25g4cJxE8A1KoSA6mT/79JnycOeftOABavDMAN7yj55QlEts0ZO/YT1KoaHelTP11d66lx/+FjLFrhhytXonnqEJw3ggRiqF//WlWjIUM6164Bef06RnTmM4LY9W7yevumbQewfcW4oGkadhyBhAniY9KQdnjo9xhxYoW/vqJMcvXQQURfv8CdsLivhwhEK1UTST/L76HZ/z/t1R9+QPS1cz1+HB4gAgSKV0OyAq6tLo3AUXDtp58QbdWsiOzKfTxNoEhFJCtS3KWjRORe4NIBosDGL/uOmz5tylD/pll78S+MuvGTV1DKEyc1RmX8RDVoD//fFn/dvYM2Z3fj+pOHXsGgT4oPUTpVBpfOxfefMxh2/bBL+5i68XuxkmFSpvyI7cI1cOHePbQ7uxcXHt819bRciqtH8pwon/p1l/b5+tI5DLr2g0v7mLrxmzETY8rrBZAwdsxwh3j1wQO0ObMXZwO8Q+p1TvY+qqTJHO7z54bhJ0Dh/hJW8vR/YJeGqFTq6ZfCwBXu362bjCSJE4afNLckARIgARIgARIIlcDLVrgTHQmQAAmQAAmQgDUE+B3XGo6chQRIgARIgARCI0Dh/pJrQ+rblS76Cbq0+EJvudJ3F/r7zAuq4c5LiwRIgARIgARIwH0CIdVwz1OmJepXK6FruHOQAAmQAAmQAAlYQ4Dfca3hyFlIgARIgARIgMI9gtfA6GnLtGRfPWcwEsSLi5qtBiFThrSYOrxjBGfkbiRAAiRAAiRAAs8TuHf/AXKXaoFmdcqhVf0K2PDtPvQdNRe+C4fr+y4HCZAACZAACZCANQT4HdcajpyFBEiABEiABCjcI3gN3Ll7H407jcKx30/rGdKmSoZFk/vo/+YAAgIe48HDR0gQP26YOO7df4iYMaIjdmzX6iKTsXcRWL1pN/J9nAOpUiTB7yfP4eKlayiU9wPvOskocjZSXuvYb6eQP0+OIBn6WNUxl7qgMdTvOgcJRISA79b96D5kRtCu7ZtU0QKe4ymBu/ceIE6cWOp+GnqvkfDel8nUuwkEv8dev/kvtu39EVXLFES0aOw14bTMn/37MvYcPIIsqoH0J7ne0eHLvdZf/Q0eK6Zn+w45jRXjDT8BfscNPytuSQIkQAIkQAIRIcCSMuGkJl9WHvn5IU1KivbgyLbvPYy2fSZi1+oJSJEscag0S9XuhvfffQMjejULJ3Fu5o0E3i3UANNHdlaS9j1Mmrsa3+7+EevnD/XGU/Xqc2raxQc//PI73s36OmpUKIKyxT7VX/7b9p6oz3vysPZeff48Oc8SEGF87sJlpEudnA9pg6EOfANgZO/m+ncutBHe+7Jns8jZ7SYQ/B57+OgfqNt2GI5smxPmwxq7Y+bxXyQw/6uvMXrqMmR/KxNyvvcmerSppTf6cs02jJv5Fb7f/P8HlORHAhEhwO+4EaHGfUiABEiABEjg5QQo3F/OiFuEQeDWv3dx8q+/keOdLGF+iZOVVvHixkGG9KnIMwoToHB3fvJlRZTU1V4+o78WADJWbdyNIRMW4dEjPxTOm5PC3flp5hkYSEDeIPn5PyeQOUO6MJu2h/e+bOApMiQLCVC4WwjTxqnK1uuJ8sXzBr3pI39z12o9BHIvjh8vDoW7jbnhoUmABEiABEiABEggLAIU7l56ffz6x19o03sCihfMrWTYLjxUIqxuleLo2qqGPuNug6cjc8Z0kFUNew/9ggbVS+oVcwN85uPbPT8qOR4bdSoXQ4MvSqo/6OPq1avzl38NWWlz49a/eDVtSvTrWF9/6W/Tazy2LPXRZSSmL1yPhSu36C8CsuK9s2o2W0Y1ne0xbCbefiODPo6sXhwzfTlW+O7UceX+4G2M6tMCyZO+gsC4K5TIp1bvbNWxNqlVBk1rl/XSTJlxWrJS6vufj+Oj99/S8vStLBkwrGcTzP5yI+Yt34z7Dx6h7Oefonndcjr3Mr77/hiGKsl6/uIVJE2cCA1rlNL5bdx5FKTciMjXZEkSoWOzaqhcuoDeh8LdjHy7E0XpOt1x5vwlpE6ZFNFVaYJvlo1R18dD/bkgDaXjxYlD4e4OYO7rSALFa3TBZx+/B1ldfvX6LeT9KDvGD2qjy62F9Pk6vFdTVSLiFwwcMx+Xr93Epx++q+9z8hkc1uervC02rGdT5Mz+Jk6dvYieQ2fi+J9n1P03BnKpf5s6oiNOq38Pfl/+7c+z6KbK9Iiok8/kTs2ro1Kp/EF/C8RUJSlOnP5blfk6i9zvv43eHeoqqc+a+Z66EOXvnHbqzcDB3Rpj6oJ16nq5ic1LRuHs35d0nuTn8lClXrXiQfdOKSnSe8RsXd5QyvMV+OR9jOnfCpPnrsGCFV9DyvZJyb6qZQqgV7s6umwMhbunMhh58w4etxDL1m1HwgTxkEj9x0fl/F31oPvSleu6x8XcpZso3CMvHTwSCZAACZAACZAACbhEgMLdJVzO2fj7n39Dgw4jdK3H6uULYdf+I1i35TtdvkNqQFZrNkB/qZMv9/KfXO9l1X/U/66+mMuXNRm9RsxCm4aVUatSUS0MRK7Wq1YCRT7Lie3f/YTEiRLg45xvB72m/MPPv2vZOrhbI2TN8hoO/Pgr/Pz90bJeBXzRfCBy5ciK7q1raok7cc4qtGtcRcvbUVOXqpreSbFsWj8lfZ/G/V62zGioZP/ps//oL4171k7SooDDMwTGz1qJWUt89RsIxQp8pPMiD1mGTlyMPh3qIWvmVzFqylL9gEUaBv+p5EyFhr31aubalT/Hn0rkHDx8XIvWqfPX4h1VakTqtG/efghzl20KKjlE4e6Z/EXmrF+t34GBYxfAp19LLQGkhnvg6NBvMvz9AyjcIzMhPJYRBOSzTXq7tG5YCf8oGTZNidSuLWugbtXiCOnz9UN13y1fvxca1yyNkoU/xupNe9Q9ei8ObZquxPiFUD9fg3+GVm7cV4v2fh3r6Qdei1Z+izEDWqnP5/NB9+VHj/xRsHI7vJnpVbSsXxG7D/ys7+eLJ/fW0l7+FhDR3kLdp6VE1OBxC/CJkv9Dujc2gqs3BhH4d46sTq5YMp9++69to8ooWKU93ns7s8pTBfUA5LxeALFx0QhdWqlQ1Q7qb6BX9HaPHz/WfxdtWjwSazbvUTW8Y+L1DGnwl/p7qfvQGfqzuVSRPBTuXnDxyMOy6s0H6L+98+TMhhzZsiDxKwn0mcmiFfm7jCVlvCDRPIUQCfipvyerNe2Pvuoe96H6DhkVh/S+2qoWwsl3r6g4eA1A/X3Ia4CfA1H7GnD6Zx+Fu9MzGEr8gV/oju2YF9QgK2/51mqFcnnUV3+4y5fsd7JmxMAuDfUMgbVhRRZ8+uHThkzy5f2fy9fw5dS+kNV7GV9Ng1k+XZ45YvC6oLuV1Jd67rLqqmi+XIgVK2bQtsGFu8z19psZMHFwO/1zeRDQa/gsLWVlZZ4I9+Bx5yzeVEt8WWHN4RkCIoQ2bTuAr78cjejRnzZUk5WUGV9Nra8ZGUd+PYmxM77Cj1tmYZgS8Wu/3ovDW2a+0IDNPyAAv6htf/n1FC6opqhLVn+LhRN76T+WKdw9k7/InFUEQJUm/bBvwxT90C34oHCPzEzwWCYRkM+22T5d8elH7+qwOg2Yin/v3NP3zJA+X+UB9kb1mTtlWAe9/SM/fzTqOBJLpvTR98TQPl+Df4bKZ7S8XTRaCdb0aVIE4Qh+X96hHo7L7+WWpaOD3k7KX7GtXo0vPVXkbwF5cC4PB2TIW2zzlm3W92MOzxAI/Ptsv+9UvJIwvj7Ijn0/qbcSJmCaekMh0f/+reugaaismpy+lfk1tOs7EWvnDdEPTp4fsnjip2Mn1N9rN7BY3W9lsYIsaOAKd8/kL7JnzVG0EUb3bYEShT5+5tAU7pGdCR4vsgnIQiC5f8rDyZTJk+iySvKQMqoM+W5esHJ7/QaTLDqTHg6DujQKs6Sct7HhNcBrgNcArwGnf65RuDs9g6HEH5Jwl4ZZKZK9gnED27zwJfuPU+dRqVEfvUIvuCiXlecLJvSE/MHfqVl1XWIm+Aj+xf6xKhXTY9gsbNl5SG8iq+YHdm2oX00PLtxFoHdoWlWLfxnyqrSIA1nh/uDhoxeEuzwo6NC0GqqXK+Sl2bL/tOQP2p37ftZf6AOH5Cm2emjy/JsF88f31G8/yJgzptszwd9WgukLtRrr73+uqtVY7yjBkwJfbdiJeeN6aKlD4W5/rt2NgMLdXYLc3xsJPC/cZy7egDmq3MPBjdO0MHj+8zWw8XAaVZop+OjSoga+XPu0nNrzn6/yb8E/Q6UkTacBU/SXcRES8nBUSrAFvy8vVg/OJ6g3yn765ulntgwRu1LnfdGkXi/8LSAlxeStM4mbwzMEQvr7LLAx5vN9buSNM1nZPlY1x/xl29wXAuo8cCq+3nEI76s+OlImUP7+qq3KAcrfWBTunslfZM9K4R7ZxHk8EwhIydNC6q0feaunfPHP9CrvkVO+xMzRXfTb21FhjFRvsMjq5vXzh+Hy1RsYMn6RPu1l0/u9sNjJG3nwGoC65nkN8HMgal8D3vDZRuHuDVkM4RxC+kKXu1RzVFGrpXq0qfXCl2x5HT1fhbb6C7iI8ueHPGGXWuvyqnLwEfyLfUz1arsMmevQT7/pP4yyZEyvV/gFF+4y12e5s+s6tDK27TmsV29tXT5G1wN/foU7hbvnL9KQhFCRah11nV/5Y/f5IW8k7Nz/M/atn/LMj2RVptSZ/W7d5KAVGCKIKNw9n8PIOgKFe2SR5nGcROB54d6q5zj9MNl34fAQhXufkXNwQj3olubD4f18le2CC3f539ITRcqPyKr4hSu2YM1caaZ4L6ikjMjY7qou+O41E3WfFBnylll2VbpkrCo/8/wKdwp3z191If19tmnbQbVgYQZ+/HrmM4seJBp5E0L67mxfMU73zggcl6/eRGFVakZKDRT89H39z/L2kZT5onD3fB4j6wgU7pFFmscxiYDct74/8hu+VX2CpEeYDGkgXLVsQd0vytuHfB8uUbMrRvZpHvSG9+4DR9BevbEW/AG6N3PgNcBrgNcArwFv+IyjcPeGLIZwDoFf6KQcjNT/lNVT0vRUVpFLffTnv2TLFBUb9lGvtfvpL2+yz8//OYl9PxzTXt45/AAAIABJREFUX9zk9feVauXb0O5N8Hn+XNilbvp37z3QNb9l5fyRbXPw7a4fdBNWed0vevToaNVzLJK8klCvqA8u3OUJvdSqnTS0vX7FvbN69f7ajVv4Vgn3H478TuFuwzUZknAfPXUZFq36Rj0w6arLwUh9WKnHLg9KAl9/l9fWpYa7NHuT1SdybcnqSSmLILmV1e1T5q2hcLchp546ZEjCXcoISa3oLoOm6vrCYwe0QRzVwC/wS5KnYuG8JGAKARHhcq+sXq4wvt39AwapWujysFIaoYb0+SpNp5t19VE9U2qjWtlCuK4eVK/dvFc1w8yBS2olm3yOPv/5Kv87uHCXZuQiHt5SPVOkpIjci+WzV34HA+/LN2/dgTw8lRWC0ixVvrDLQ9HAOt8U7pF/BYUk3ANX8n2e/yP071QfUJXd9hz4RffBEYEuOSz46Qd6wYR8rk6ZtxZdVFN6WZAg5YDk76693x/V5fka1ShN4R75afXYEZ8X7tJfRxrZr9m8W3+27Fo9UdXxj/HCgxqPBcSJScDDBI6fOIOqqnZ78DJtJ89c0H1PVs0ehLffyAD539KkXBpMSyk3ecvLm4a8BXdFNVQP/uaxPMh/+NAPc8Y+fbtYHtTKyvf86u+GLOoNJ28avAYAXgP8HIjq14C3fKZRuHtLJp87j8AvdLGV9Hr0yE//tJtqWBpYxkW+ZOfJlU1/YQscUgZEar1KPdDAIWVc+nduoGu8y6vrew4e1T+SL3zDejRFOlU3tm7boVq4Sw33Dv0n6xV3MkQCjB/URkn51KjRchByqQZtEsOdu/fRssc4/dq7DGkANXdsd/0HlAj3+u2HP1PDXb5QdmxWTUsJDs8QmDB7lWqs+zNWzxkcdICH6rrpN2oufLfuD/q3TKo8kKzYlCGNb2cs2vD/a6V8YfRVDVbrtRum5Y8MEfBHj5/C/PE99BsSIovkdVB5w2Hy3DX4RokpaeTL4RwCv588B2nWGLz+cGB9veBn0bVVjSixCsk5mWOkniQgn23B77dSb1lWpokIC+nzVWKRB+HSFyPwnin3woUTeuGNTOlD/HwVERv8M1Tuq/L5KkNkwxcViuh7+uGjIt+f3pflzbPN2w/qZpqBx6muPqu11FXj+b8F5PV1eYWZJWU8d7WE9HeOHE0azXcdPE0vXJAhf2cN7tYYFUp8psWS5FDKB8mQ/irSNFWuHyldJEPKv0kvgJoVi2rhHvwe+/w14bmz48xWE3gq3FuqGu659dTyN7r83gYfeT/K/kKPJavj4HwkEFkEGnYcgejRogeJZTmuPESW77PyVtiS1Vt1Lyl5s+fKtVv469xF9YZ2b/090htGoGxeMVP6rb2uT0n6aNVqNVj3xMr2ZkZIObEjv/4J+d3fpu4PZYp+4lXNznkNPJXNvAb4ORCVrwFv+DyXc6Bw95ZMPncegcJdvnBfv/GvfpU8vKtN5QudlIWR+u0iC4IPkbDXb9zWPwtpPll5I685J0wQDwnixw2TrhxDjhW82ZuXpsPRpyWrly9duaGa8yVUUufZnIrAuXTlOpInS6xXNAcO2V6ujxTq3zlIgARIwNsJBJaUyaoeNMeLGyfcq+3knikr2uXzUxqgBh+hfb4G30buoTfVvVQefoc1ZK5zFy6re3eSFz7HvT03Tjs/+dtI3hiSXEWL9rSJeeCQv6/ixo0d1GxV/l16p8ibDM/Xf3faeTNeEiABEhAC8nkmb/dIo1QZu9SCLlndHbjaW97IzvJ6etVjrIe+b0rZib/O/RNiiTanEpXealkzP22SLX8nlFOr+19Ll0o31m7RfYxeACdvHMsD2VNnL6q31Hvrt4nljWRvGLwGAF4D/ByI6teAN3yWyTlQuHtLJp87j5BeWfbSU+VpkQAJkAAJkICtBJ6v4W5rMDw4CZAACZAACXgBAXlYLCW1pLTWkO6NMXDsAsh33Dw5s2H15j1op0q3RVcLfOaqN312rZ4QdMYiqZ9/YOlUHIH9sbZ+NRbx4sTGZxXaqCbp5SD/Lgvghiou8sabvJFe9vNP9Wk+fvxElXd99oGtU8+f1wB0rqUcYHivASkj/KZ6YCNvlHvDcPUauKYWh8qb+N1b1wr3AhjTOUX1a8D0/IQVH4W7k7MXRuxS901eI69XrYSXniFPiwRIgARIgATMILBk9beqv8lHzzS1NCMyRkECJEACJEACziUgfVE+/iCbLkHaru9EJEv8CgZ0aYDTamV3v9HzdInSSqXyY2CXhrok2rJ12/TJliqcR0no+o5/q0vk4ZH//Iki+XLpZuylanfTZd/kbTr522Oc6uUg5XZ2rhqPC5euoafq73Lm/CWkTZVMnX9D9bDiPecm/3+R8xoI/zUgPT7kGpFSZKWL5nF87gNPILzXgDyYk0bz8rmwZalPuCs8mA7Klc8Bb70GTM9RaPFRuDs1c4ybBEiABEiABEiABEiABEiABEiABKIAARHME+esxtdfjgoqwyYlZ95UvU9mLN6Alb67VO+LRrr8is+05ZBSqJ2aV1MNyd/3Cjp+qk9HvoptdXNsWeUu49btu7pp9ntvZ0bZej0Ui1cxtEcT7P/hP0rGr1D920qiSe0ySJwogVcw4DUQ+jUgtfwbdxqlSwMH78u2Rr0NUuSzXPqhlZQilKbb0vdH+vw4cYR1Ddy8fUf3OZkzphs++fAdfXpSckoeQknfBxki7zO9llb3THLiCOtzIKpcA07KG4W7k7LFWEmABEiABEiABEiABEiABEiABEggihGQ0hJt+0zQZWVEGObK/qaSau+qZtO3UaJmV4zs3Rxliz0tqyJiMXep5ihXPC9G9GrmNaTk3Jt1G4MP3s2CcsXy6saq0jC204Cp+EU1Ut2oGmoH9tUKbKz9zTIfr+mZxmsA+voP6RqQhyxNuozGylkDdXNdGT+rtyNqtx6iGgv3QhLV8+Cr9TuUcN+j3oiYoN6SiO3I34vQroH48eKgcuO+SKqayItwDxx12gyF9KST5spHj59Cgw7D1YO46mhQvaQjz1+CjurXgJMSR+HupGwxVhIgARIgARIgARIgARIgARIgARKIogS27PweX23YAX//AMwf30OVkdmO4ZOW4PA3s4JW7c7/6muIcJba7tJcdY6q835OlWRpVLO045tMX7pyA3J+u/b/jG6taqJQ3g/0w4WmtcuiWZ2nK9+lrEShKu1RtUxBdG1VQ6+E79B/kmq0mk8/lHDq6ubAS57XwIvXgJRckjFxcDv939LLoEzdHnj9tTSYOrwjarUajCO/ntQlh7u3run4T4/nr4FzF67ocjqbl4xUv+Op9fnt3PczWvcaj3XzhuLWv3dRr90wXWZm9+qJ6gFEQkczCOlzIKpdA05IIIW7E7LEGEmABEiABEiABEiABEiABEiABEiABJ4hsOGbfeihapevXzAMWTKmw81bd1Cgcju0b1IVjZVgl7Fx2wFs+OY77Dl4FK0bVkKr+hW8imJ+VWomt6p1P3ZAK31eY6Z/pevZ71JiUVb+XlT13Zeu3YaVG3chvqr/PndcD8c/eAieQF4DQN7yrdGhaTVUL1dIo1m9aTf6jpqLbSvGIk3KZGiu3oz47c+zuH3nnn47ZNygNnglYXyv+T2QxqLy4E16HMjwUw/kilTtoErJfKCbLsu5V2nSD29leQ2nVZkZ+TcpweJNI6pfAybmksLdxKwwJhIgARIgARIgARIgARIgARIgARIggTAJSK32mi0HaYlW9vNPcfKvv/H3P1e1aFSLfPHrH38hVfIkSJs6OY79flqv9J0yrINqKJpDz7tl5yH8okpNdG1Zw7GkZbVvpwFT8P47WZBTyVRZAS+13CuWzAdZCXvh0lVkV3Xeo0WDaio5A3+cOgffhcP1+T5+/ARteo9Hx2bVdA14Jw5eA8DUBeswa4kvWtQtj8wZ06LX8FmoXbmYkvBVcfCn42jUcSSWz+iP119Ngy/XbEWTWmWx99AvyJPrnaAyRE7MfWDM0li0dJ3u6jrPhEol8+PHX37HKvXQYc+aSbp+vcj2hAniYcGEnrrHgYxMitOVqzfxXrbMTj71oNij+jVgYhIp3E3MCmMiARIgARIgARIgARIgARIgARIgARIIlUDDjiPQpmFlVdP8DXynmodu2n5QrWTfp0tofPZxdtRuNQTH/zyj95dVvrK6XUrNSGmZ+qq0xsIVWzBl/lpdaqVXu9qOI33op98wb/lmTBzSDtdu3MK2PT/qxrIp1QMGEeq7DxxByx7j9Cp3kdKl1YpeaRg5fdF6/KRK8Bw+ekLX9F63ZS92rByP5ElfcRyDqH4NBE/YCt+d+O7QMf27ED26Kp2yZiJix4qJYl90Ro533gh6A0L2+ePUeVRq1Edf98UK5EaqFEkcl/vnA5YGqdJU9bc/z6lr+w9dOkdK6MhDNelzELzcjOwrvxvyQE5qvr+eIY3jSy3JOUX1a8C0i5jC3bSMMB4SIAESIAESIAESIAESIAESIAESIIEwCYyeukyv5m7wRUlVJiMrBo1bgA9zvKXF4onT51GxYR8l2Ubh1bQpsW3vjxg0doFqsvovtn41VpfTkBWxV6/fQjcRc1WLqxXg0bSknrVkI2aM6qxFtcnj9NmLqN1mCBInSqAfJhz/4wwWrfoGq2cPxhuZ0qNpFx/Eixdb1/X+58p1zFi0QTfOrFDiMwzr2VSXmRkyfhHSpkqmm0rKWwAy6rcfjhqqMW2pInlMPn0dW1S/BkJKkOQ1RbLESqR/hN9PntPNRHeuGq8fxASOL5oPxKmzF/S1c/HydeR6L6turuoNQ85nyrw1GNiloa7Z3rjzKLyWNhUGdGkQdHo/HPldX+cZX02tzz9ANVYN/uaL0zlE9WvAlPxRuJuSCcZBAiRAAiRAAiRAAiRAAiRAAiRAAiQQbgKyknX5uh04cPhXLRilSWic2LFw/MQZVG3aX9Ur7448ObPhkVrhXUjVdJayM73a1dGlVopU64jKpQtoyZ4+TQp8ObWv3u+rDTvRv1P9cMdg54b37j9QJUK2YZOqU+8f8Bj9OtbDR++/pUNq3GmUaqD6EAuVSJVGqbLdiMlLsH3FOC1kB/jM1w8ipM71elXjfpZPV3ykHlhMmrsa+T5+L2geO88vPMeO6tdAWIwCa5vvkdXu6vdCxre7f0CHfpP1WxCZMqTFWdVQeOe+n3Tdc29pLhycidQ2b1mvAuqqh2oypIxSyVpd8U7W1zFe1bKX/71APbj7TF3zwyct9prmwoEMeA2E51PEM9tQuHuGK2clARIgARIgARIgARIgARIgARIgARKwicDkuWswbeE6ZHk9vZJqj3Vt9+/WTVIr1+OibZ+J+FOtgt+0eCQC1M/+PP23Xg28efsBTB/Z2aaIrT3sZVWfumKj3kq6P1Jld7KoutZ/oHWDSmhetxxOnrmA8vV7YZIqR1MkXy59/qnVSvf67YahZ9vaqgnr29YGY9NsUf0aEIkufQv+uXxNlx7K/lYmFKzSHqUK50Ff9XAm+AirubCUJBo3c4Uq4VRJ10J30ggsrVS++GcY3qupekC3HUMnLsY29aZL8FX/L2su7Lt1PxIliK8eUL3vpNPXD1Ki+jVgV8Io3O0iz+OSAAmQAAmQAAmQAAmQAAmQAAmQAAl4jICUjJFV6y26j0X/zg1QvVwhXbe5WrMBuoxKrvfe1Me+d/8hClZuhy9UKZVOzapjtWq4WKVMAV1mxskjQK16lzr20xesx+Fjf2DX6omIFTMGpPa5iPhl0/oFnd68ZZsxbtYK7Fbb/Ecxev21NHrlv9NHRK6BLi2+gO+3+9XDiJz6AY2Th1wDW1V9f2kUvGDF15i52Fc1E50YJM5FyL6sufCE2auwWJUr2rV6giN5nL94BSLUZVV7vopt0bRWGbRqUDEorS9rLnzr37soVKUDWtWvgKa1yzrucuA1YE/KKNzt4c6jkgAJkAAJkAAJkAAJkAAJkAAJkAAJRAKBk3/9jcwZ02mBLvJQajgHr1ntM325XvkqQvrGrX9RvEYXbFsxVjdb9Ybh5+evalVfQ4b0qfWK1w8+b4zlM/rrFc8y5JwLVm6vHzZITXwpOSL1r8f0b+UNp6/PwZVrQOr35ynTEj3a1EKlUvm9hsH0hev1qm55mCTDX9Uuf1lzYan/X7RaJwzq2ihoP6cCkfI5wyYu0n0NAkvsvKy5sJxrf5952L73MLar5sLywMrJI6pfA5GZOwr3yKTNY5EACZAACZAACZAACZAACZAACZAACdhGYPC4hfheCfdl0/rq1boXVKmZYkqwSyNRaSj63ffH0LLHWPyyba5tMXrywLLiW+S6NJctUehjfahew2fp85aHDFLvvXyD3ihT9BNdfsYbx8uuAXlA8UGxJvoNgPeyZfZGBPqcXtZcWBrqtuk1QTdY3bhohOPf+AgpkS9rLiwPauT3IbD8krddDLwGPJdRCnfPseXMJEACJEACJEACJEACJEACJEACJEACBhGQBqqNVENRKZuyc9V4dB8yHRcuXcf6+UN1lItWfqP/880ynyAp2VKVpOnQrJpuuuoNY9uew+g4YDIa1SiNUkXyoHLjvqp2fSdddkRGzuJN4dO3JYrmz6WbSo6etgwHVWPapUpAS1Nap4+XXQOBkvXQpulIED8ubt+5h9Y9xyNr5ldfqH3uZBYvay58+OgJ1G07FIsn90bO7E/LL3nbeFlz4RotByG6ejNGmip74+A14LmsUrh7ji1nJgESIAESIAESIAESIAESIAESIAESMJDAtRu3ceXaTVRp0u+ZlcwDxy7AJVVGY+rwjtiy83t0HTwNn+f/CCNUw8XAMhQGno7LIUkjzABVUkQayPqrMjMLJvTUc9y99wAfl24B34XDdfmRlj3G4djvpzFDNZP9OKd3NFMNhBXaNSAPJHoMm4HvN8/QDWWl5n2ihPExZ2x3yKpvbxqhNZaNFzcOStfpjjcyvapXd3vrCKu5sJSRkd+P9QuGIYsqSeWtI6pfA57KK4W7p8hyXhIgARIgARIgARIgARIgARIgARIgAaMJ/H7yHN7K8lpQjPXbD0eObFn0/567bBN6t6+LWpWKQkqxDPCZj90Hj+ja7tJgtXHN0kafW3iCu3nrDkS+p06ZVG8e2FR2zdwhaNxpJJImeQWzfboiVYok+mdtek/QLPJ+9C66t66FTBnShucwRm/z/DUwa4kvvt5xCC3qlUfngVNRWpXXGaxqmEvzTG+8BkJqLLvSd9fT2uUrxgVdG0Yn0Y3gQmouLNMVqdoBRfN9iAFdGrgxuzN2teoakAcYG77dhzy5sgX1iHAGAeujpHC3nilnJAESIAESIAESIAESIAESIAESIAEScCABqW8uJURix4qpRbPU8JYSJBUa9lYrwh9jxqjOWji36jkOtSsXQ4emVR14lqGH7Lt1vyqzM0M3TZWGoX071tN13WW1f6cBU9C1VQ2UKpwH0xasw+rNu7Fn7SQkTpTAqxj0HDYLX+88pPM+sEtDVC1bMEpcA4GNZe8/eIjPKrRFg+ol0b5JFa/KbVgnE7y58MzFGzBNNZmVslPedn2HxSCi14C8LXL+4hU06+qD5Elf0f9/ldIF0L+z9z+sCI0nhXuU+ejgiZIACZAACZAACZAACZAACZAACZAACYRF4IvmA/WPp4/qhKSJE+n/X1b7Dhq3QEnoGHq1e+sGlbBp2wFMmrsau1ZP8Cqgu/YfQYf+kzFAiTJpIivjyZMnSsC2gQjJFMkSY2iPpqqm9xv63+QNAGmw6k1j/KyV+GrDDswZ0w3Z3swY5a4BkaUDxyzA5GHtw1Wz/+zfl9C82xgsndoPSRIn9IpLYcaiDertjkSoXq5QuM5n9abd2LrnR12KyhuGq9fA7C83YtzMFbrk0tdLR0PenJE3Rz7Lnd0bcEToHCjcI4SNO5EACZAACZAACZAACZAACZAACZAACXgjARHM0VSjxMDRptcExI8XR6/uHjphMfb/+B+8/moa+Pn7Y/WcwV6HQBqlRo/+//MXoVqqdnddXuT7I79h8LiF+DBHVoicFyn9yYfveD2DqHYNuJJQKcP0w5HfkTBBPP17Ib8nH73/litTOHrbe/cfQN6MkZHrvaz6d6NOlWLqMyOuo8/LleBX+O7U5ZYCexysmj1YvQl0E3+cOo9333pdl2hq+EUpxFJvDkWVQeEeVTLN8yQBEiABEiABEiABEiABEiABEiABEnCZQJ+Rc1Qj1RuY5dNF73vk15PoPWI2mtQqg4ol87k8n9N2kHIRBSq1g9R1z5r5VV3zXUrKyCr/LWo1a/CHE047t/DGG9WugaPHT+Hn//yp3uj4XJcXCm3sOXgULbqP0Y2HpZTIkAmL9IMYefND3oZw8pgwexXKF8/70j4FI6cshaxwH9m7Of46948qRbMO/TrVd/ybH+G9BuSBg5QgavhFSbRpWBnb9v6IYgU+0s2WO/SdhIuXr2sR/82yMc88yHPytRGe2Cncw0OJ25AACZAACZAACZAACZAACZAACZAACURJAqfOXkRFVcO9Rb0Kqq51iSi1cjUw4dI89KdjJzBlWIegMivPvwngzReHu9fAnoO/oJ2Sj+nTpFBSshJKFv7YaFzSIHbcjBXY98MxXcf+U9Uk9/khPQ2KVOuoGuhmx/BeTfWPpf/Bp2VbYdKQdiiSLxdu3PoXSV5J6MiHMpKzgWPmo+CnH6Bjs2p6Bf/zQ0qvlKjZFSP7NEfZzz/VP75z9756QHcdo6ctQ9w4cVCqSB6UKJTb6HyHFFx4rgHZb9jEJVi3ZS/2rJmI2LFjPTPVj7/8gXrthmHuuO7IkzOb4xi4EzCFuzv0uC8JkAAJkAAJkAAJkAAJkAAJkAAJkIDXEzh+4gza9p6gV2u+leU1LJ7cO1ziXVbDp02VHKlSJHE0I5GrIhAXrfwGiV9JoOvY1678+UvPScrT7Nz3k5avTh8RuQZkxbOU4Dlw+Ff0aldbiefomLt0o3ozwCfMleOmsDp55gL6qjc84sWNoxtgZkifKii0+V99jbEzvtKr2QP7HRz48Vc07jwKa+cNwZuZXlUPqvrg45xvq3OvY8opuRSHf0AAFq/8FvOWb1YP3Mrji/JFnlml3bSLD65cu6nPN3B8u/sHyAOqulWKI12a5Jg4ZzVKK+nu1AaiYV0DZ/++rMpNdYNPv5b6wULwIQ/kytTtoR4ypQx6O8gl+A7fmMLd4Qlk+CRAAiRAAiRAAiRAAiRAAiRAAiRAApFDQBoBygpWqdP8siGlV6QUS+qUydC4ZmkU+CRHkJh82b6m/lxWMP909AQ+ePcNLd5fNpas/lavgF04sZd+UBHSKuGXzWHaz125Bq5ev6VXgcsDi5bqDYlmdcrq5rthlWkx7Xwlnu17D6s8LsbnqlRIu8aV8eiRPwpUbqfLxvguHK4fPsnvRY2WgxBTnZ8IaN+t+9F9yAx9rnHUyucin+VC7w518UrC+CaeYpgxSRPQUVOX6rc8BnVthNwfvA15AFO1aX+smDkA72R9Xe8fuMJfzrl765qoWfFz/HriL0gz5v2+Ux157oFgnr8GJOft+k7E3xevYtXsQS/wk2bT/X3mqVIyPvrNjqg2KNyjWsZ5viRAAiRAAiRAAiRAAiRAAiRAAiRAAhEmIKUWEid6uWyeOGeVWhn7NSqW+AwHfzqOM+cvYc5Y1WQ0l7ObjIpUDI80le2kmaRsKw1mb92+q1cJt21UOcLsTdkxvNfAwhVb4DN9uSrF0xHjZn6Fri1r6PIsHfpNVtL2LRxWDy8KqZIl5VStcNOHn38A5quV3lI25IRqhiklV6QhptR6r1AiH7bt+RH/qFIqvgtHqIdMSfXDpgrq2u/c4gvdVHX8rJWYP74HEsR3bjNRaQI6euoyTBjcVjdSlv8tfQ0Cx5rNezBIvdGwdGpf9B89D9du3MIXFYroc3e6cJdzDH4N1K9WAvIg4q6q4f68UA9sJFu9XGHdRDcqDgr3qJh1njMJkAAJkAAJkAAJkAAJkAAJkAAJkIDLBES0lq/fC1XLFkTzOuVeqFkcOKE0WS1WozP6dqyHamULQcoryGrY6NGj6xWxTh4zF29QDVMPYkiPxsj+VqZQT2WAz3zdQHH7yvGIFTOGErRH8fjxY1UT+30nn76OvWHHEbo2uZRKSZk85HJB8oChUNUOaFW/AprWLvvMOUtj0Z7DZ+qHECtnDQyqi+8EMFImR0qFTBvREfnz5MAKtZJZZHs6tYpZzlV4iGCWtxuk3IyshA4ca7/ei4FjFyB2rJi6jr2sAg/+cyecf1gxrtq4W537CuxZO0lvJuVlZJV3hvSpdWNZeTjRXtXyFyGd7+P3VG346s+U6XH6+cvDiPeyZdbnuWrjLpX/ifrBRFQcFO5RMes8ZxIgARIgARIgARIgARIgARIgARIggQgRuP/gEWYsWo/133ynVyw/X7tYJm3bZyL+PH0emxaPDGoY2W3wdL0iVsptSPmNcTNXqNW/1R0pHKU2fd9Rc/HG6+l1bXIpLRJ8SN1neTAR2Dwz8GfSRLN1z/E49vtpZHsjI1oqQVso7wcRyoPdO63b8p2uYf5F+cJaqMdSEjn4ED5Svz7wgUPwn0lt8KLVOum3HaThppOGPDySWu0hNVKV85BV7nJug7s1QuXSBYJObcTkL7F8/Q5MHtoeaVIlg/w+yAipHImTeASPVa5veaujkxLpDb4oqX/k5+eP6zf/xfc//4buQ2foh3VVyxTEkjVb1YOrA1g/fxhefy2NU0/5mbh37vtZfS7M0ecrJZTaNKrkFecVkZOgcI8INe5DAiRAAiRAAiRAAiRAAiRAAiRAAiQQpQlIA9XB4xZAVrMP7dEEb7+RQfOQOs912gzVK4ALfPJ0Nffde2pFa8W2kDIMHZpW1Y00l63bjk7Nq2tp/dnH2XXtaycNEa+yYllWM9esWFTXqQ+UzrVaDcZj9XNZ1Rs4Tp+9qGt858mVDX071MPO/T9DVsE7uczOvfujRlPTAAAUwUlEQVQPMXXBWi1Ou7euhRKFcuvT/fP036jQsLcqJdMhxAcKs7/cqJpprsIOtfo/edJXnJT2l8b6lZLqC1Vz3Q0LhgU9bDp/8QpK1OyqVzt/9P7b6Kfe/JDrp1iNLno1eLIkiV46r1M2kDJBzbv56Adp8vsvzYWlf8EnZVuh8Gc5MaJXs6BTadVznJbvb6nPDpHVFUvmc3TJHTmxwLIzk+au1g/URLxHxUHhHhWzznMmARIgARIgARIgARIgARIgARIgARKwhMCPv/yhV3V+lju7LjEi5TZExr+WLhXGD2qjhWpNJZqv3biNLV+OhqyCLVuvpy6pES1aNHyz63uUKpzHcSudA+FJeYzJc9fg652HMH1kZ2RSq3U7DZyKDk2qIIt6mBA4OvafrCT7EfVgITp6tq2NSqXyo9OAKYgXNw6G9WxqSS7smuTipWuqVMp8leN/sWBCTxyRkhqbdsOnX8sXQpLVv4WqtNe17J8vNWNX/FYfV1bwB3+AtHTtNkydvxZbvxqr3w6R3gZ5cr6tywx9v3mGFvHy4EqupUwZ0lodTqTPJw2TN28/iKPHT+myOX/+9TeqNRuARZN6I9d7bwbFI+crYn6jemAzRtX6lya78tZM3arFn4lZekBIo2JpPuuUIZ938p/gNe6dErsVcVK4W0GRc5AACZAACZAACZAACZAACZAACZAACURZArJa94Ra1SyCrd/oufhmmQ8mzl4F3637NRNpIjl1eEe9Cr5u22F4pITc8hn99c9Esv2rGoweP3EWl6/eQP5PciBLxnSOY/n3P1d1XfPQmmLmLtUcvdvXxRuZVBma4bPhrxqpysp/aRjaRTXWPHz0DyWqTyK3ErHvZn09aHW0k0D8fvKcXs0c0nj8+Imq4R8NPYbNxHeHjoZYasZJ5+pKrFLzv7/PXOzbMFXX8xe5PmTCIsSLExuj+rbArCW++k2JGOphjDyAGdiloX4gJWP3gSPq5xsxY1Rnx9YDD6x7/6Vqpvr+O1lCRffd98fQpvcELd1rVSqqt5Pfq+LqTYAx/VsFMXGFPbe1hwCFuz3ceVQSIAESIAESIAESIAESIAESIAESIAEvIzBBSXYRiq0aVNRnJqvZZUVzptfSatkqzTKljITUcX8z06t6GylL0lmtCD/y65/I+1F21Wj0MMoU/QRDujf2KjpFqnVEPVVSp0H1p7WtpQb6yClfqrIz/fHVhh2Yt2yzKjfyFn794y/dZHLuuO5InCiBVzAIbJbZsEYpSGPJycPao3DenF5xbuE5CSkz8nn1Tqo5bAZV271xUKNZeVA1SvFYuGKLFspSkmfjVlWeR9U6l7cl8ud5Tz2IOqOuj53o36l+eA5l7DbNu43B0d9OYYY6L3nzI3bsmNitPg86D5qGAPVGgDRRlTce1n+zD2fPX9KllmQ07eKDK9du6s8MWTkvvR/aNKyEhAniGXuuDAygcOdVQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIeJhDYKDN/nhzPyPQW3cfo0hpSVqVCic9wStU6r6jqf88b1wMf5sjq4agib/rVqsTKgDHzMbpvSxQr8JF+ACHCdZGq9z1yylKMHdBaC1d5AFG37VBdWkRKsgSuDI+8SD1zJFnlLWVn7j94iHXznp5fVBry8KnLwGk4cPhXpFVNU8cNbIOs6m0AefPh+fI6UqKoROHc6uHLGVWa5YCW704f8tBBHrYsW7dNreSPgZ2rxuuV66WL5EF99RBKSkvJSn+5/qXPg8h3KSXTqONI/TZM9rcyQR7oLV71DXatnuDIZstOz6Er8VO4u0KL25IACZAACZAACZAACZAACZAACZAACZBABAiIOF6hVnKXVPXaE7/ydOX2zVt38FmFNmhet5xuQJoqRVIMVSvbpblo/84NUPbzTyNwJHN3kVXtIt1lFFfSfWSf5nrl84c53nqmhv3Zvy+rsiPXkUzVv6/UqA+KF8ytJeSraVOae3LhiExWKE9fuB5zlm7ENlXPPGXyJOHYy7s2kf4Gx9VbDEXy5YKs/K/deoh+ACGlhoIPEc8FK7fDFxWK6JJD3jSkdnvcOHHwXpGG+roP/D33UXXcl6tmyrtWT1Q/j62EfGe8r2q3y+r/f9TvQ9FqnTCoayNUKVPAm3B45blQuHtlWnlSJEACJEACJEACJEACJEACJEACJEACphMQsVyqdjcc3DhN165esvpbjFO1rKXGu6yATZ40sRK06yCNWT/58B3daDRFssRBpyUr46XshpOGrPT/+difSJokka5Vn7N4U/RRtd1DkojC4SclZZeu2Ybt3x3G5KHtUeCT94NOV2rkJ0oQHwU//f+/OYGF1K4Prda9E+K3KkbpX1CwcnsM7dEEFUvme2ba4PL51u07GDx+oX47oEKJfPpNEGk4HDhu/XvXkeWHZi7eoFetly/+GTJnTKvr2Ae+6bJk9VZdcmn7inH6d75Nrwnq7ZcL2LhohCP7G1h1zThlHgp3p2SKcZIACZAACZAACZAACZAACZAACZAACXgVAT8/f+Sr2BaNapTWq9xl3Lp9F3u/P6prOks5CSkx06p+Bez74ZhaEXxS1Tzvpxtznjh9XpWe6YOFE3s5uvRMnTZDcVs1jV09ZxBiqlIbgUNKsPx17qJ60PAucmZ/A7O/3Ih5yzdj3/opTzkpyVqoSgfNRspvOFW6etUFHYGTmaYeKE1bsE7lsSKyZn4VH6o6/nfv3kcxVW4lUD437jwKF1TzUFntLpI62xsZMV01UZV+CX+qZsUVVAmmJVP64AO1GtxpQ8rGfP/Tb1iw4mukTZ0C6+c//X2QBxEt6pbXnwuHj57QZZYWT+6tfhfedNopRsl4KdyjZNp50iRAAiRAAiRAAiRAAiRAAiRAAiRAAiYQ+P7n39BMNVT84N0sKFcsL97J+jrefiMDhk1cgjWbd2PFzIF4/bU0OtQ+I+foGs9S23znvp+QTW0r9bCdPM5fvKLLiog8za9Wr5cvnlevgJcVztJYVJrJRo8eHTneyYJDSk7K2wAy+vvMw3bVYHb7yvHw8/PTglIacpYs/LGTcUTJ2HcfOIIFX23BXVVqZcnkPmjdaxwuXLqu5bMMKbEkbzLM8umiyzCVq99Tr4qXtx2u3biN/T/+B6VUqaYYMaI7lp+8rZIyeWL9uz9QlV3aomq6S2mZmOqcStfprkruvIpJQ9o59vyiWuAU7lEt4zxfEiABEiABEiABEiABEiABEiABEiABowhcunID87/6Grv2/4xurWqiUN4PkKdMS106o1e7OkGxSikSKa+xSwnK4ZOWqLIzE5BMlWZx+pDa5pu3H1Ry/SS6tvwCzbuNRfa3M6F765r61KT2e6/hs3RzzRb1yuPkX3+jfIPeWkBKLfARk79UDyf2YPeaiYgTO5bTcUTp+H/78yyqNOmn3+TI8np6VWopNn4/eQ7Vmw9A6aKfYLhqLnzm/CX9ECqwqeietZO84vdAEi/NVYtU7YABnRuiaP5cWOm76+nDJVVaJnXKpFH62nDSyVO4OylbjJUESIAESIAESIAESIAESIAESIAESCBKEJDa5j3b1EL18oWfOd87qtxG/krtdBkVKacidbDPXbiMd9Vq99heIptlJb88fJg9ppsunzNs4mJIvfZd6gFDrFgx9Yrn6KqG95dT+yKwDv6ovi1QRglZDucTEMEueZfrIEe2zPp34Njvp1Gr1WD1QKYG6lYtDmlCHLypqPPP+v9nINJd3viQ5qqfVWiLBtVLon2TKt50il5/LhTuXp9iniAJkAAJkAAJkAAJkAAJkAAJkAAJkIDTCIhs3LLzkGqSOBKpUiQJCn/I+EXYtP2Als+yGljks4j2ANWMtGfb2qhZsWjQtlLvupAqyyK1sZ00pLZ918HTdaNUGQEBjzF2QGuUKJRbl5Fp22ci1i8YppuuNu40Cjdu/atqwA920iky1nAQWLVxN/qNnqtKBTVCOdVYVHoapEyeRF0LrVSD4f83FU2SOCHmLdus35J4U5VeqVOlGN5Tot7pQ8otDRyzAJOHteebGw5LJoW7wxLGcEmABEiABEiABEiABEiABEiABEiABLyfgJRZ6Tlslpbu6dOkQP/ODZAudXKUrdcT4we1QbECH+k673sOHsGmxSNx8PBxVQveJ2gFsL8S8LVbDUGVMgVeWCXvJHpSamezaqC6fEb/oHIbRfN9iAFdGmD/D/9Bky6jsXLWQGR7M6OTTouxhpPADtWrYLi6zv9WTVOlRvv88T10PfPgTUXb9Z2ofg+OolOzavptD5Hxc8d1R56c2cJ5FG5GAtYSoHC3lidnIwESIAESIAESIAESIAESIAESIAESIAHLCFy8dA2//nFG1SrPiXrthuPBw0eqkeoAPf/ho3+gbtthCCynsm3PYTx+8ljL+DHTv0Ll0vmRKUNay2KxayJ5eBAzRgzIiv1pC9er2vXjkTB+PBSr0Rm5338bI/s0tys0HjeSCFy5dhNx4sTGKwnjP9NU9IBqmNqi+1hd8z1wVXvngVN1qaUFE3pGUnQ8DAk8S4DCnVcECZAACZAACZAACZAACZAACZAACZAACRhOQOo6dxowRTcOlUapx347rZurLlyxBSOnLMWY/q1QsvDH+ix27vsZrXuNx7p5Q9Vq4PSGn1n4w5uxaAOSqnOvXq4QFq38BqOnLcOOlf9t785DrKrCAIB/42Sl5dJmpLZvRAUR0b5pUE0FlaNoC6WpkC0uLYqVFqXjFGqmpmgqk6XZUJmapdlQUamhRBO4RBtNtIfl0mJu3Xs1oSAse47vvfnd/2Z475zz/c6Zf7459/tGxQH7Nf/3g/hkQQv8valo38Fj49O6r2N21dDtcaVvhnz4SV1WZqjuy2+TJrwj4plxgyMtPeMhUB8CEu71oWwOAgQIECBAgAABAgQIECBAgECOBKbPrIlHJ1bHzClDou0hB8UjScL9xflvx8LZj0d6G7xded+44KxTYsiA7rFly5Z4f9nHse8+TbL61sXwpEnX0y+7OWsamzaP9TQsgT+biqZR97xreFLXvUVUDOyZIaSNRtt17Bcdr7ggK690Y59hsbT2w+yfVIe2bpX1OSiG+u4Na8cLL1oJ98LbMysmQIAAAQIECBAgQIAAAQIEGrDA5s1b4t7KSTEvqe/e5cr2Sf3qD7Kmis9PejAmTZ8boyc/H2/NHJPUPN+YlJwZuq3+dWnsl9zwrRo1MA5r06rg9T75/KskjoOj8R6lBR+LAHZeoHrOG1mJmenjBiX/UGoT1982ND774ptYMGN4rPioLik3MyKeGnNPknBvHlXPzou5NYvilWmPxIH7t9j5SX2TwA4EJNwdEQIECBAgQIAAAQIECBAgQIBAAQqkN9dfrlkcq9f8HANuuzaL4MLyPnHnzZ3jxk6XRIfug7Ka72k5jWZJ7etu/Srjx9Xr/lJ+owDDtmQCfxEY9cRzMWXGy7Fp0+bsJvvYir5x0vFHRvtO/eLs006KYfdsvf2eNiI+9eKe2Zshxx1VHG97OAr5KSDhnp/7YlUECBAgQIAAAQIECBAgQIAAgf8kMGDIhFhSuzK53Tsiapd/nDVUTetYH3/0odk4S95fGV37VsayN6qyn39cvTZaNt83SkpK/tM8Pkwg3wTSZPs336+KQ1odEI0alURV9bwYOaE63nzhseTNjmbZctNSTJVjp0Xta5Od+XzbwCJbj4R7kW2ocAgQIECAAAECBAgQIECAAIGGKbD4veWxZ+PGcerJx2blM8ZPnRXvzh2/HWPslJkxcdqc+KBmSva7q7rdFycce3j0v7XL9qRkw5QTdTEJbNiwMU6/vFf0ThoMd+tSloWW1nY/58rbo1vnS6N39/JiClcseSgg4Z6Hm2JJBAgQIECAAAECBAgQIECAAIH/IzA3KTUzsGJi1FSPTJpKtoxP676O8h6Do0PZeTGo3w3x0muLIr0Rn9ay/mHV6jj6iDZJ6ZlBsU/Tvf/PtL5LIC8E0hr/h7c9OPYo3Vrjv2L00zFr/jtJb4PRsWfS78BDYFcKSLjvSl1jEyBAgAABAgQIECBAgAABAgR2g8DGTZuiY4/7Y93Pv0RZ+zNjxqyarI77S1Mro7S0UZx/de/ocNn5MeDWa2LNul+ia59h0bb1QTH6od67YbWmJLDrBOq+/C7Krusfwwf3Sv4Wzth1ExmZwDYBCXdHgQABAgQIECBAgAABAgQIECBQhAJpaY30Vu/CpcvimCNaR9fOZdG0yV6RNpmc9sKCrL510yZbb7Tf9/DkpOzG+hj5wC1FKCGkhiyQ/h2kb3xcdem5DZlB7PUoIOFej9imIkCAAAECBAgQIECAAAECBAjsToG0seRFne6Ih/rflN1wT59VP62NC8v7xIN33yQpuTs3x9wECBSFgIR7UWyjIAgQIECAAAECBAgQIECAAAECOxaonv16TH3u1ZjzZEWUlJRkX0hruS+pXRkLZozIys14CBAgQGDnBSTcd97ONwkQIECAAAECBAgQIECAAAECBSeQ1nf/s5nkio8+j449749Jw++Os047seBisWACBAjkm4CEe77tiPUQIECAAAECBAgQIECAAAECBOpJ4JaBj8b69Rti8sj+9TSjaQgQIFDcAhLuxb2/oiNAgAABAgQIECBAgAABAgQI/KPAr7/9Hr/+tj72b9mMEgECBAjkQEDCPQeIhiBAgAABAgQIECBAgAABAgQIECBAgAABAhLuzgABAgQIECBAgAABAgQIECBAgAABAgQIEMiBgIR7DhANQYAAAQIECBAgQIAAAQIECBAgQIAAAQIEJNydAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkAMBCfccIBqCAAECBAgQIECAAAECBAgQIECAAAECBAhIuDsDBAgQIECAAAECBAgQIECAAAECBAgQIEAgBwIS7jlANAQBAgQIECBAgAABAgQIECBAgAABAgQIEJBwdwYIECBAgAABAgQIECBAgAABAgQIECBAgEAOBCTcc4BoCAIECBAgQIAAAQIECBAgQIAAAQIECBAgIOHuDBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwISLjnANEQBAgQIECAAAECBAgQIECAAAECBAgQIEDgD+1XYgyQLspHAAAAAElFTkSuQmCC",
- "text/html": [
- " "
+ ],
+ "source": [
+ "f1(\"banking_sentiment_zs_gpt3\", query=\"metrics.text_length:[* TO 175]\").visualize()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0006c86d-f85f-4ce3-929e-ca10dd53d8b3",
+ "metadata": {},
+ "source": [
+ "### Fine-grained analysis\n",
+ "\n",
+ "Now let's use Argilla UI to perform a fine-grained analysis of \"incorrect\" predictions. You can easily do this using the `predicted` filter as shown below:\n",
+ "\n",
+ "![Screenshot of Argilla UI](../../_static/tutorials/labelling-textclassification-gpt3-fewshot/labelling-textclassification-gpt3-fewshot-1.png)\n",
+ "\n",
+ "This filter we'll show you exemplifies where the ground-truth disagrees with GPT-3. It will also show you the explanation behind GPT-3's prediction. Looking at some examples, such as the one shown below, we find that some labels in the ground-truth could be wrong or at least ambiguous. For other examples, GPT-3 could be better instructed with examples or by refining the prompt.\n",
+ "\n",
+ "![Screenshot of Argilla UI](../../_static/tutorials/labelling-textclassification-gpt3-fewshot/labelling-textclassification-gpt3-fewshot-3.png)\n",
+ "\n",
+ "\n",
+ "This highlights the potential of building human-in-the-loop workflows on top of services using large language models like GPT-3.\n"
]
- },
- "metadata": {},
- "output_type": "display_data"
}
- ],
- "source": [
- "f1(\"banking_sentiment_zs_gpt3\", query=\"metrics.text_length:[* TO 175]\").visualize()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0006c86d-f85f-4ce3-929e-ca10dd53d8b3",
- "metadata": {},
- "source": [
- "### Fine-grained analysis\n",
- "\n",
- "Now let's use Argilla UI to perform a fine-grained analysis of \"incorrect\" predictions. You can easily do this using the `predicted` filter as shown below:\n",
- "\n",
- "![Screenshot of Argilla UI](../../_static/tutorials/labelling-textclassification-gpt3-fewshot/labelling-textclassification-gpt3-fewshot-1.png)\n",
- "\n",
- "This filter we'll show you exemplifies where the ground-truth disagrees with GPT-3. It will also show you the explanation behind GPT-3's prediction. Looking at some examples, such as the one shown below, we find that some labels in the ground-truth could be wrong or at least ambiguous. For other examples, GPT-3 could be better instructed with examples or by refining the prompt.\n",
- "\n",
- "![Screenshot of Argilla UI](../../_static/tutorials/labelling-textclassification-gpt3-fewshot/labelling-textclassification-gpt3-fewshot-3.png)\n",
- "\n",
- "\n",
- "This highlights the potential of building human-in-the-loop workflows on top of services using large language models like GPT-3.\n"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.12"
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.12"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "39f4e3bd8ecb53b4a2ef9bccb982583dac0632e40e094b10b94294b76eaa26cb"
+ }
+ }
},
- "vscode": {
- "interpreter": {
- "hash": "39f4e3bd8ecb53b4a2ef9bccb982583dac0632e40e094b10b94294b76eaa26cb"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
+ "nbformat": 4,
+ "nbformat_minor": 5
}
diff --git a/docs/migration-rubrix.md b/docs/migration-rubrix.md
index cb1254b7d9e..dac1c3e7301 100644
--- a/docs/migration-rubrix.md
+++ b/docs/migration-rubrix.md
@@ -13,18 +13,17 @@ with the new module name
`import argilla...`
-
Equivalently, to launch the server:
-````bash
+```bash
argilla server start
-````
+```
instead of
-````bash
+```bash
python -m rubrix
-````
+```
## Environment variables
@@ -63,7 +62,6 @@ This will allow you to work with previous Rubrix datasets from your new Argilla
This migration switch can help you with a more gradual transition into Argilla.
->:warning: New datasets created from argilla won't be visible from the old rubrix instance.
-
-> ๐ **We'd love to support you with this migration process. The easiest way is to contact us through the [Slack Community](https://join.slack.com/t/rubrixworkspace/shared_invite/zt-whigkyjn-a3IUJLD7gDbTZ0rKlvcJ5g) or to open a GitHub issue**
+> :warning: New datasets created from argilla won't be visible from the old rubrix instance.
+> ๐ **We'd love to support you with this migration process. The easiest way is to contact us through the [Slack Community](http://hf.co/join/discord) or to open a GitHub issue**
@@ -140,7 +139,6 @@ We are continuously working on improving Argilla's features and usability, focus
-
## ๐ค Contribute
We love contributors and have launched a [collaboration with JustDiggit](https://argilla.io/blog/introducing-argilla-community-growers) to hand out our very own bunds and help the re-greening of sub-Saharan Africa. To help our community with the creation of contributions, we have created our [developer](https://docs.argilla.io/en/latest/community/developer_docs.html) and [contributor](https://docs.argilla.io/en/latest/community/contributing.html) docs. Additionally, you can always [schedule a meeting](https://calendly.com/argilla-office-hours/30min) with our Developer Advocacy team so they can get you up to speed.
@@ -154,6 +152,7 @@ We love contributors and have launched a [collaboration with JustDiggit](https:/
```{include} /_common/next_steps.md
+
```
## ๐บ๏ธ Roadmap
diff --git a/docs/_source/getting_started/installation/deployments/huggingface-spaces.md b/docs/_source/getting_started/installation/deployments/huggingface-spaces.md
index f5169c3a2e6..d6cf6dcb3de 100644
--- a/docs/_source/getting_started/installation/deployments/huggingface-spaces.md
+++ b/docs/_source/getting_started/installation/deployments/huggingface-spaces.md
@@ -30,7 +30,6 @@ If you want to customize the title, emojis, and colors of your space, go to "Fil
You'll see the `Building` status and once it becomes `Running` your space is ready to go. If you don't see the Argilla login UI refresh the page.
-
:::{tip}
You'll see the login screen where you need to use either `admin` or `argilla` with the default passwords (12345678). Remember you can change the passwords using secret environment variables. If you get a 500 error when introducing the credentials, make sure you have introduced the correct password.
:::
@@ -47,11 +46,11 @@ For quick experimentation, you can jump directly into the next section. If you w
Once Argilla is running, you can use the UI with the Direct URL. This URL gives you access to a full-screen, stable Argilla instance, and is the `api_url` for reading and writing datasets using the Argilla Python library.
-* If you have a public space, you'll find the Direct URL in the "Embed this Space" option (top right). You'll see a URL like this: `https://dvilasuero-argilla-setfit.hf.space`
+- If you have a public space, you'll find the Direct URL in the "Embed this Space" option (top right). You'll see a URL like this: `https://dvilasuero-argilla-setfit.hf.space`
![HF_Space_Direct_URL](/_static/reference/webapp/HF_Space_Direct_URL.png)
-* If you are using a private space, the Direct URL should be constructed as follows: `https://[your-owner-name]-[your_space_name].hf.space`. For instance, if the owner of the space is `dvilasuero` and your space name is `argilla-setfit`, your Direct URL will be `https://dvilasuero-argilla-setfit.hf.space`.
+- If you are using a private space, the Direct URL should be constructed as follows: `https://[your-owner-name]-[your_space_name].hf.space`. For instance, if the owner of the space is `dvilasuero` and your space name is `argilla-setfit`, your Direct URL will be `https://dvilasuero-argilla-setfit.hf.space`.
### Create your first dataset
@@ -79,6 +78,7 @@ rg.init(
extra_headers={"Authorization": f"Bearer {os.environ['HF_TOKEN']}"}
)
```
+
Now, create a dataset for text classification. We'll use a task template, check the [docs](../../../practical_guides/create_update_dataset/create_dataset.md) to create a custom dataset. Indicate the workspace where the dataset will be created. You can check them in "My settings" (UI).
```python
@@ -93,6 +93,7 @@ dataset = rg.FeedbackDataset.for_text_classification(
# Create the dataset to be visualized in the UI (uses default workspace)
dataset.push_to_argilla(name="my-first-dataset", workspace="admin")
```
+
To add the records, create a list with the records you want to add. Match the fields with the ones specified before. You can also use pandas or `load_dataset` to read an existing dataset and create records from it.
```python
@@ -122,7 +123,7 @@ As a next step, you can check the [Argilla Tutorials](https://docs.argilla.io/en
## Feedback and support
-If you have improvement suggestions or need specific support, please join [Argilla Slack community](https://join.slack.com/t/rubrixworkspace/shared_invite/zt-whigkyjn-a3IUJLD7gDbTZ0rKlvcJ5g) or reach out on [Argilla's GitHub repository](https://github.com/argilla-io/argilla).
+If you have improvement suggestions or need specific support, please join [Argilla Slack community](http://hf.co/join/discord) or reach out on [Argilla's GitHub repository](https://github.com/argilla-io/argilla).
## Setting up persistent storage
@@ -150,37 +151,34 @@ The template space has three users: `owner`, `admin` and `argilla`. The username
The usernames, passwords, and API keys to upload, read, update, and delete datasets can be configured using the following secrets:
-* `OWNER_USERNAME`: The owner username to log in Argilla. The default owner username is `owner`. By setting up
+- `OWNER_USERNAME`: The owner username to log in Argilla. The default owner username is `owner`. By setting up
a custom username you can use your own username to log in to the app.
-* `OWNER_PASSWORD`: This sets a custom password to log in to the app with the `owner` username. The default
+- `OWNER_PASSWORD`: This sets a custom password to log in to the app with the `owner` username. The default
password is `12345678`. By setting up a custom password you can use your own password to log in to the app.
-* `OWNER_API_KEY`: Argilla provides a Python library to interact with the app (read, write, and update data, log model
+- `OWNER_API_KEY`: Argilla provides a Python library to interact with the app (read, write, and update data, log model
predictions, etc.). If you don't set this variable, the library and your app will use the default API key
i.e. `owner.apikey`. If you want to secure your app for reading and writing data, we recommend you to set up this
variable. The API key you choose can be any string of your choice and you can check an online generator if you like.
-* `ADMIN_USERNAME`: The admin username to log in Argilla. The default admin username is `admin`. By setting up
+- `ADMIN_USERNAME`: The admin username to log in Argilla. The default admin username is `admin`. By setting up
a custom username you can use your own username to log in to the app.
-* `ADMIN_PASSWORD`: This sets a custom password to log in to the app with the `admin` username. The default
+- `ADMIN_PASSWORD`: This sets a custom password to log in to the app with the `admin` username. The default
password is `12345678`. By setting up a custom password you can use your own password to log in to the app.
-* `ADMIN_API_KEY`: Argilla provides a Python library to interact with the app (read, write, and update data, log model
+- `ADMIN_API_KEY`: Argilla provides a Python library to interact with the app (read, write, and update data, log model
predictions, etc.). If you don't set this variable, the library and your app will use the default API key
i.e. `admin.apikey`. If you want to secure your app for reading and writing data, we recommend you to set up this
variable. The API key you choose can be any string of your choice and you can check an online generator if you like.
-* `ANNOTATOR_USERNAME`: The annotator username to log in Argilla. The default annotator username is `argilla`. By setting
+- `ANNOTATOR_USERNAME`: The annotator username to log in Argilla. The default annotator username is `argilla`. By setting
up a custom username you can use your own username to log in to the app.
-* `ANNOTATOR_PASSWORD`: This sets a custom password to log in to the app with the `argilla` username. The default password
+- `ANNOTATOR_PASSWORD`: This sets a custom password to log in to the app with the `argilla` username. The default password
is `12345678`. By setting up a custom password you can use your own password to log in to the app.
The combination of these secret variables gives you the following setup options:
-1. *I want to avoid that anyone without the API keys adds, deletes, or updates datasets using the Python client*: You need to set up `ADMIN_PASSWORD` and `ADMIN_API_KEY`.
-2. *Additionally, I want to avoid that the `argilla` username deletes datasets from the UI*: You need to set up `ANNOTATOR_PASSWORD` and use the `argilla` generated API key with the Python Client (check your Space logs). This option might be interesting if you want to control dataset management but want anyone to browse your datasets using the `argilla` user.
-3. *Additionally, I want to avoid that anyone without password browses my datasets with the `argilla` user*: You need to set up `ANNOTATOR_PASSWORD`. In this case, you can use the `argilla` generated API key and/or `ADMIN_API_KEY` values with the Python Client depending on your needs for dataset deletion rights.
+1. _I want to avoid that anyone without the API keys adds, deletes, or updates datasets using the Python client_: You need to set up `ADMIN_PASSWORD` and `ADMIN_API_KEY`.
+2. _Additionally, I want to avoid that the `argilla` username deletes datasets from the UI_: You need to set up `ANNOTATOR_PASSWORD` and use the `argilla` generated API key with the Python Client (check your Space logs). This option might be interesting if you want to control dataset management but want anyone to browse your datasets using the `argilla` user.
+3. _Additionally, I want to avoid that anyone without password browses my datasets with the `argilla` user_: You need to set up `ANNOTATOR_PASSWORD`. In this case, you can use the `argilla` generated API key and/or `ADMIN_API_KEY` values with the Python Client depending on your needs for dataset deletion rights.
-Additionally, the `LOAD_DATASETS` will let you configure the sample datasets that will be pre-loaded. The default value is `single` and the supported values for this variable are:
- 1. `single`: Load single datasets for TextClassification task.
- 2. `full`: Load all the sample datasets for NLP tasks (TokenClassification, TextClassification, Text2Text)
- 3. `none`: No datasets being loaded.
+Additionally, the `LOAD_DATASETS` will let you configure the sample datasets that will be pre-loaded. The default value is `single` and the supported values for this variable are: 1. `single`: Load single datasets for TextClassification task. 2. `full`: Load all the sample datasets for NLP tasks (TokenClassification, TextClassification, Text2Text) 3. `none`: No datasets being loaded.
## Setting up HF Authentication
@@ -190,14 +188,14 @@ From version `1.23.0` you can enable Hugging Face authentication for your Argill
This feature is specially useful for public crowdsourcing projects. If you would like to have more control over who can log in to the Space, you can set this up on a private space so that only members of your Organization can sign in. Alternatively, you may want to [create users](/getting_started/installation/configurations/user_management.md#create-a-user) and use their credentials instead.
```
-To enable this feature, you will first need to [create an OAuth App in Hugging Face](https://huggingface.co/docs/hub/oauth#creating-an-oauth-app). To do that, go to your user settings in Hugging Face and select *Connected Apps* > *Create App*. Once inside, choose a name for your app and complete the form with the following information:
+To enable this feature, you will first need to [create an OAuth App in Hugging Face](https://huggingface.co/docs/hub/oauth#creating-an-oauth-app). To do that, go to your user settings in Hugging Face and select _Connected Apps_ > _Create App_. Once inside, choose a name for your app and complete the form with the following information:
-* **Homepage URL:** [Your Argilla Space Direct URL](/getting_started/installation/deployments/huggingface-spaces.md#your-argilla-space-url).
-* **Logo URL:** `[Your Argilla Space Direct URL]/favicon.ico`
-* **Scopes:** `openid` and `profile`.
-* **Redirect URL:** `[Your Argilla Space Direct URL]/oauth/huggingface/callback`
+- **Homepage URL:** [Your Argilla Space Direct URL](/getting_started/installation/deployments/huggingface-spaces.md#your-argilla-space-url).
+- **Logo URL:** `[Your Argilla Space Direct URL]/favicon.ico`
+- **Scopes:** `openid` and `profile`.
+- **Redirect URL:** `[Your Argilla Space Direct URL]/oauth/huggingface/callback`
-This will create a Client ID and an App Secret that you will need to add as variables of your Space. To do this, go to the Space *Settings* > *Variables and Secrets* and save the Client ID and App Secret as environment secrets like so:
+This will create a Client ID and an App Secret that you will need to add as variables of your Space. To do this, go to the Space _Settings_ > _Variables and Secrets_ and save the Client ID and App Secret as environment secrets like so:
1. **Name:** `OAUTH2_HUGGINGFACE_CLIENT_ID` - **Value:** [Your Client ID]
2. **Name:** `OAUTH2_HUGGINGFACE_CLIENT_SECRET` - **Value:** [Your App Secret]
@@ -209,8 +207,8 @@ Alternatively, you can provide the environment variables in the `.oauth.yaml` fi
enabled: true
providers:
-# The OAuth provider setup
-# For now, only Hugging Face is supported
+ # The OAuth provider setup
+ # For now, only Hugging Face is supported
- name: huggingface
# This is the client ID of the OAuth app. You can find it in your Hugging Face settings.
# see https://huggingface.co/docs/hub/oauth#creating-an-oauth-app for more info.
@@ -228,7 +226,7 @@ providers:
# This section defines the allowed workspaces for the oauth users.
# Workspaces defined here must exist in Argilla.
allowed_workspaces:
- - name: admin
+ - name: admin
```
```{warning}
@@ -237,4 +235,4 @@ Be aware that the `.oauth.yaml` file is public in the case of public spaces or m
Therefore, we recommend setting these variables as enviroment secrets.
```
-Now check that the `enabled` parameter is set to `true` in your `.oauth.yaml` file and go back to the *Settings* to do a *Factory rebuild*. Once the Space is restarted, you and your collaborators can sign and log in to your Space using their Hugging Face accounts.
+Now check that the `enabled` parameter is set to `true` in your `.oauth.yaml` file and go back to the _Settings_ to do a _Factory rebuild_. Once the Space is restarted, you and your collaborators can sign and log in to your Space using their Hugging Face accounts.
diff --git a/docs/_source/index.rst b/docs/_source/index.rst
index 0fb7317be6c..12153589771 100644
--- a/docs/_source/index.rst
+++ b/docs/_source/index.rst
@@ -62,7 +62,7 @@
:maxdepth: 3
:hidden:
- Slack \n",
- "\n",
- "Tip\n",
- " \n",
- "This tutorial is a Jupyter Notebook. There are two options to run it:\n",
- "\n",
- "- Use the Open in Colab button at the top of this page. This option allows you to run the notebook directly on Google Colab. Don't forget to change the runtime type to GPU for faster model training and inference.\n",
- "- Download the .ipynb file by clicking on the View source link at the top of the page. This option allows you to download the notebook and run it on your local machine or on a Jupyter notebook tool of your choice.\n",
- "
"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "69321d8f-d3c4-4627-96ef-de416db75181",
- "metadata": {},
- "source": [
- "## Setup\n",
- "In this tutorial, we'll use `openai` and `datasets` libraries."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "a0991d97-a5e1-415b-9ae6-4df48e98a796",
- "metadata": {},
- "outputs": [],
- "source": [
- "%pip install openai datasets argilla -qqq"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "689a6615",
- "metadata": {},
- "source": [
- "Let's import the Argilla module for reading and writing data:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "42ff11e8",
- "metadata": {},
- "outputs": [],
- "source": [
- "import argilla as rg"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "556046ed",
- "metadata": {
- "id": "7TRNourOwigS"
- },
- "source": [
- "If you are running Argilla using the Docker quickstart image or Hugging Face Spaces, you need to init the Argilla client with the `URL` and `API_KEY`:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "1ab3983e",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Replace api_url with the url to your HF Spaces URL if using Spaces\n",
- "# Replace api_key if you configured a custom API key\n",
- "rg.init(\n",
- " api_url=\"http://localhost:6900\", \n",
- " api_key=\"admin.apikey\"\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "If you're running a private Hugging Face Space, you will also need to set the [HF_TOKEN](https://huggingface.co/settings/tokens) as follows:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# # Set the HF_TOKEN environment variable\n",
- "# import os\n",
- "# os.environ['HF_TOKEN'] = \"your-hf-token\"\n",
- "\n",
- "# # Replace api_url with the url to your HF Spaces URL\n",
- "# # Replace api_key if you configured a custom API key\n",
- "# rg.init(\n",
- "# api_url=\"https://[your-owner-name]-[your_space_name].hf.space\", \n",
- "# api_key=\"admin.apikey\",\n",
- "# extra_headers={\"Authorization\": f\"Bearer {os.environ['HF_TOKEN']}\"},\n",
- "# )"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "0d0586c0",
- "metadata": {
- "id": "ccL8UFwj_CaD"
- },
- "source": [
- "Now let's include the imports we need:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 174,
- "id": "4f45016e-508b-498e-b8fb-83ec6fda2664",
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "from json import loads\n",
- "import openai\n",
- "from datasets import load_dataset\n",
- "import pandas as pd\n",
- "from argilla.metrics.text_classification import f1\n",
- "from argilla.metrics.commons import text_length"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Enable Telemetry\n",
- "\n",
- "We gain valuable insights from how you interact with our tutorials. To improve ourselves in offering you the most suitable content, using the following lines of code will help us understand that this tutorial is serving you effectively. Though this is entirely anonymous, you can choose to skip this step if you prefer. For more info, please check out the [Telemetry](../../reference/telemetry.md) page."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "try:\n",
- " from argilla.utils.telemetry import tutorial_running\n",
- " tutorial_running()\n",
- "except ImportError:\n",
- " print(\"Telemetry is introduced in Argilla 1.20.0 and not found in the current installation. Skipping telemetry.\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2697c2cd-d6d1-45fb-97b6-2bf2b97d60c0",
- "metadata": {},
- "source": [
- "## 0. The dataset: `banking77` sentiment dataset\n",
- "\n",
- "For this tutorial, we'll use a small dataset that contains labels created with Argilla as part of [other tutorials](training-textclassification-transformers-pretrained.ipynb).\n",
- "\n",
- "This dataset is based on the [banking77](https://huggingface.co/datasets/banking77) dataset, which contains online banking user queries annotated with their corresponding intents. \n",
- "\n",
- "For our use case, **we've labelled the sentiment of these queries** which might be useful for digital assistants and customer service analytics.\n",
- "\n",
- "\n",
- "Let's load the labelled dataset directly from the Hub."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "eb5648f1-9bc2-4b47-a6d4-e23b0bc60bf0",
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " text label\n",
- "0 are you sending me my card? 1\n",
- "1 Two days ago I did a transfer to another accou... 1\n",
- "2 Why didn't I receive the right amount of cash? 0\n",
- "3 Is there a reason why my virtual card won't work? 0\n",
- "4 Why is my balance the same after a transfer? 1\n",
- "5 My money hasn't been transferred yet. 0\n",
- "6 It is still pending, I am still waiting. Your ... 0\n",
- "7 What are the places that you deliver cards to? 1\n",
- "8 Why are my withdrawals suddenly being declined? 1\n",
- "9 How do I reset my passcode? 1\n",
- "10 I do not see the money I transferred into this... 0\n",
- "11 How much will it cost me for a SEPA transfer? 1\n",
- "12 Please provide me with the restrictions of the... 1\n",
- "13 Can you tell me how to tell where my funds com... 1\n",
- "14 I can't get the top-up to work! What's going o... 0"
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "d018ede1-93e5-44f7-a8b8-ea8436d063c1",
+ "metadata": {},
+ "source": [
+ "# ๐ก Build and evaluate a zero-shot sentiment classifier with GPT-3\n",
+ "\n",
+ "In this tutorial, we'll **build and evaluate a sentiment classifier for customer requests in the financial domain** using GPT-3 and Argilla. \n",
+ "\n",
+ "GPT-3 is a powerful [model and API](https://openai.com/api/) from OpenAI that performs a variety of natural language tasks. [Argilla](https://www.argilla.io/) empowers you to quickly build and iterate on data for NLP.\n",
+ "\n",
+ "In this tutorial, you'll learn to:\n",
+ "\n",
+ "- Set up and use a zero-shot sentiment classifier, which not only analyses the sentiment but also includes an explanation of its predictions!\n",
+ "- Use Argilla to evaluate the quality of predictions and review an existing training set.\n",
+ "\n",
+ "This tutorial highlights the potential of building human-in-the-loop workflows involving large language models like GPT-3. \n",
+ "\n",
+ "Let's get started!\n",
+ "\n",
+ "![Screenshot of Argilla UI](../../_static/tutorials/labelling-textclassification-gpt3-fewshot/labelling-textclassification-gpt3-fewshot-1.png)"
]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "banking_ds = load_dataset(\"argilla/banking_sentiment_setfit\")\n",
- "# preview dataset content\n",
- "banking_ds[\"train\"].to_pandas().head(15)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "3742e35a-6afc-4aeb-8701-b0245cd77350",
- "metadata": {},
- "source": [
- "### A note on sentiment analysis and data annotation\n",
- "\n",
- "Sentiment analysis is one of the most subjective tasks in NLP. What we understand by sentiment will vary from one application to another and depend on the business objectives of the project. Also, sentiment can be modeled in different ways, leading to different **labeling schemes**. \n",
- "\n",
- "For example, sentiment can be modeled as real value (going from -1 to 1, from 0 to 1.0, etc.) or with 2 or more labels (including different degrees such as positive, negative, neutral, etc.)\n",
- "\n",
- "For this tutorial, we'll use the **following labeling scheme**: `POSITIVE`, `NEGATIVE` and `NEUTRAL`."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "dd871f0a-6056-4663-81f1-fc74a9cc03bb",
- "metadata": {},
- "source": [
- "## 1. Building a zero-shot sentiment classifier with GPT-3\n",
- "\n",
- "In order to build a zero-shot sentiment classifier we need to design a prompt, a technique known as \"Prompt Engineering\". For this tutorial, we've experimented with several prompts using the OpenAI playground, and inspired by the [excellent blog](https://medium.com/@xmikex83/building-an-aspect-based-sentiment-analysis-pipeline-using-gpt-3-67e26f2a8a5b) post by [Michele Pangrazzi](https://medium.com/@xmikex83).\n",
- "\n",
- "We'll be using the [Completion API](https://beta.openai.com/docs/api-reference/completions/create), you can check the reference documentation to understand the different function parameters.\n",
- "\n",
- "To find the prompt template, we've played with different variations using the OpenAI playground UI, as shown below:\n",
- "\n",
- "![Screenshot of Argilla UI](../../_static/tutorials/labelling-textclassification-gpt3-fewshot/labelling-textclassification-gpt3-fewshot-2.png)\n",
- "\n",
- "The main structure of our prompt is:\n",
- "\n",
- "1. **Define the task**: sentiment classification of customer requests\n",
- "2. **Define the format and labels**: we want three labels and a JSON format (so far this format only worked for `text-davinci-003` the most recent and powerful model)\n",
- "3. **Define the text to classify**: this part we'll be added for each example in our dataset.\n",
- "\n",
- "Probably the most interesting thing of this prompt is that **we ask the model to explain its prediction and add it to the response**. You'll see later that this is a powerful mechanism to understand the model decisions, the task, and even review our manually labelled ground-truth.\n",
- "\n",
- "As we want to test zero-shot capabilities we won't provide any examples. In further tutorials, we'll extend this with N-shot by providing examples in the prompt itself, and also show how you can fine-tune GPT-3 with labelled examples. If you are interested join our [amazing community](https://join.slack.com/t/rubrixworkspace/shared_invite/zt-whigkyjn-a3IUJLD7gDbTZ0rKlvcJ5g) and let's discuss!\n",
- "\n",
- "Below we define the prompt template, to which we will append the text to classify before calling the `openai.Completion.create` function."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 161,
- "id": "731334f6-6c51-43d0-8f98-3e9920a0cae9",
- "metadata": {},
- "outputs": [],
- "source": [
- "PROMPT_TEMPLATE = \"\"\"\n",
- "Classify the sentiment of the customer request using the following JSON format. Use positive, negative, and neutral in lowercase:\n",
- "\n",
- "{\"prediction\": sentiment label string, \"explanation\": sentence string describing why you think is the sentiment}\n",
- "\n",
- "Customer request:\n",
- "\n",
- "\"\"\""
- ]
- },
- {
- "cell_type": "markdown",
- "id": "bc19654d-4b0e-4611-b743-bacd7b628b8d",
- "metadata": {},
- "source": [
- "Now, let's define our classification function. This function adds the input text to the prompt template, calls the OpenAI API, and tries to parse the JSON response. In some of our experiments, sometimes the returned JSON is not valid. We take this into account and flag those predictions as `None` and add the json response in the explanation field. \n",
- "\n",
- "\n",
- "\n", - " | text | \n", - "label | \n", - "
---|---|---|
0 | \n", - "are you sending me my card? | \n", - "1 | \n", - "
1 | \n", - "Two days ago I did a transfer to another accou... | \n", - "1 | \n", - "
2 | \n", - "Why didn't I receive the right amount of cash? | \n", - "0 | \n", - "
3 | \n", - "Is there a reason why my virtual card won't work? | \n", - "0 | \n", - "
4 | \n", - "Why is my balance the same after a transfer? | \n", - "1 | \n", - "
5 | \n", - "My money hasn't been transferred yet. | \n", - "0 | \n", - "
6 | \n", - "It is still pending, I am still waiting. Your ... | \n", - "0 | \n", - "
7 | \n", - "What are the places that you deliver cards to? | \n", - "1 | \n", - "
8 | \n", - "Why are my withdrawals suddenly being declined? | \n", - "1 | \n", - "
9 | \n", - "How do I reset my passcode? | \n", - "1 | \n", - "
10 | \n", - "I do not see the money I transferred into this... | \n", - "0 | \n", - "
11 | \n", - "How much will it cost me for a SEPA transfer? | \n", - "1 | \n", - "
12 | \n", - "Please provide me with the restrictions of the... | \n", - "1 | \n", - "
13 | \n", - "Can you tell me how to tell where my funds com... | \n", - "1 | \n", - "
14 | \n", - "I can't get the top-up to work! What's going o... | \n", - "0 | \n", - "
\n",
- "\n",
- "Note\n",
- "\n",
- "If you want to skip the prediction calls to OpenAI, you can load the records with the predictions and labels from the Hugging Face Hub by running the code below and going directly to step 2:\n",
- " \n",
- "```python\n",
- "\n",
- "records = load_dataset(\"argilla/banking_sentiment_zs_gpt3\", split=\"train\")\n",
- "rg.log(records, \"banking_sentiment_zs_gpt3\")\n",
- " \n",
- "```\n",
- " \n",
- "
"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 162,
- "id": "5a3c75da-288f-4b6f-8d9d-7f8f34c85c6b",
- "metadata": {},
- "outputs": [],
- "source": [
- "# set your api key as ENV, for example with Python: os.environ[\"OPENAI_API_KEY\"]\n",
- "openai.api_key = os.getenv(\"OPENAI_API_KEY\") \n",
- "\n",
- "def classify(text):\n",
- " # build prompt with template and input\n",
- " prompt = f\"{PROMPT_TEMPLATE}\\n{text}\\n\"\n",
- " # use create completion template\n",
- " completion = openai.Completion.create(\n",
- " model=\"text-davinci-003\",\n",
- " prompt=prompt,\n",
- " temperature=0,\n",
- " max_tokens=256\n",
- " )\n",
- " # get first choice text\n",
- " json_response = completion[\"choices\"][0][\"text\"].strip()\n",
- " try:\n",
- " prediction = loads(json_response)\n",
- " except:\n",
- " # for some examples, json is not correctly formatted\n",
- " return {\"prediction\": None, \"explanation\": f\"Wrong JSON format: {json_response}\" }\n",
- " return prediction "
- ]
- },
- {
- "cell_type": "markdown",
- "id": "7ce93190-fb8c-4c67-8e82-1c59c95fb058",
- "metadata": {},
- "source": [
- "Now let's call this method for each example in our banking sentiment test set so we can compare it with other methods (SetFit, Few-shot GPT-3, and others).\n",
- "\n",
- "We use the `map` method from the `datasets` library and show the results in a table as follows:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 190,
- "id": "c1308203-8485-4744-8180-a1df792903cd",
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " text \\\n",
- "0 My card payment had the wrong exchange rate \n",
- "1 I believe that a card payment I made was cancelled. \n",
- "2 Why was I charged for getting cash? \n",
- "3 I deposited cash into my account a week ago and it is still not available, please tell me why? I need the cash back now. \n",
- "4 Do you accept cash? \n",
- "5 Is the top-up amount unlimited? \n",
- "6 I think I am a victim of fraud. I noticed there was a charge on my account that I didn't do because I haven't touched my card today. Can you please reverse the charge and refund my money? \n",
- "7 Why do I see an extra โฌ1 charge on my statement? \n",
- "8 I tried to transfer money to a receiver and they didn't get the right amount. What is going on and who do I contact to help me? \n",
- "9 The check I deposited yesterday isn't listed yet. Isn't that pretty slow? I need to see the balance increased by that check. \n",
- "10 I couldn't get money from the ATM \n",
- "11 There are a couple payments with my card shown that I'm not responsible for. What is going on? Maybe someone has access to my account. \n",
- "12 will you be able to activate my card \n",
- "13 Why would a cash withdrawal be pending? \n",
- "14 I was charged twice for the same purchase! \n",
- "\n",
- " label prediction \\\n",
- "0 0 negative \n",
- "1 1 neutral \n",
- "2 1 negative \n",
- "3 0 negative \n",
- "4 1 neutral \n",
- "5 1 neutral \n",
- "6 0 negative \n",
- "7 0 neutral \n",
- "8 0 negative \n",
- "9 0 negative \n",
- "10 1 negative \n",
- "11 0 negative \n",
- "12 1 neutral \n",
- "13 0 neutral \n",
- "14 0 negative \n",
- "\n",
- " explanation \n",
- "0 The customer is expressing dissatisfaction with their card payment having the wrong exchange rate, indicating a negative sentiment. \n",
- "1 The customer is expressing a belief, but not expressing any sentiment about the situation. \n",
- "2 The customer is expressing frustration and confusion about being charged for getting cash, indicating a negative sentiment. \n",
- "3 The customer is expressing frustration and urgency due to the delay in their cash being available, indicating a negative sentiment. \n",
- "4 The customer is simply asking a question and does not express any sentiment. \n",
- "5 The customer is asking a factual question, not expressing an opinion or emotion. \n",
- "6 The customer is expressing concern about a fraudulent charge on their account, indicating a negative sentiment. \n",
- "7 The customer is asking a question without expressing any sentiment. \n",
- "8 The customer is expressing frustration with an issue that has not been resolved, indicating a negative sentiment. \n",
- "9 The customer is expressing frustration with the slow processing of their check deposit, indicating a negative sentiment. \n",
- "10 The customer is expressing frustration with not being able to access money from the ATM, indicating a negative sentiment. \n",
- "11 The customer is expressing concern and worry about their account security, indicating a negative sentiment. \n",
- "12 The customer is making a request for a service, which does not indicate any sentiment. \n",
- "13 The customer is asking a question without expressing any sentiment. \n",
- "14 The customer is expressing frustration with being charged twice for the same purchase, indicating a negative sentiment. "
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "dfcfb8a8",
+ "metadata": {},
+ "source": [
+ "## Running Argilla\n",
+ "\n",
+ "For this tutorial, you will need to have an Argilla server running. There are two main options for deploying and running Argilla:\n",
+ "\n",
+ "\n",
+ "**Deploy Argilla on Hugging Face Spaces**: If you want to run tutorials with external notebooks (e.g., Google Colab) and you have an account on Hugging Face, you can deploy Argilla on Spaces with a few clicks:\n",
+ "\n",
+ "[![deploy on spaces](https://huggingface.co/datasets/huggingface/badges/raw/main/deploy-to-spaces-lg.svg)](https://huggingface.co/new-space?template=argilla/argilla-template-space)\n",
+ "\n",
+ "For details about configuring your deployment, check the [official Hugging Face Hub guide](https://huggingface.co/docs/hub/spaces-sdks-docker-argilla).\n",
+ "\n",
+ "\n",
+ "**Launch Argilla using Argilla's quickstart Docker image**: This is the recommended option if you want [Argilla running on your local machine](../../getting_started/quickstart.ipynb). Note that this option will only let you run the tutorial locally and not with an external notebook service.\n",
+ "\n",
+ "For more information on deployment options, please check the Deployment section of the documentation.\n",
+ "\n",
+ "\n", - " | text | \n", - "label | \n", - "prediction | \n", - "explanation | \n", - "
---|---|---|---|---|
0 | \n", - "My card payment had the wrong exchange rate | \n", - "0 | \n", - "negative | \n", - "The customer is expressing dissatisfaction with their card payment having the wrong exchange rate, indicating a negative sentiment. | \n", - "
1 | \n", - "I believe that a card payment I made was cancelled. | \n", - "1 | \n", - "neutral | \n", - "The customer is expressing a belief, but not expressing any sentiment about the situation. | \n", - "
2 | \n", - "Why was I charged for getting cash? | \n", - "1 | \n", - "negative | \n", - "The customer is expressing frustration and confusion about being charged for getting cash, indicating a negative sentiment. | \n", - "
3 | \n", - "I deposited cash into my account a week ago and it is still not available, please tell me why? I need the cash back now. | \n", - "0 | \n", - "negative | \n", - "The customer is expressing frustration and urgency due to the delay in their cash being available, indicating a negative sentiment. | \n", - "
4 | \n", - "Do you accept cash? | \n", - "1 | \n", - "neutral | \n", - "The customer is simply asking a question and does not express any sentiment. | \n", - "
5 | \n", - "Is the top-up amount unlimited? | \n", - "1 | \n", - "neutral | \n", - "The customer is asking a factual question, not expressing an opinion or emotion. | \n", - "
6 | \n", - "I think I am a victim of fraud. I noticed there was a charge on my account that I didn't do because I haven't touched my card today. Can you please reverse the charge and refund my money? | \n", - "0 | \n", - "negative | \n", - "The customer is expressing concern about a fraudulent charge on their account, indicating a negative sentiment. | \n", - "
7 | \n", - "Why do I see an extra โฌ1 charge on my statement? | \n", - "0 | \n", - "neutral | \n", - "The customer is asking a question without expressing any sentiment. | \n", - "
8 | \n", - "I tried to transfer money to a receiver and they didn't get the right amount. What is going on and who do I contact to help me? | \n", - "0 | \n", - "negative | \n", - "The customer is expressing frustration with an issue that has not been resolved, indicating a negative sentiment. | \n", - "
9 | \n", - "The check I deposited yesterday isn't listed yet. Isn't that pretty slow? I need to see the balance increased by that check. | \n", - "0 | \n", - "negative | \n", - "The customer is expressing frustration with the slow processing of their check deposit, indicating a negative sentiment. | \n", - "
10 | \n", - "I couldn't get money from the ATM | \n", - "1 | \n", - "negative | \n", - "The customer is expressing frustration with not being able to access money from the ATM, indicating a negative sentiment. | \n", - "
11 | \n", - "There are a couple payments with my card shown that I'm not responsible for. What is going on? Maybe someone has access to my account. | \n", - "0 | \n", - "negative | \n", - "The customer is expressing concern and worry about their account security, indicating a negative sentiment. | \n", - "
12 | \n", - "will you be able to activate my card | \n", - "1 | \n", - "neutral | \n", - "The customer is making a request for a service, which does not indicate any sentiment. | \n", - "
13 | \n", - "Why would a cash withdrawal be pending? | \n", - "0 | \n", - "neutral | \n", - "The customer is asking a question without expressing any sentiment. | \n", - "
14 | \n", - "I was charged twice for the same purchase! | \n", - "0 | \n", - "negative | \n", - "The customer is expressing frustration with being charged twice for the same purchase, indicating a negative sentiment. | \n", - "
\n",
+ "\n",
+ "Tip\n",
+ " \n",
+ "This tutorial is a Jupyter Notebook. There are two options to run it:\n",
+ "\n",
+ "- Use the Open in Colab button at the top of this page. This option allows you to run the notebook directly on Google Colab. Don't forget to change the runtime type to GPU for faster model training and inference.\n",
+ "- Download the .ipynb file by clicking on the View source link at the top of the page. This option allows you to download the notebook and run it on your local machine or on a Jupyter notebook tool of your choice.\n",
+ "
"
]
- },
- "execution_count": 190,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# let's predict over the test set to eval our zero-shot classifier\n",
- "test_ds_with_preds = banking_ds[\"test\"].map(lambda example: classify(example[\"text\"]))\n",
- "\n",
- "pd.set_option('display.max_colwidth', None)\n",
- "test_ds_with_preds.to_pandas().head(15)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "3294f53e-8eef-42f1-9d20-6e66c3e9ca6c",
- "metadata": {},
- "source": [
- "## 2. Evaluating our zero-shot sentiment classifier\n",
- "\n",
- "Now we have our small test dataset with predictions from GPT-3 zero-shot classifier. It's time to use Argilla to evaluate our model.\n",
- "\n",
- "First, we'll build the dataset and log it into Argilla using the `rg.log` method. We'll include the `explanation` as part of the input so we can quickly see both the prediction and their explanation:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "25822c93-3980-4d3f-8856-a8ad40642f1c",
- "metadata": {},
- "outputs": [],
- "source": [
- "import argilla as rg\n",
- "\n",
- "# get the label strings to turn int ids into string names\n",
- "labels = banking_ds[\"test\"].features[\"label\"].names\n",
- "\n",
- "records = []\n",
- "for example in test_ds_with_preds:\n",
- " # create a record with ground-truth annotations and gpt-3 predictions\n",
- " record = rg.TextClassificationRecord(\n",
- " inputs={\"text\": example[\"text\"], \"explanation\": example[\"explanation\"]},\n",
- " annotation=labels[example[\"label\"]],\n",
- " prediction=[(example[\"prediction\"].lower(), 1.0)]\n",
- " )\n",
- " records.append(record)\n",
- "\n",
- "# create a dataset in Argilla\n",
- "rg.log(records, \"banking_sentiment_zs_gpt3\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5e56b798-c95a-4a75-b099-b9e32999c025",
- "metadata": {},
- "source": [
- "This will take 1 second and create a fully browsable dataset in the Argilla UI. Let's now analyze the quality of GPT-3's predictions."
- ]
- },
- {
- "cell_type": "markdown",
- "id": "3f6abad7-d26e-45a5-98f0-73bd69550eef",
- "metadata": {},
- "source": [
- "### Overall metrics\n",
- "\n",
- "Using the `metrics` module we can get a quick overview of the overall performance metrics as follows. The model achieves around `0.77` F1 micro-average.\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 180,
- "id": "464eca24-72fe-402f-8a87-a2185bab9cdf",
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "application/vnd.plotly.v1+json": {
- "config": {
- "plotlyServerURL": "https://plot.ly"
- },
- "data": [
- {
- "type": "bar",
- "x": [
- "precision",
- "recall",
- "f1"
- ],
- "xaxis": "x",
- "y": [
- 0.7532467532467533,
- 0.7708333333333333,
- 0.7591973244147158
- ],
- "yaxis": "y"
- },
- {
- "type": "bar",
- "x": [
- "precision",
- "recall",
- "f1"
- ],
- "xaxis": "x2",
- "y": [
- 0.7777777777777778,
- 0.7777777777777778,
- 0.7777777777777778
- ],
- "yaxis": "y2"
- },
+ "cell_type": "markdown",
+ "id": "69321d8f-d3c4-4627-96ef-de416db75181",
+ "metadata": {},
+ "source": [
+ "## Setup\n",
+ "In this tutorial, we'll use `openai` and `datasets` libraries."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a0991d97-a5e1-415b-9ae6-4df48e98a796",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%pip install openai datasets argilla -qqq"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "689a6615",
+ "metadata": {},
+ "source": [
+ "Let's import the Argilla module for reading and writing data:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "42ff11e8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import argilla as rg"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "556046ed",
+ "metadata": {
+ "id": "7TRNourOwigS"
+ },
+ "source": [
+ "If you are running Argilla using the Docker quickstart image or Hugging Face Spaces, you need to init the Argilla client with the `URL` and `API_KEY`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1ab3983e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Replace api_url with the url to your HF Spaces URL if using Spaces\n",
+ "# Replace api_key if you configured a custom API key\n",
+ "rg.init(\n",
+ " api_url=\"http://localhost:6900\", \n",
+ " api_key=\"admin.apikey\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If you're running a private Hugging Face Space, you will also need to set the [HF_TOKEN](https://huggingface.co/settings/tokens) as follows:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# # Set the HF_TOKEN environment variable\n",
+ "# import os\n",
+ "# os.environ['HF_TOKEN'] = \"your-hf-token\"\n",
+ "\n",
+ "# # Replace api_url with the url to your HF Spaces URL\n",
+ "# # Replace api_key if you configured a custom API key\n",
+ "# rg.init(\n",
+ "# api_url=\"https://[your-owner-name]-[your_space_name].hf.space\", \n",
+ "# api_key=\"admin.apikey\",\n",
+ "# extra_headers={\"Authorization\": f\"Bearer {os.environ['HF_TOKEN']}\"},\n",
+ "# )"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "0d0586c0",
+ "metadata": {
+ "id": "ccL8UFwj_CaD"
+ },
+ "source": [
+ "Now let's include the imports we need:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 174,
+ "id": "4f45016e-508b-498e-b8fb-83ec6fda2664",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "from json import loads\n",
+ "import openai\n",
+ "from datasets import load_dataset\n",
+ "import pandas as pd\n",
+ "from argilla.metrics.text_classification import f1\n",
+ "from argilla.metrics.commons import text_length"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Enable Telemetry\n",
+ "\n",
+ "We gain valuable insights from how you interact with our tutorials. To improve ourselves in offering you the most suitable content, using the following lines of code will help us understand that this tutorial is serving you effectively. Though this is entirely anonymous, you can choose to skip this step if you prefer. For more info, please check out the [Telemetry](../../reference/telemetry.md) page."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "try:\n",
+ " from argilla.utils.telemetry import tutorial_running\n",
+ " tutorial_running()\n",
+ "except ImportError:\n",
+ " print(\"Telemetry is introduced in Argilla 1.20.0 and not found in the current installation. Skipping telemetry.\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2697c2cd-d6d1-45fb-97b6-2bf2b97d60c0",
+ "metadata": {},
+ "source": [
+ "## 0. The dataset: `banking77` sentiment dataset\n",
+ "\n",
+ "For this tutorial, we'll use a small dataset that contains labels created with Argilla as part of [other tutorials](training-textclassification-transformers-pretrained.ipynb).\n",
+ "\n",
+ "This dataset is based on the [banking77](https://huggingface.co/datasets/banking77) dataset, which contains online banking user queries annotated with their corresponding intents. \n",
+ "\n",
+ "For our use case, **we've labelled the sentiment of these queries** which might be useful for digital assistants and customer service analytics.\n",
+ "\n",
+ "\n",
+ "Let's load the labelled dataset directly from the Hub."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "eb5648f1-9bc2-4b47-a6d4-e23b0bc60bf0",
+ "metadata": {},
+ "outputs": [
{
- "type": "bar",
- "x": [
- "negative_precision",
- "negative_recall",
- "negative_f1",
- "neutral_precision",
- "neutral_recall",
- "neutral_f1"
- ],
- "xaxis": "x3",
- "y": [
- 0.6428571428571429,
- 0.75,
- 0.6923076923076924,
- 0.8636363636363636,
- 0.7916666666666666,
- 0.8260869565217391
- ],
- "yaxis": "y3"
- }
- ],
- "layout": {
- "annotations": [
- {
- "font": {
- "size": 16
- },
- "showarrow": false,
- "text": "macro average",
- "x": 0.14444444444444446,
- "xanchor": "center",
- "xref": "paper",
- "y": 1,
- "yanchor": "bottom",
- "yref": "paper"
- },
- {
- "font": {
- "size": 16
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " text label\n",
+ "0 are you sending me my card? 1\n",
+ "1 Two days ago I did a transfer to another accou... 1\n",
+ "2 Why didn't I receive the right amount of cash? 0\n",
+ "3 Is there a reason why my virtual card won't work? 0\n",
+ "4 Why is my balance the same after a transfer? 1\n",
+ "5 My money hasn't been transferred yet. 0\n",
+ "6 It is still pending, I am still waiting. Your ... 0\n",
+ "7 What are the places that you deliver cards to? 1\n",
+ "8 Why are my withdrawals suddenly being declined? 1\n",
+ "9 How do I reset my passcode? 1\n",
+ "10 I do not see the money I transferred into this... 0\n",
+ "11 How much will it cost me for a SEPA transfer? 1\n",
+ "12 Please provide me with the restrictions of the... 1\n",
+ "13 Can you tell me how to tell where my funds com... 1\n",
+ "14 I can't get the top-up to work! What's going o... 0"
+ ]
},
- "showarrow": false,
- "text": "micro average",
- "x": 0.5,
- "xanchor": "center",
- "xref": "paper",
- "y": 1,
- "yanchor": "bottom",
- "yref": "paper"
- },
- {
- "font": {
- "size": 16
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "banking_ds = load_dataset(\"argilla/banking_sentiment_setfit\")\n",
+ "# preview dataset content\n",
+ "banking_ds[\"train\"].to_pandas().head(15)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3742e35a-6afc-4aeb-8701-b0245cd77350",
+ "metadata": {},
+ "source": [
+ "### A note on sentiment analysis and data annotation\n",
+ "\n",
+ "Sentiment analysis is one of the most subjective tasks in NLP. What we understand by sentiment will vary from one application to another and depend on the business objectives of the project. Also, sentiment can be modeled in different ways, leading to different **labeling schemes**. \n",
+ "\n",
+ "For example, sentiment can be modeled as real value (going from -1 to 1, from 0 to 1.0, etc.) or with 2 or more labels (including different degrees such as positive, negative, neutral, etc.)\n",
+ "\n",
+ "For this tutorial, we'll use the **following labeling scheme**: `POSITIVE`, `NEGATIVE` and `NEUTRAL`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dd871f0a-6056-4663-81f1-fc74a9cc03bb",
+ "metadata": {},
+ "source": [
+ "## 1. Building a zero-shot sentiment classifier with GPT-3\n",
+ "\n",
+ "In order to build a zero-shot sentiment classifier we need to design a prompt, a technique known as \"Prompt Engineering\". For this tutorial, we've experimented with several prompts using the OpenAI playground, and inspired by the [excellent blog](https://medium.com/@xmikex83/building-an-aspect-based-sentiment-analysis-pipeline-using-gpt-3-67e26f2a8a5b) post by [Michele Pangrazzi](https://medium.com/@xmikex83).\n",
+ "\n",
+ "We'll be using the [Completion API](https://beta.openai.com/docs/api-reference/completions/create), you can check the reference documentation to understand the different function parameters.\n",
+ "\n",
+ "To find the prompt template, we've played with different variations using the OpenAI playground UI, as shown below:\n",
+ "\n",
+ "![Screenshot of Argilla UI](../../_static/tutorials/labelling-textclassification-gpt3-fewshot/labelling-textclassification-gpt3-fewshot-2.png)\n",
+ "\n",
+ "The main structure of our prompt is:\n",
+ "\n",
+ "1. **Define the task**: sentiment classification of customer requests\n",
+ "2. **Define the format and labels**: we want three labels and a JSON format (so far this format only worked for `text-davinci-003` the most recent and powerful model)\n",
+ "3. **Define the text to classify**: this part we'll be added for each example in our dataset.\n",
+ "\n",
+ "Probably the most interesting thing of this prompt is that **we ask the model to explain its prediction and add it to the response**. You'll see later that this is a powerful mechanism to understand the model decisions, the task, and even review our manually labelled ground-truth.\n",
+ "\n",
+ "As we want to test zero-shot capabilities we won't provide any examples. In further tutorials, we'll extend this with N-shot by providing examples in the prompt itself, and also show how you can fine-tune GPT-3 with labelled examples. If you are interested join our [amazing community](http://hf.co/join/discord) and let's discuss!\n",
+ "\n",
+ "Below we define the prompt template, to which we will append the text to classify before calling the `openai.Completion.create` function."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 161,
+ "id": "731334f6-6c51-43d0-8f98-3e9920a0cae9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "PROMPT_TEMPLATE = \"\"\"\n",
+ "Classify the sentiment of the customer request using the following JSON format. Use positive, negative, and neutral in lowercase:\n",
+ "\n",
+ "{\"prediction\": sentiment label string, \"explanation\": sentence string describing why you think is the sentiment}\n",
+ "\n",
+ "Customer request:\n",
+ "\n",
+ "\"\"\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bc19654d-4b0e-4611-b743-bacd7b628b8d",
+ "metadata": {},
+ "source": [
+ "Now, let's define our classification function. This function adds the input text to the prompt template, calls the OpenAI API, and tries to parse the JSON response. In some of our experiments, sometimes the returned JSON is not valid. We take this into account and flag those predictions as `None` and add the json response in the explanation field. \n",
+ "\n",
+ "\n",
+ "\n", + " | text | \n", + "label | \n", + "
---|---|---|
0 | \n", + "are you sending me my card? | \n", + "1 | \n", + "
1 | \n", + "Two days ago I did a transfer to another accou... | \n", + "1 | \n", + "
2 | \n", + "Why didn't I receive the right amount of cash? | \n", + "0 | \n", + "
3 | \n", + "Is there a reason why my virtual card won't work? | \n", + "0 | \n", + "
4 | \n", + "Why is my balance the same after a transfer? | \n", + "1 | \n", + "
5 | \n", + "My money hasn't been transferred yet. | \n", + "0 | \n", + "
6 | \n", + "It is still pending, I am still waiting. Your ... | \n", + "0 | \n", + "
7 | \n", + "What are the places that you deliver cards to? | \n", + "1 | \n", + "
8 | \n", + "Why are my withdrawals suddenly being declined? | \n", + "1 | \n", + "
9 | \n", + "How do I reset my passcode? | \n", + "1 | \n", + "
10 | \n", + "I do not see the money I transferred into this... | \n", + "0 | \n", + "
11 | \n", + "How much will it cost me for a SEPA transfer? | \n", + "1 | \n", + "
12 | \n", + "Please provide me with the restrictions of the... | \n", + "1 | \n", + "
13 | \n", + "Can you tell me how to tell where my funds com... | \n", + "1 | \n", + "
14 | \n", + "I can't get the top-up to work! What's going o... | \n", + "0 | \n", + "
\n",
+ "\n",
+ "Note\n",
+ "\n",
+ "If you want to skip the prediction calls to OpenAI, you can load the records with the predictions and labels from the Hugging Face Hub by running the code below and going directly to step 2:\n",
+ " \n",
+ "```python\n",
+ "\n",
+ "records = load_dataset(\"argilla/banking_sentiment_zs_gpt3\", split=\"train\")\n",
+ "rg.log(records, \"banking_sentiment_zs_gpt3\")\n",
+ " \n",
+ "```\n",
+ " \n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 162,
+ "id": "5a3c75da-288f-4b6f-8d9d-7f8f34c85c6b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# set your api key as ENV, for example with Python: os.environ[\"OPENAI_API_KEY\"]\n",
+ "openai.api_key = os.getenv(\"OPENAI_API_KEY\") \n",
+ "\n",
+ "def classify(text):\n",
+ " # build prompt with template and input\n",
+ " prompt = f\"{PROMPT_TEMPLATE}\\n{text}\\n\"\n",
+ " # use create completion template\n",
+ " completion = openai.Completion.create(\n",
+ " model=\"text-davinci-003\",\n",
+ " prompt=prompt,\n",
+ " temperature=0,\n",
+ " max_tokens=256\n",
+ " )\n",
+ " # get first choice text\n",
+ " json_response = completion[\"choices\"][0][\"text\"].strip()\n",
+ " try:\n",
+ " prediction = loads(json_response)\n",
+ " except:\n",
+ " # for some examples, json is not correctly formatted\n",
+ " return {\"prediction\": None, \"explanation\": f\"Wrong JSON format: {json_response}\" }\n",
+ " return prediction "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7ce93190-fb8c-4c67-8e82-1c59c95fb058",
+ "metadata": {},
+ "source": [
+ "Now let's call this method for each example in our banking sentiment test set so we can compare it with other methods (SetFit, Few-shot GPT-3, and others).\n",
+ "\n",
+ "We use the `map` method from the `datasets` library and show the results in a table as follows:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 190,
+ "id": "c1308203-8485-4744-8180-a1df792903cd",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " text \\\n",
+ "0 My card payment had the wrong exchange rate \n",
+ "1 I believe that a card payment I made was cancelled. \n",
+ "2 Why was I charged for getting cash? \n",
+ "3 I deposited cash into my account a week ago and it is still not available, please tell me why? I need the cash back now. \n",
+ "4 Do you accept cash? \n",
+ "5 Is the top-up amount unlimited? \n",
+ "6 I think I am a victim of fraud. I noticed there was a charge on my account that I didn't do because I haven't touched my card today. Can you please reverse the charge and refund my money? \n",
+ "7 Why do I see an extra โฌ1 charge on my statement? \n",
+ "8 I tried to transfer money to a receiver and they didn't get the right amount. What is going on and who do I contact to help me? \n",
+ "9 The check I deposited yesterday isn't listed yet. Isn't that pretty slow? I need to see the balance increased by that check. \n",
+ "10 I couldn't get money from the ATM \n",
+ "11 There are a couple payments with my card shown that I'm not responsible for. What is going on? Maybe someone has access to my account. \n",
+ "12 will you be able to activate my card \n",
+ "13 Why would a cash withdrawal be pending? \n",
+ "14 I was charged twice for the same purchase! \n",
+ "\n",
+ " label prediction \\\n",
+ "0 0 negative \n",
+ "1 1 neutral \n",
+ "2 1 negative \n",
+ "3 0 negative \n",
+ "4 1 neutral \n",
+ "5 1 neutral \n",
+ "6 0 negative \n",
+ "7 0 neutral \n",
+ "8 0 negative \n",
+ "9 0 negative \n",
+ "10 1 negative \n",
+ "11 0 negative \n",
+ "12 1 neutral \n",
+ "13 0 neutral \n",
+ "14 0 negative \n",
+ "\n",
+ " explanation \n",
+ "0 The customer is expressing dissatisfaction with their card payment having the wrong exchange rate, indicating a negative sentiment. \n",
+ "1 The customer is expressing a belief, but not expressing any sentiment about the situation. \n",
+ "2 The customer is expressing frustration and confusion about being charged for getting cash, indicating a negative sentiment. \n",
+ "3 The customer is expressing frustration and urgency due to the delay in their cash being available, indicating a negative sentiment. \n",
+ "4 The customer is simply asking a question and does not express any sentiment. \n",
+ "5 The customer is asking a factual question, not expressing an opinion or emotion. \n",
+ "6 The customer is expressing concern about a fraudulent charge on their account, indicating a negative sentiment. \n",
+ "7 The customer is asking a question without expressing any sentiment. \n",
+ "8 The customer is expressing frustration with an issue that has not been resolved, indicating a negative sentiment. \n",
+ "9 The customer is expressing frustration with the slow processing of their check deposit, indicating a negative sentiment. \n",
+ "10 The customer is expressing frustration with not being able to access money from the ATM, indicating a negative sentiment. \n",
+ "11 The customer is expressing concern and worry about their account security, indicating a negative sentiment. \n",
+ "12 The customer is making a request for a service, which does not indicate any sentiment. \n",
+ "13 The customer is asking a question without expressing any sentiment. \n",
+ "14 The customer is expressing frustration with being charged twice for the same purchase, indicating a negative sentiment. "
+ ]
},
- "showarrow": false,
- "text": "per label",
- "x": 0.8555555555555556,
- "xanchor": "center",
- "xref": "paper",
- "y": 1,
- "yanchor": "bottom",
- "yref": "paper"
- }
- ],
- "autosize": true,
- "showlegend": false,
- "template": {
- "data": {
- "bar": [
- {
- "error_x": {
- "color": "#2a3f5f"
- },
- "error_y": {
- "color": "#2a3f5f"
- },
- "marker": {
- "line": {
- "color": "#E5ECF6",
- "width": 0.5
- },
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "bar"
- }
- ],
- "barpolar": [
- {
- "marker": {
- "line": {
- "color": "#E5ECF6",
- "width": 0.5
- },
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "barpolar"
- }
- ],
- "carpet": [
- {
- "aaxis": {
- "endlinecolor": "#2a3f5f",
- "gridcolor": "white",
- "linecolor": "white",
- "minorgridcolor": "white",
- "startlinecolor": "#2a3f5f"
- },
- "baxis": {
- "endlinecolor": "#2a3f5f",
- "gridcolor": "white",
- "linecolor": "white",
- "minorgridcolor": "white",
- "startlinecolor": "#2a3f5f"
- },
- "type": "carpet"
- }
- ],
- "choropleth": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "choropleth"
- }
- ],
- "contour": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "contour"
- }
- ],
- "contourcarpet": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "contourcarpet"
- }
- ],
- "heatmap": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "heatmap"
- }
- ],
- "heatmapgl": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "heatmapgl"
- }
- ],
- "histogram": [
- {
- "marker": {
- "pattern": {
- "fillmode": "overlay",
- "size": 10,
- "solidity": 0.2
- }
- },
- "type": "histogram"
- }
- ],
- "histogram2d": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "histogram2d"
- }
- ],
- "histogram2dcontour": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "histogram2dcontour"
- }
- ],
- "mesh3d": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "type": "mesh3d"
- }
- ],
- "parcoords": [
- {
- "line": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "parcoords"
- }
- ],
- "pie": [
- {
- "automargin": true,
- "type": "pie"
- }
- ],
- "scatter": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatter"
- }
- ],
- "scatter3d": [
- {
- "line": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatter3d"
- }
- ],
- "scattercarpet": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattercarpet"
- }
- ],
- "scattergeo": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattergeo"
- }
- ],
- "scattergl": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattergl"
- }
- ],
- "scattermapbox": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scattermapbox"
- }
- ],
- "scatterpolar": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterpolar"
- }
- ],
- "scatterpolargl": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterpolargl"
- }
- ],
- "scatterternary": [
- {
- "marker": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "type": "scatterternary"
- }
- ],
- "surface": [
- {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- },
- "colorscale": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
- ]
- ],
- "type": "surface"
- }
- ],
- "table": [
- {
- "cells": {
- "fill": {
- "color": "#EBF0F8"
- },
- "line": {
- "color": "white"
- }
- },
- "header": {
- "fill": {
- "color": "#C8D4E3"
- },
- "line": {
- "color": "white"
- }
+ "execution_count": 190,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# let's predict over the test set to eval our zero-shot classifier\n",
+ "test_ds_with_preds = banking_ds[\"test\"].map(lambda example: classify(example[\"text\"]))\n",
+ "\n",
+ "pd.set_option('display.max_colwidth', None)\n",
+ "test_ds_with_preds.to_pandas().head(15)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3294f53e-8eef-42f1-9d20-6e66c3e9ca6c",
+ "metadata": {},
+ "source": [
+ "## 2. Evaluating our zero-shot sentiment classifier\n",
+ "\n",
+ "Now we have our small test dataset with predictions from GPT-3 zero-shot classifier. It's time to use Argilla to evaluate our model.\n",
+ "\n",
+ "First, we'll build the dataset and log it into Argilla using the `rg.log` method. We'll include the `explanation` as part of the input so we can quickly see both the prediction and their explanation:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "25822c93-3980-4d3f-8856-a8ad40642f1c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import argilla as rg\n",
+ "\n",
+ "# get the label strings to turn int ids into string names\n",
+ "labels = banking_ds[\"test\"].features[\"label\"].names\n",
+ "\n",
+ "records = []\n",
+ "for example in test_ds_with_preds:\n",
+ " # create a record with ground-truth annotations and gpt-3 predictions\n",
+ " record = rg.TextClassificationRecord(\n",
+ " inputs={\"text\": example[\"text\"], \"explanation\": example[\"explanation\"]},\n",
+ " annotation=labels[example[\"label\"]],\n",
+ " prediction=[(example[\"prediction\"].lower(), 1.0)]\n",
+ " )\n",
+ " records.append(record)\n",
+ "\n",
+ "# create a dataset in Argilla\n",
+ "rg.log(records, \"banking_sentiment_zs_gpt3\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5e56b798-c95a-4a75-b099-b9e32999c025",
+ "metadata": {},
+ "source": [
+ "This will take 1 second and create a fully browsable dataset in the Argilla UI. Let's now analyze the quality of GPT-3's predictions."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3f6abad7-d26e-45a5-98f0-73bd69550eef",
+ "metadata": {},
+ "source": [
+ "### Overall metrics\n",
+ "\n",
+ "Using the `metrics` module we can get a quick overview of the overall performance metrics as follows. The model achieves around `0.77` F1 micro-average.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 180,
+ "id": "464eca24-72fe-402f-8a87-a2185bab9cdf",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "type": "bar",
+ "x": [
+ "precision",
+ "recall",
+ "f1"
+ ],
+ "xaxis": "x",
+ "y": [
+ 0.7532467532467533,
+ 0.7708333333333333,
+ 0.7591973244147158
+ ],
+ "yaxis": "y"
+ },
+ {
+ "type": "bar",
+ "x": [
+ "precision",
+ "recall",
+ "f1"
+ ],
+ "xaxis": "x2",
+ "y": [
+ 0.7777777777777778,
+ 0.7777777777777778,
+ 0.7777777777777778
+ ],
+ "yaxis": "y2"
+ },
+ {
+ "type": "bar",
+ "x": [
+ "negative_precision",
+ "negative_recall",
+ "negative_f1",
+ "neutral_precision",
+ "neutral_recall",
+ "neutral_f1"
+ ],
+ "xaxis": "x3",
+ "y": [
+ 0.6428571428571429,
+ 0.75,
+ 0.6923076923076924,
+ 0.8636363636363636,
+ 0.7916666666666666,
+ 0.8260869565217391
+ ],
+ "yaxis": "y3"
+ }
+ ],
+ "layout": {
+ "annotations": [
+ {
+ "font": {
+ "size": 16
+ },
+ "showarrow": false,
+ "text": "macro average",
+ "x": 0.14444444444444446,
+ "xanchor": "center",
+ "xref": "paper",
+ "y": 1,
+ "yanchor": "bottom",
+ "yref": "paper"
+ },
+ {
+ "font": {
+ "size": 16
+ },
+ "showarrow": false,
+ "text": "micro average",
+ "x": 0.5,
+ "xanchor": "center",
+ "xref": "paper",
+ "y": 1,
+ "yanchor": "bottom",
+ "yref": "paper"
+ },
+ {
+ "font": {
+ "size": 16
+ },
+ "showarrow": false,
+ "text": "per label",
+ "x": 0.8555555555555556,
+ "xanchor": "center",
+ "xref": "paper",
+ "y": 1,
+ "yanchor": "bottom",
+ "yref": "paper"
+ }
+ ],
+ "autosize": true,
+ "showlegend": false,
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "F1 Metrics for single-label (averaged and per label)"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "autorange": true,
+ "domain": [
+ 0,
+ 0.2888888888888889
+ ],
+ "range": [
+ -0.5,
+ 2.5
+ ],
+ "type": "category"
+ },
+ "xaxis2": {
+ "anchor": "y2",
+ "autorange": true,
+ "domain": [
+ 0.35555555555555557,
+ 0.6444444444444445
+ ],
+ "range": [
+ -0.5,
+ 2.5
+ ],
+ "type": "category"
+ },
+ "xaxis3": {
+ "anchor": "y3",
+ "autorange": true,
+ "domain": [
+ 0.7111111111111111,
+ 1
+ ],
+ "range": [
+ -0.5,
+ 5.5
+ ],
+ "type": "category"
+ },
+ "yaxis": {
+ "anchor": "x",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "range": [
+ 0,
+ 0.8114035087719298
+ ],
+ "type": "linear"
+ },
+ "yaxis2": {
+ "anchor": "x2",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "range": [
+ 0,
+ 0.8187134502923976
+ ],
+ "type": "linear"
+ },
+ "yaxis3": {
+ "anchor": "x3",
+ "autorange": true,
+ "domain": [
+ 0,
+ 1
+ ],
+ "range": [
+ 0,
+ 0.9090909090909091
+ ],
+ "type": "linear"
+ }
+ }
},
- "type": "table"
- }
- ]
- },
- "layout": {
- "annotationdefaults": {
- "arrowcolor": "#2a3f5f",
- "arrowhead": 0,
- "arrowwidth": 1
- },
- "autotypenumbers": "strict",
- "coloraxis": {
- "colorbar": {
- "outlinewidth": 0,
- "ticks": ""
- }
- },
- "colorscale": {
- "diverging": [
- [
- 0,
- "#8e0152"
- ],
- [
- 0.1,
- "#c51b7d"
- ],
- [
- 0.2,
- "#de77ae"
- ],
- [
- 0.3,
- "#f1b6da"
- ],
- [
- 0.4,
- "#fde0ef"
- ],
- [
- 0.5,
- "#f7f7f7"
- ],
- [
- 0.6,
- "#e6f5d0"
- ],
- [
- 0.7,
- "#b8e186"
- ],
- [
- 0.8,
- "#7fbc41"
- ],
- [
- 0.9,
- "#4d9221"
- ],
- [
- 1,
- "#276419"
- ]
- ],
- "sequential": [
- [
- 0,
- "#0d0887"
- ],
- [
- 0.1111111111111111,
- "#46039f"
- ],
- [
- 0.2222222222222222,
- "#7201a8"
- ],
- [
- 0.3333333333333333,
- "#9c179e"
- ],
- [
- 0.4444444444444444,
- "#bd3786"
- ],
- [
- 0.5555555555555556,
- "#d8576b"
- ],
- [
- 0.6666666666666666,
- "#ed7953"
- ],
- [
- 0.7777777777777778,
- "#fb9f3a"
- ],
- [
- 0.8888888888888888,
- "#fdca26"
- ],
- [
- 1,
- "#f0f921"
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAFoCAYAAAA4tTiaAAAgAElEQVR4XuydB5gUxdaGDxvJIDkrohhQMIN4EWQVJO+SRIKAxCVKzjnnnCQKgiCSk0gGSaKggqKggpJzDptvnVp7nLhdvTPM9Ox+9T/3+e+lazq8daq3366q02kSRCEUEAABEAABEAABEAABEAABEAABrxNIAyHzOnMcEARAAARAAARAAARAAARAAAQkAQgZAgEEQAAEQAAEQAAEQAAEQAAEfEQAQuYj8DgsCIAACIAACIAACIAACIAACEDIEAMgAAIgAAIgAAIgAAIgAAIg4CMCEDIfgcdhQQAEQAAEQAAEQAAEQAAEQABChhgAARAAARAAARAAARAAARAAAR8RgJD5CDwOCwIgAAIgAAIgAAIgAAIgAAIQMsQACIAACIAACIAACIAACIAACPiIAITMR+BxWBAAARAAARAAARAAARAAARCAkCEGQAAEQAAEQAAEQAAEQAAEQMBHBCBkPgKPw4IACIAACIAACIAACIAACIAAhAwxAAIgAAIgAAIgAAIgAAIgAAI+IgAh8xF4HBYEQAAEQAAEQAAEQAAEQAAEIGSIARAAARAAARAAARAAARAAARDwEQEImY/A47AgAAIgAAIgAAIgAAIgAAIgACFDDIAACIAACIAACIAACIAACICAjwhAyHwEHocFARAAARAAARAAARAAARAAAQgZYgAEQAAEQAAEQAAEQAAEQAAEfEQAQuYj8DgsCIAACIAACIAACIAACIAACEDIEAMgAAIgAAIgAAIgAAIgAAIg4CMCEDIfgcdhQQAEQAAEQAAEQAAEQAAEQABChhgAARAAARAAARAAARAAARAAAR8RgJD5CDwOCwIgAAIgAAIgAAIgAAIgAAIQMsQACIAACIAACIAACIAACIAACPiIAITMR+BxWBAAARAAARAAARAAARAAARCAkCEGQAAEQAAEQAAEQAAEQAAEQMBHBCBkPgKPw4IACIAACIAACIAACIAACIAAhAwxAAIgAAIgAAIgAAIgAAIgAAI+IgAh8xF4HBYEQAAEQAAEQAAEQAAEQAAEIGSIARAAARAAARAAARAAARAAARDwEQEImY/A47AgAAIgAAIgAAIgAAIgAAIgACFDDIAACIAACIAACIAACIAACICAjwhAyHwEHocFARAAARAAARAAARAAARAAAQgZYgAEQAAEQAAEQAAEQAAEQAAEfEQAQuYj8DgsCIAACIAACIAACIAACIAACKQaIYuNi6OEBKLgoEC/b/WY2Di6/+AhpQ0NodCQYK9dz/Wbd2jt5r3099mLFBwcTHWqlaWnCxfw2vGdHejBw2iKjomhDOnTUlDgo2vbPQeP0qEfj1PDWhUoV46sHr3mL1Zvo2vXb1O7jyMM7Tc6Ooamzl9FRZ8sSFXfe9PQb11VPn3mIq3cuJvKlX6JXnmxqPI+N20/SMdP/k0lX3me3nr9BeXfoSLRZ8s3E7dliwZVTYPjxF9naf2WfVSh3Ov0wjOFTXNeSZ2I2fvR4pVb6NKVG1Q5rBQ9+1Qhv2CKkwQBEAABEPAOAb8UsuJhH1NcXLxLQusXjqDChfJaticIEwur21n+7+3LJyiTnfvFRho/60tZf9GU3g4PqPwQVbJqG/kwxWKyev5Q5X1zRb6GAWPn09NPFqDGdSoq/3bxyq00fPLnVLtqWRrUtany79ypeOXaTarwYTd5rVoZ2LUJ1alazp3duv3bNr0m0K79P9H4gW2ponh4fFRlyISFtHTNdlo8rS+9VOwpjx6mUoPu9M+5y/TLzgWG9nvrzj0qXa0tvVbiGfpsUi9Dv3VVefu3h6l938nUtmkEtWlcQ2mffO58DTmyZZF94LEsmZR+h0qJBEpXb0v8YuHIN7NNg2T1199Sn5FzqHeHBtSg5numOa+kTsTs/eiHn0/QRx2GU95c2WjzF2MpMDDAL7jiJEEABEAABB49Ab8Wshefe9IpoUmD21PunI/RX/9coB+PnaSv1u+in379U/6bESGbvXg9TZz9lTzGGy8/S/Mn9LQ53pfrdtKgcYkP0UWeyE9rFwwz1GIsNy9XaCHfQC+bNUD5t5t3HhLntZxqVn7ba2/VR0/7Qr7JZwHr1LKOGCELovj4eMqYIZ3yeT+KimOmL6Xtew/TQCGmJV9+7lEcQu4TQuYabaP2w+nw0RO0afEoKpQ/9yNrg5S6YwiZZ1rW7ELGV7lk1TYaNmkRdWtTj5rUfd8zF469gAAIgAAI+D0BvxWyQDE9Te+N8tCJi4insWjFHSHjfaz9bDgVeTyfZX/l63Siq9dvyZEubwqZL6KuWZfRdOCHX2nDopH0RME8vjgFnx4TQuYc/5bd39Mn/adSvRrlqV+nj3zaRv56cAiZZ1rOH4QsPj6BKtTrQpfFjAN+OcijyiggAAIgAAIgkKKFjKfZXbtxW7Zyreb9kz1CxtMJeXTo/XfeoHED2sj98Zqi1j3GUZMP3qcFy752EDJeszZ13iq5DuPC5etyJOmt11+kAZ0bU5bMGejuvQdy+srvf56RU1eeKZK4poDXhfH0yIXieOu27BfHi6Q/Tp2jDdsO0NnzV6hNk3D5+2GTPqfGdStS1Xf/WzvEU9h4xOjAD7/IP/j8x75MyeLU7MMqYuQil5wWNXvxOrkOjLfz+rMnC+WjutXfoVpV3nbZG/qOmktrv9krxfP5ok/Iek8Xzk/De7WQ/33voWM0buYy+uP0OXEtgVRM1BnYpQk9JepoJanrKftmCZfHXiPOdf7STfT3uUuyDk/3qVjuDTkymD5dKPG6jNVf76VRfVuJa0mcptpj6Cy6eOU69WrfgEZMWUxHxCgpl/+98SKN6NVS8rMuvA8+BrdTiGDyTumX5To5Pq8OzWrJqq6E7Lc//iEW/19OnJbTOZlz51Z16b23X3N5TfYb7B8kWfL5Gk78dYa4TZk7t+UHop34unl0kos2ZZHXelUOK0mLvvpGnPclypY1EzWrX8XhDfyNW3fEdSyiA4d/oVu378l98rTXNo3DLdOnjE5Z5JcSvC5mz+op8rjWpdfw2XLd3TWx9pDZcB8I+98r9EmLOpZ1eAPHLpDsOM7tR9cWfPk1bdh6gHq0/VBOy+TC/WDWonV0+swFGWvPFClIQ7p/bLOWUWv/ueO70xdiROLb747Snbv3aZyY1rr92x9EzGwlvjfcfxAlz4lHqD9pUZvsR9w5HgaKKcXf/fibpW15evGFS9dp8tAOMha1onJeXPfw0ZNyhITjhvt9ieefEqP3f8hr0XvBpBoXfF2NO46gN156loqJa5u5aC39Kfom95cPhDh3Evytp8vFxMTS6OlfSLYcF9yOuXI8Js9RZcqixpv7Ct8Hjv1+Sl5PBdEHuG24T2lF777I9azPn+N4wbJNog//QVkyZaCpwzu67FfOhEwlBo32I5VrSKofrRf39R7DZuElhvIdEhVBAARAIOUTSNFCZt18xco1SbaQTREPXxPnrJAPNTtXTKSc2bNS/TZD5IPH14tH03v1utoIGa9Zq9tqEP0qHjT5wefNV4tZHup4lG7L0nF09/4Divi4r3yY5cL/ziV9urTEa+D6jZ4nkyvkz5ODzl28arkUnupSKF8uh3U+vJ+qH/WUDzP8oJ03d3Ype1qyAH7g1NZbyYfQZwuLB8tr8gGeH9QObZrlMtp5TRE/YFifJy9Knz6ik5ChxLUmXPih+aGQPubCZemM/paH3KSux9XUHW16DzMs/lwRIZRRdPLUWSko2kidM1F6V6wX5IdprfCDMwso/44li89bK4PGf0Zfrt0h2+m5px6nmNhYyY1LmZIv0sxRXeR/d3ac3Qd+osieiWsSec1iurShss25jO7XmqqIxfsqxf5BkgW8RtM+sl1YmFnAfj7+pzz/iEplaGiPZnK32oOkdgx+8H0sS0ZLTFk/TF++epOqNOoh44OFlK/1wOFf5U9rVHzLItdGhOy8iEuO/RLPF6El0/s5XCpPx40TLyaeEtN5M2VML9uOH/i5PTYtGSMT7GjTgj8SLz1YvLTCIwklq7SmKCFyB9ZPl/2C13Pyuk4uLKHnLl6xXOuWpWMpn+grXLT25+NYx8GqeUOlMLCgsTizdFy+ekOu3+P2X79wpPx3Lnxt74t1cZoMsyyyIPOLFC7Wo+Wq58VrHbkPcuF+nSVzRhFr/8hjcNvpCVly44KvLZe4Z2ksendoKNaFvSvPg+9V/LKKY57PoahYC3vtxi2ruvpryJz1N+1YpV97gWaP7Wo5lt59kc9Vi2uO/1jBRlu3qsfImZCpxKCRfqRyb+drSKof8Ysxjm1ea7lr5SSVWwTqgAAIgAAIpHACfitk/BCjSYx1G43t30Y8rD3t0GzuChlnNuw8cJpc4F63Wjn5wMwPkS0bVqX/1WhvI2TL1+8Ub9YXUIWyr9HIPq3kSBSfb/u+k2QCipG9W1K1CqXlg4arNWSawPAfd37zXF6MLKQTo2f8UPLTL384CJkmWyw3LG1c+KH2i9VbKSAggKq9V1o8BETKh/xv10y1ZGdkKWPx6dK6bpKh/oEQTBYtfmjU3njzg8XbEe3lQz4/7BYVowdcNu/8TrCaLkcvVs4dIv8tqevJ/lhmp8euIB72WUat983ZJecs2UD1I96V4pmUkH0YHiZGq+rIh3keEeHELtwOP2+bJx/AeQSAH0ZZUFbMHiwllguvPaz2Ua8khYzjoWzNDlIwVswZbMmapj008ygDjxqpFPsHSb5GFuXnnn7c8vObt+7SO2I0igWHz5+L9iDJ7cEjEdpoKYtWs86j5ejPvrXT5LXytEKeXsgP4/UjwihNmjR07/5DIVRd5DVsWz6e8uTMluSDpP21aHHep2MjuU/78qOIUxZ/Lfslx2PDdkPlek5eM8kjUzxqx/2H4/LghpkiVtPI3Wgj0JXKl6Sx/SPplGiTqqJNuM8v/3QQaTHDo4Ijpy6R186jpFw0QeA26NG2Pr0qXhSwzLMEcRZJ/v/Wax95JHvGwjVylEzLdNii61ja9/0xatWommWUlPfNAs4irgmZ6nnxqMo7tT4hzlQ6eUgHCivzijxX/ve3qrcTmUJjdYXMaFxwu/Mo8QfVy0uuO/f9SG17T5SxyjHLhV/6cN/kvvr5VH4JkFb+u5Y4SGWETOPdsmE1ivyourw/sJBVb9xL3hvWiRdMPHqtel+0FiSW/Ugxgvvc04VEnN6V91lXxZmQqcSgkX6keg16Lza0+GIhw7RFlbsk6oAACIBAyibg10LGD3H2hUc/XhdTdeyLu0JWTkxjkw/gnNnutWLygZH/mPJDj72Q1Wk5UI6U8EMbj2ZpZfveI/9K3bvywVhFyBZM7OlwPfZ/7PmhrkRYM/mQuXftVKfp3/nNPgsZn+/KOUNsphOqhLgzIdv//S/UvOsYORLEI0LWpXLDHlIq9gr5yypGbTQhc3Y9ro6v7YMftK2nZlrXdyVkPCKmiYtWX0s+sXXZOClfU+atpJkL18pppDxtUys82shT8ZIaIfv+p9/ltDAW5fH/TmPVfl+lUU8pkt9//akYNQuRozqXxBRK68IjB5xanourtS/8AH7st9N0/tJVKZQ87ZMf6LXpgUllWWTRZOHc/MUYypc7B71YvqmMj92rJlOAkDGtcLZOTk7D/YZHD/UeJK2vYfLcFXL64Nxx3anUq887bUYW4ON//C1j4YoYpftm1yEpZNYjiDz1l/vTzFGd5RRbLtoLBh5544fySWKE+tPP11HfTxpR7SplLce6LaYivh3RgR4vkJs2fj5K/rsmCNYvD+xPjsWMR+x4hOz4yX9o1aY9lpFCFkeN1/510y2SyPvoOngGcYp/TchUz+vo8b+oXuRgOR3QXtSNriFLblzw6E6JdxPvEyzqXLQ+ob0k0jgZybLIvJ31N06IxCOg/cXaQp4qqXpf1OKap0cv/3Sgq9uDw7+76kd6Majajwrkzal8DXr9iPsdS6/2YkL5IlERBEAABEAgRRLwWyFTWXNh3WLuChk/ePNao+GTF8vdauvJtDf81kk9WHy0qU3OoobXKPFaCBUhc/YH2/6PPT9csgSUEt+A4nUzror2Vpa383QunvbFD0qvFtf/3pQzIUsqY5j24Ko9UGtCZuQBhNftcXZHLvwQyefLqe2rV3jL8pBsRMg69JtM2/YctmQD1P639QgXH0tFyHiaI093TKpoWQfL1uwok79YFxZAFkEu9g+SLNgjRJxxmn1nRXurntSDZO8Rs0muvxOZQfOItuZjJFVYdHhEUe9B0nof/MkGzmC6SUzb1ab6WW/n0ZchYn2d9acStO2jxMix9u00XoPYsttYy3RS7eUBx+jWL8fLn2ht5eoarKfduhIE/i2P8rbtNdGhPXgbj1qzmGhp/J31J3shUz0vFj5ei2k95VS7FlUh80Rc8L2Js6NqU5T52DxCar8G0BNCxmvSug+ZKdawVpbrKlXvi8n9nIMzIVOJQdV+xJl2Va9Brx9p9zbtRUiSnRMbQQAEQAAEUjwBCFkSTaytb+E1ZCxkPEWPH2D4AZNT3LOEORMy7Ttp1mtirA/Dv+OP53pKyPiDvLVbDHBYH2V/afymeL5YIL9UZJ60XltjPd3LFQ5nQqZ9p83ZlDVeTM+JQLQRseQIGZ/Ljn1HaMrclZZ1Xfxvcg2SkABeW2VEyDoNmCpGaL63CJk2MmM/aqciZNq18ygaj3Y5K/xZAhZJHqniUQ3rwtMDtTVP9g+S/CkFHrXiqUxtRRKX5595Qk4n5OQJPB3RiJDx98n4HHjEjLnxNFtnheOR41LvQdL6t1qb8igcjx5YFy37Io/Itm5UXY7yFhTrs9Z9s09+SsJayHjkppT4nh+L2H6xXmzD1v0yUUq3SJEaXCTN4cJTMPnaeUqus6nKGdKLa/w3MY0rIWMpZjnmwmLEiVd47R/3YV4TqgkZrxWt3qSPTGBjP0JjL2Sq58WJf8bMWEo929WnRrUr2LBSFTJPxIW9kPG9ytnLLU8ImZa8Qpv2qXpf9JSQqcagipBxP+I1sqrXoNePtKm2ELIU/4yFCwQBEAABJQIQMgNCxlV5fdRFMaVN+5CzMyHTptp9t3EmZUifuCbDWdGEzHpNh1YvKYGx/2PPD/uvV2ot18Z8I5IbqBT+DcsJj/LweTjLkme9H2dCpp0Hr6vjtSbWpWG7YTK7IY9wsAgkV8i0ffLowPc//i7Od4EcwdA+BO2OkHG2Ox7la/dxhFj78t9HkFWETFuP44l07/ZCVia8vZya+O2aKTYfWW7VfZxMSKEiZBp/rsvrgl6v1EqOYrHIJlX0HiStf6tN1+NROB49sC4sj+uFWE0c3M4m4yRPuxwlRj2thYx/p+2L42jZ2p0ygc6+ddNkZj0u2hQv7eVIUtfgSsh4xJBHDvlbevxRc61o6/40IeN1T8yLZfLIN3NsMhLaC5nqeWnrKvm+0d0qeQmfg6qQeSIu7IVMm955WKwN5bWuWvGEkGltqk05Vr0vekrIVGMwqeNZ9yN+QaJ6DXr9iNc9spRZJz5SuW+jDgiAAAiAQMokACFLol3tR8icVXUmZJokWGev037LCSNuijfyPP2OC0+l5BGMgxtm2OzeiJDxD7X045wVkEdttMIjYZzCnbP1HfrpN4fMf7yuhde38IL+l19wTIai7ceZkHHmvndqfyITMmgP/lz/H5GivlKDHvK6OEMeJ5BIjpDxGgtOy279oDh9wWqaJv7DI0f8CQB3hEyTKhbGr0RSD17rxp9JGCUelni6VVJryLTRFvvsfHz9LI/8aQEeIVMp9kKmvYXX1t/xPljQ6rYcIEc29YRMG+GxXq+kHcPZerw9B38WCVkKJmYhFdk0Oatm26YRIh3+f5Lq7Dq0aZssNyw51qVpp5H03ZHfyFqgOBFK9yEz5IsAeyHjzxSE1eksY4mFiEek+bda0c6LXzpwkgjrmOAHav5GHk9n5eJKyDgZzIRPlzukG+dvFfKInCZkvA/twVtbX8jrynaK0dpeQuh4JE9bQ6Z6Xlqf4AQy276cINcWcuG2imjWTyntvbtxwcezFzItg6r1KDePpPN0VJ5mqZrUw34NGSeh4YQx3Jb8vS2OLdX7oqeETDUGXR3PWT9SvQa9fqSNzu/4aqLlExAq9wrUAQEQAAEQSJkEUrSQcdIJlhAunHyAs381/XcKVOXypXQTWyRXyDjRAE+N4pEnzl5WoezrMn334aMniJNBWD/shjftK5ML8DeyOHkBJz/gh2ajQqZlpeNrZYl5UnzA+pffTkmx4Mxx/LDK0xp5lOTdMq+JKWY5ZHIFHjXgaVvrRAISFidXxZmQcV0tbTxLTUMxFYu/acTJF/hBjDP/aVKSHCHjB1BOJc9TKjmDI7P5Qqyr4kyD28TIG39+wB0h4/OvKR6GtTT3mgxoDPTS3nNmPs7Qx1JWS8jX4wXyyNToO/f/KNfl/LJzgdJdw17IOFkIxwnLx7tlXpUjslv3fC8zRHKxFzI+fqV3SopvTj0h178tWvGNrMvZCTlLIRf+/lWj9sPkf+c1jLxu8MLla2Ia4HEpBYun9aWXij1lSMi0tVY8OsajZNZF6zvMtPK/6f/5IZXFkou9kPG/aQkm+L87G3XjaYUcsyw1nNiDU+n/LF4m7BK8OWOjlnrflZDx+jGOYy6c5bBAnpwik+Ivsv9xsRYy6/7E9w2OOY0/17VOe696Xtr1cV8p/79XZeZIzuTIRS+lO9cxGhc8xY6n2lkXeyGzZsKxklFM/eRpwtqaR1Uh4xcFPNLPyV2iomLENxT3JX5r0epzBqr3RU8JmWoMasdT6Ueq15CUkPHfhdfECKx1chWbRsL/AAEQAAEQSHUE/FbI+A15Ut/O4pbUpqQ5a1X7rGLO6mhv1JOaJsVvgt+q0U5+mHb1/KGW3fADSn+RTlp74NI28DqdviJNuDbFi9d/caIQljUu/FDA2QE5bT6nWOY1LNrHmLV9aH/s239ck1qLNNNa4TUT/GabZUAr/PA3tEdzKZ+dBkyzHEfbzuc9flBby0eVXfUATch+3DLH8mFirsujQZx4g0eztMLX0LNdA5tU6Eldj6tjWn+QWqvDD+NDuzeTIyhceGSDRzisp/64eiDnVPw8dcw6CQWLMo+a8FRAfuhm1iyRnGTCeoTT2XH4+JzUYtS0JVJAra+fJVL7cLbeXcVeyPhTBCxP1uv8OMHEFbEGiuWJMyVy2nd+OHxTrL1yJgxaZjvrY3OM8TfjWKSsC+97hEhmkStHVouQ2ceWq2vQptFx1j7rD25zXLQTKdZZbLTCgvmsSF/OiVWcjdRt3nlIZiF19ckAZsyZHZes2mojR3xcHjHlqbNckkrqwS8LeCqdVlgYeT0Zxy8nixnRO/Fj51x4hG/W52vlh9n53Ku8W0oKLPc/6ym+qufFo6+85kwTQD4GH5tjkr+3pfcdMqNx4UzIeHoki6X1iDyvV+T1aVph/vztRH6ZY0TI+HeacPM94ON6leUnA7RPGfD+Ve6LWlw7O/+k+pKz5DgqMWi0H6lcg6t7NJ8/Z+nkqa/84mxQ16Z6twdsBwEQAAEQSAUE/FLI/Kld+MGUH4D5YT+/eCPvLFU/Xw+LHU9/5Ac/7Ttfyb1O3g9PJ8wtPnzL0/CsC08bO3fhivwwNadD54coTxR+6/vn3+cpSHzsl6dH8gOZJwonfLgkUpNzyvQcYkSMr8n6Ac8Tx7DfhyYG/DDJCQlUCjPnVPc5s2WVYpPUaKPK/niK3J9/n5PfCisoPp3g6ltt2r444QzXDxTfnHtKSDZ/dNlVYYHgKXS8tixfnuxOP5Ogco5cR1sbZb8uS/s9f2CZpyPyR5jtE3+oHsO+HscEjxreuHlb9ilrEVTZJ/c1njrMIxT80Woj8ZSU7KmeF4sVj0BxO2lTF1XOm+sYjQvV/fKLCRbFrOJj1UbbyZoJX9cd8aKAR4uT4qp6X1Q9/6TqGYlBI/0oOdfAv+HvKzInbZTfE9eIfYAACIAACPg3AQiZf7cfzt5NAjztMEumjGJk7HGZQIK/ScWJQ3i6lbPsgW4eLkX+XJtKZ+STBmYHwcK2RIya8VTiQuIbZ/dEPCwWI3OcJVIlK6nZr8+T55eUpHryOClhX9o0Z87A6yrjaUq4TlwDCIAACICAMQIQMmO8UDuFEdA+Vmt/Wdp3uVLY5T6Sy+ERiPfEW38e/V09f5gc5fX3on342/46eIovf+tPb8TS36/fyPlDyNRoaWn4+SPm6xeONDQyq3YE1AIBEAABEPBXAhAyf205nLdHCPDUvUMinf4lMa0uTnwwt3DBvPKbWc6+deWRA6bQnfDHnXnKWzGxBo/5+XvhKXy8hoyTtNy6fVcmkHlaJJbh9XYotgT4e2O8Dqt+RBjQJEGAPyVwU8RS2VIlZCIlFBAAARAAARDQCEDIEAsgAAIgAAIgAAIgAAIgAAIg4CMCEDIfgcdhQQAEQAAEQAAEQAAEQAAEQABChhgAARAAARAAARAAARAAARAAAR8RgJD5CDwOCwIgAAIgAAIgAAIgAAIgAAIQMsQACIAACIAACIAACIAACIAACPiIAITMR+BxWBAAARAAARAAARAAARAAARCAkCEGQAAEQAAEQAAEQAAEQAAEQMBHBCBkPgKPw4IACIAACIAACIAACIAACIAAhAwxAAIgAAIgAAIgAAIgAAIgAAI+IgAh8xF4HBYEQAAEQAAEQAAEQAAEQAAEIGSIARAAARAAARAAARAAARAAARDwEQEImY/A47AgAAIgAAIgAAIgAAIgAAIgACFDDIAACIAACIAACIAACIAACICAjwhAyHwEHocFARAAARAAARAAARAAARAAAQgZYgAEQAAEQAAEQAAEQAAEQAAEfEQAQuYj8DgsCIAACIAACIAACIAACIAACEDIEAMgAAIgAAIgAAIgAAIgAAIg4CMCEDIfgcdhQQAEQAAEQAAEQAAEQAAEQABChhgAARAAARAAARAAARAAARAAAR8RgJD5CDwOCwIgAAIgAAIgAEPByiIAACAASURBVAIgAAIgAAIQMsQACIAACIAACIAACIAACIAACPiIAITMR+BxWBAAARAAARAAARAAARAAARCAkCEGQAAEQAAEQAAEQAAEQAAEQMBHBCBkPgKPw4IACIAACIAACIAACIAACIAAhAwxAAIgAAIgAAIgAAIgAAIgAAI+IgAh8xF4HBYEQAAEQAAEQAAEQAAEQAAEIGSIARAAARAAgSQJ3H/wkKKjYylL5gyUJk0a0AIBEAABrxI4fvJv2rjtINWpVo4K5c+lfOxjv5+izTsOUb3w8pQ/Tw7l37mqOGfJBsqcMT3Vrf6O2/vCDkDAmgCEDPEAAiAAAiCQJIEPWg0ifrDZumwc5c2dHbRAAARAwKsEvly7gwaN/4xmjupMZUoWVz724pVbafjkz2nO2G705mvFlH/nqmLJKpGUM3tWWr9whNv7wg5AAEKGGAABEAABEFAmMGTCQvrh5xM0d3x3yv5YZuXfoSIIgAAIeIIAhMwTFLEPMxPACJmZW8dH55aQkGCKaUmp7TxUr1e1no/CB4f1EwLO4sgXseWLYzprIm+dh+pxVOv5SbjhNFMgAZUYVamjgsbbQubqvDFCptJaqJMcAhCy5FDz099s23OYpsxbSa0/qk6rv95D+77/hQIDA6liuddpaI9mtHrTtzT3iw30z7nLlDFDOurcsg59UKO85WrHzlwm5nAfoKvXb1FcXLxcT1Kx3BvUSdTjOdVaiY2Lo+kLVtOm7Qfp3MWrcl9vvPQctW0aTk8XLkDNOo+W0574POaK+djHfj9NL7/wNPXu0IB4rcpg8TZ+x94jdPfeA8qd8zFqXPd9alynoi51Ph5f34XL18V6lxgKCQmmki8/S93afEhFHs8n/+3DNkPk/PMJg9rZ7O/w0ZM0WEyHaFjrPapdtazctvrrb2nWorWSB+/rFXGOg7o1pQJ5c8rtGs+hPZvRbyf/oa17vqcr127R6L6taJX4rQqr+w+iaPS0L2jTjoPyerNlzUTPF32CLl25YTMaERMbRxNnL6f1W/ZL/sz0/XfeoB5tP6T06dLqskGF1E3g4pXr1Lr7eKpR8S3ZJ9dt2SfjrcTzRWjSkPZ09sIVGjllCR3/428JqnqFt2hg1yYUJO4PXCbPXUHbvz1CK+YMFveMAPlv6Oee7+fct3la1oEffhH3wijKkS0LNa9fRd6XsHYvdfdhX1+9dg+pHFZS3kO27P6ebt2+R0WeyE9j+0dS0ScLWE5RJY4nzv6Kdu77kRZP60vzlm6kg4ePy3vK0hn9nV6qMyFTeSbRpizy38pdB34i/lsfJ47zvzdeFH+rW8u/pVpROW8Ima8jMeUeH0KWctvW4cq0GxNvYJl6tfgzdPzEaSkw6dOFygcAFqaCQlh27f9RStehTTMtD/w1m/Wj6JhYeqnYU/ImxlOYfhW/L/XK81IeuPBbpbpivQn/+zNFCtIrLxalP/8+R98d+Y1aNKhKn7SoTa9XakVRQo54/1x4X3zczyb1okoNusub/dulStBT4ka/7dsf6O+zl6hBzfeksCVVxsxYSms376XXhfyxyJ0RIrVj3xF5bbtWTpb/v1mX0eJh51daPX+oPKZW2vedLB44D8t54YUL5aVJc1bQp5+vk5z44fTkqbPyd3yuO1dMonRpQ0jjybKmCSDvj+eqD5u0SJdVfHwChX/cl/48fU4KX9V335SytffQUcnGer2OtoaH//iVFWz4Dwv/rvRrL9DssV1TURTjUpND4NQ/F6jqR73kT1moSr78PN25d5+OHv9Lxh7HLz/8lyhWhL7/6Xf5oGW9VqNDv8nyBcSPW+dScFAg+vkj6OfXb96hsLqdZVvwPfVp8YC7Yet+4n/v1qYeNREvplBAwFcErO8hfM94TTw//HLilLxX8D1l39pp8u+jahy36TVBPGf8ZHn24L/P/Fzw87Z5ykKm8kxi/9xT/Lkn5cto/hv7ovjvmgCqnjeEzFcRmPKPCyFL+W1suULtxsRyw2+L+CbKN0AWJC4LJvYSAvW0/O9rhNj0HjGbxg9sK0fQuPAoDT+MWZdazfvTb3/8I2+ivD8eVeozcg6VfbMETR/RyVKVb+aXr90UD4LPyeOx/LGc8bnwjZiL9gZMEzf+N75pRggRZPnQSyjg7Pz4Ldzsxetp4eTeQkCL0p6DR6l1j3FyFGxQ16byuLfu3KPS1drSC88UpmWzBtB5IYTv1esqhXLl3CGWa+DsShM+XU4DOjeWGZY0nix2I/u0pGefKmSpq8Jq5cbd1G/0PMlq0pAOFrYsc0tWbbNcL4+K9Rg2i5rWq0RdW39gOUbTTiOl6G5aPNpQ1qlUFPK41H8JaA9THOOfjukqXzRw0US/u7gfaKPQl6/epHdqf2LTR+yFDP08Eawn+3nP4Z/Sum/20dxx3anUq8/L/fOIweuVWlNIcBAd3DAD8QwCPiOg3UP4JSu/rMmQPi3xS8X+Y+bRqk17qHOrutTsw8qkGseakFUJK0V8/+EXQkkVZyNkKv1P+zvNzxUdmtWigIA0cnZAvcjBxNfEo/78t1v1vCFkPgvBFH9gCFmKb+L/LtBVtiEeleKRmUObZlkq/3HqHNVo2kc+pPHNkgvffDfv/I52H/hZjFpdlL/haQwsTfx2jB/yOg+cLutMFoIRVuYVp3RZyPLnySlHqayL9ttdKyfZ3Jy/XLeTBo1bQGP6RRJPl0iq8HSEr8X0v9//PCOmD96U/2H5GzegjZzixyN4b9VoJ2/I34vr5Td9C778msZMX2qpoz1s8uiT9mDEx7xw6Rp9sXob1Y8Ioz4dG1mEzFn2JhVWPYbOovXiDTiLK0uZVuyFrPuQmbRBTBVt8sH7YkrjfwkVdotRMh7NmDq8I71T+uVUFMm4VKMEtIcpjqFukfUsP+dkHUvXbBdSP0pIfW7Lv79coQUVzJeL1i4YJv/NXsjQzxNRebKflwlvL18OdWxe26Z5Fy7fbLk/ay+vjLY/6oOAuwRc3UMOHP5VLkPgv6/8d1Y1jjUhO7ZjvtJ0XGdCptL/XD33jJ/1pViisZGG9WxO4e//T/m8IWTuRhJ+74oAhCwVxYarG1P1Jn2EbFy1ETJeN8Wi1qh2BerZrr6UmqafjJSpr/mhgNc58QMbr3XgKY+akGkjZtZTHe0RuxIy7bdHt8+Xb7G0wuIR2XOCHFHjt1yuysipS2jRV9/IkbrnnnqcniiYRwojS4smZPxbnorIUxK1G/G7YpoQPwgdWD9D/lYbVePrDBZvpu1Lzcpvy5EqVzxVWWmjE/as7IWsTsuBcgqoNqphfz58HRCyVNSRk3Gprh6meP3iZ+KB317IuI/mzpnNktrZXsjQz0n5nqjSz/PkykYvvJM4Yu+qn29YNJIey5IpGa2Pn4CA+wRc3UNu3rorX3K+IdZrzxvfQzmO3RUy1b+zrv5Ob955SLxAnibXwPPInmr/g5C5H0vYg3MCELJUFBnuCJl286pUvqScnqct9u87aq6crqAJmXaTXTSlt1w/5qy4EjKWLpYvntPNc7u1wtN4eDrBkO4fE8uQs8Lz2EtXbys//PjlrIGUNUtGWY0/JNltyAwbIdP+gPCUxAFdmlB9keiDb8g85YILTxdkKbKerunsmHo3ej1W7XpPkmvclkzvJ5MraMVeyDSm+9dPt0mekopCF5fqJgGjQmb/0GEvZOjnJGYCJD7Qeaqf830xS6YMtPXL8W62Nn4OAp4n4Ooewok52vaeSBGVysjkYKpx7K6QqfY/V3+ntZkwo/u1Jp42qXreEDLPxxb2mEgAQpaKIsEdIdOG9+2nDfJ6LF6XpQkZZ1ecJv5jn4SD10Kcv3hNrnVyJWTabzn7YvuPa1paplX3cfTtd0ctc72dNdnBI8fp406jLH8UtDo8YsYjZ9YjZLxNe8BkKePpjTu+mki5cmSVP+NEBzy/3HrBr7Y/fivHo2l5xRttvakQeqx4bRuPxnHmOxbDUDF9khcW8/XyiJi2Zm7WonUyy13bJuHURvzHuvAIIGe4RKbFVNSRk3GpnhYy9HMi1Xuiaj9v1H64yAB3wrLe1bqZ/xJrXZ4UyYZQQMBXBFzdQ7SXstoLU9U4dlfIVPufq7/TjTuOkLNntNkBqucNIfNVBKb840LIUn4bW67QHSHjDGssMbzwllMwc1knkk1wsg0umpDdu/+QytXqKKfzNKj5rszkeOb8ZTmVkN+gaVkWna0h43VdZSI6yJS0vPiW0+h+veM7mWCE13LxYndXhUWG567zlEOeZplPpNX/9rtjcsSNi72Q8VqzRu0T18c4y1So/bHgxb4fhodJWTr621+0fP0uscajlsx45oqnKitO8V+2ZiIrXsvGU0A1nnxempA9eBgtsq91ktms+DMD5f/3Mt0TrA7xHxOR6n/VvKE2KYdTUUjjUhUJeFrI0M8TP3uhck9U7ecn/jpLESLrqnYP42xwZ85fkZnoeKr4kW9mK7Y2qoGA5wlo9xCeUttQJOPKKV5gfv/j73IdNL+g3PzFWBm7qnHsrpCp9j/t7zTP2KlZuYz8tM5nX26W2Zzfe/s1mjg48RM4qucNIfN8bGGPiQQgZKkoErSpeNZZvPjyw5v2FTenKzZryPi7RBU/7EYfiaQenJFRSs3ML+nzlVtkWmYunF2Qb8CcZXHfOpHUQ0y34fLn3+ep57BP5SiPVvj7WsN7taAyJYvLETKWD+sMhlo9Hq2K7DlefodLK5zwwv57Ic6ajRNf8JoYTjbChVPwlnzlOfngNH5gGykz1oXXjvH6N84699brL9hsYwmaKr5ptmjFN5b0/FyBR/iG9mguMza64mmEFWe0GzHlczkqlzFDesnnkhj14mv5buNMmcmKC4+EDRw7X45GWhf+I8N/ULI/9l+yD2ds8G+pm8DpMxepSqOeDpk6OZkNJ7Wxz9TJDx28hsxVUg/088R4Ur0nqvbzI8dOyuy2vIZXK3yP5U9i8P0TBQR8RUATMu0TOdp5aN8yzJk9cYYJF5U4Nixk/yb3mjmqi/g7+aJy/9P+TrNI8ktNrZT/3ys0Siy/sJ5donLe9vdGX7UHjpvyCEDIUl6bPtIr4jSzLFq5cjwm34olVXjkh8WOZcGoMPADzIXL1+S3yDQpUb0wFkROxsFTfNz9mCpnZbwo5JBHpPLlyW5oaqARVtbXxt9WOSUeoJ29Eeepn2fFW3Mu+cUHqu0/Q6DKCPVAwFME0M/V74mq/ZyZ8ksyfkmTW9xrrZMceardsB8QMELAepSdZ7DwS9Mc2TIn+TfRG3Fs5O8sv4DlbMlFHs/nMnkOM/HGeRthj7qpgwCELHW0M67SpAR4/j2PuvFHYNOI/+MpiDwFhKdJ9v2kkUnPGqcFAiBghAD6uRFaqGtGAq6mPZvxXHFOIOCPBCBk/thqOOcUQ6B8nU420zP5wngqxcjeLQ2PDKYYKLgQEEhhBNDPU1iDpsLLgZClwkbHJXuVAITMq7hxMBCwJcDr8U6cOkvXrt+W33crLKZZcuIUFBAAgZRDAP085bRlar0SjuFfxHKFvCJhVh6xvhQFBEDAswRSrZDx4s6Y2Fjlh1/OABglbkhG10J5trmwNxAAARAAARAAARAAARAAgZREINUJGYtV865jZFY7Lvwh4YXiI8au3vhwatQug6ZbMgYWEIkUONvVS8WeSklxgGsBgRRNwOj32njBeib5fbfQFM0FFwcCIAACIAACIOB7AqlOyMbOXEbLRfrUVXOHiDU66cQHgAfJaWLTR3Ry2hrNOo+mG7fu0NIZ/SlApB/u0HeyXPOzYs5g37cezgAEQCBJAn+cOkcfdRxuSXfMn1CYNLi9zMLprGzZ/T1xKvgr4tMJ/D28F54pTDNGdbZ80gG4QQAEQAAEQAAEQMDTBFKdkPHi6krlS1K3yHqS5YoNu6n/mHl0bMd8pynSKzXoLrLg5aZZo7vI+guXb6Yp4vtUhzbNkv/7/LUHnm4T7A8EUiyBjOmCKHP6YK9dH39CgF+8zBrdWX5kt07LAdSzXQOqHxHmcA6cPvmld5uJD5q/R73a1yf++HGFD7tS7SplqXOruhQVE0/Xbkd57dxxIBDwdwLZM4dSaHCAX17G7fsxdPdBrF+eO04aBHxBIF/2dL44bIo5ZqoTsuJhH9PALk3EF9vflo14+OhJatR+GH27Zgo9liWTQ8Ou37KfegybRfzxw/oR79Jw8RHflg2qUZMP3oeQpZhugAvxFgFvCtn1m3eoTHh7mjO2G735WjF5iZ0HTqfzl67KEW/7wgL2RuXW8kPo/EF0Lq26j5MfP+cRdAiZt6IEx0kpBCBkKaUlcR0goE8AQqbPKKkaqUrI+CO/L7zTlMb0i6TKYSUll+Mn/6baLQbQpsWj5feg7Aunem3Qbqj4kGB++unXP8TDWSAtntqHni/6hHvk8WsQSIUEomLixBvzQK9cuda3t3453vIR86nzVtHKTbtp+/IJTs+h3+h5tHLjbqpR8S168bknabSYvjh/Qg+5ZhRC5pVmw0FSEAEIWQpqTFwKCOgQgJC5FyKpSsgYFY+QDeralCIqlZHktBGyvWumUtYsGR1o8hTHd8u8Sr07NKRbd+7RJ/2n0A8/n6DD38ymICFnmLLoXgDi16mLgDdHyA788Cs16zLaZvR7zpINNGvRWsuUY3v62789TF0Gz6BnihSUiX+eLlyA5o7vLrOrRsfG0/2ouNTVYLhaEHCDQPrQQAoJwpRFNxDipyDgNwQgZO41VaoTMhasymGlqGvrDyS5r9bvogFj5ztdQ3b77n16s2ob+ZHeahVK/ytwJ8QUx+G0bNYAueAfQuZeAOLXqYuAN4VMGyHbtny8JYtqUiNk2hRHnp7IyT/+PH2OPhZJfXgN6SKRiTU6NoFixTozFBAAATUCQULGIGRqrFALBPydAITMvRZMdUI2ZsZSKWErOctiurT0YZvBNlkWJ87+ijbv/E5OYeRSskqkTI0/W6xDyZghHfUXU5r2fX+MdqyYiBEy92IPv06FBLwpZJpgzR3XnUq9+ryk3WnAVLpw+brTNWSbdx4Sa8ym0a6VkyzfJ+QEPrMXr6eft83DlMVUGK+4ZPcIYMqie/zwaxDwJwIQMvdaK9UJGX+HjFPZH/v9lCSXN1c2WjS1r2WNSa/hs2nDtv3yAYzLkWMnZRrsn379Uy7uf6ZIIbno/7USz8jtGCFzLwDx69RFwJtCxmTDm/aV3xObKVLXnzl/meq2GmiTZZFHu/nbgiN6t6DTZy5SlUY9qW71d0SdxCyLDdoOES9i0tPyTwdCyFJXqOJqPUAAQuYBiNgFCPgJAQiZew2V6oRMw8Vvz6NjYlx+ENoeK09fjImJlWtJrAuEzL0AxK9TFwFvC9nJU2epYbthxC9iuLxdqgRNHvLfd8jK1uxomZLI2/kzGHOWrCf+IDyX0iI7Y99PPpLShqQeqStWcbXuE4CQuc8QewABfyEAIXOvpVKtkLmH7b9fQ8jUSaahNOqV/ahmAiX40dn69lS9LWTa1bJg8UhZZvEflcLTGrNmzkjp0oZYqiclZCk1tvnikxPf4OEYZSmVSVLxASFTudugjjsEvNmvknMvdOfa/O23EDL3WgxC5h4/TFk0wG/T5gC6eMk/M24ldZlvvxVHRYpAylRCwVdCpnJuenWSErKAC6cpZOlUvV343fb4x3JRdN1IovSO32hM6mICbl2jkHkj/O56VU44umFnis+ZT6WqpU6ae3coZPl0SnPjiqHf+UPlmOpNKa5I4nf+7AuEzB9a0L/P8Ys7J2nlvb+8chF9HnuVXgrN4ZVj+eNBIGTutRqEzD1+EDID/OZ/Fkin/k55o2SNG0DIVMMgpQpZ4F+/UuiYjqoY/KZefO6C9LD7JONCduU8pe3f2G+u08iJPhz8WbKEjOMj4NIZI4fyi7pRXSdCyPyipVLmSY66eYQm3/zJKxe3IW9VCFkSpCFk7oUhhMw9fhAyA/wgZLawbt8m4v+ktJIuXRrKnt35iCGEzL9aG0Lm2F4QMlsmEDL/6tMp7WwhZOZpUQiZe20BIXOPn0shi4sniolOeaNBjCswKIGCg4yDg5DZMtu1J4C27Uh5UzhrhcdRieIQMuM9xHy/gJBByPSiEkKmRwjbHyUBCNmjpGts3xAyY7zsa0PI3OPnUsju3CFavDSQolKglH1QO5by5DYODkIGIcMImfF+48tfQMggZHrxByHTI4Ttj5IAhOxR0jW2bwiZMV4QMvd4OfzaVZZFFrKpM4LowUMPH9AEu2vTCkJm3QzJXUOGETITBLOBU0gqqQfWkNmCDMAaMhsgnNQDa8gMdDYTVL19P4buPog1wZngFJIiACEzT3xAyNxrC4yQuccvyREyCJktXIyQYYQMI2Ru3nC8/HOMkGGETC/kMEKmRwjbHyUBCNmjpGts3xAyY7wwQuYeL4yQCQIYIbMNA4yQ2fLAGjIP32R8uDsIGYRML/zMJmTx8Ql0/tJVyp0zm1jrHKh3+nL7P+cuy4+/BwT8t+4bI2RK6HxeCUJm2wSXYx/QL9HXvNIu+YMyUtGQrJZjQcjcw44RMvf4YYTMAD+MkNnCwpRFA8FjgqqYsqjeCJiyaMsKUxbVY8edmpu2H6Qew2ZRHGfVEqVTyzrUvH4Vl7ucMm8lfb5iC0XHJE5NrBJWiob2aCb/O4TMnZbw3m8hZLas1947RZFXdnmlARbmCqOw9AUhZB6iDSFzEyTWkKkDhJBByDBlUb2/mKEmRsgcWwFp722ZmGWE7L5YsF2qahspYJGNw2nD1v3UZ+QcWr9wBBUulNehIQ8fPUGN2g+n6SM6Udk3S9Bvf/xDtZr3p3kTelDJl5+DkJnhBqRwDhAyCJlCmPhFFQiZm80EIVMHCCGDkEHI1PuLGWpCyCBkenFoFiHbuO0gdRsygw5/M5tCQ4LlaZeu3pYa1nyP2jQJd7iMnft+pLa9J9Ka+cPoqcL55faXK7SgbpH1qH5EGIRMr+FNsh1CBiEzSSi6fRoQMjcRQsjUAULIIGQQMvX+YoaaEDIImV4cmkXI5izZQPOWbqR9a6dZTrle5GB66on8lmmI1tcSFR1DER/3pbMXrlCLBlXpzt0HtHnnd1LQsmbJCCHTa3iTbIeQQchMEopunwaEzE2EEDJ1gBAyCBmETL2/mKEmhAxCpheHZhGysTOX0cZtB2j78gmWU27aaSRlzJCepgzt4HAZCQkJNHbGMlr7zV45onbh8nWKqFSGBnRpIpOB8JrRoMD/knzoccB27xPgBC49/jlAE2785JWDby1Uncplz+eVYyX3IPMu/EYtL+5M7s8N/e6LfO9RndxFLL8JtEqKY2hHqCwJQMjcDAQImTpACBmEDEKm3l/MUBNCBiHTi0OzCJnREbKvd3xHXQZNp71rpsoRsW17DlOngVOpXdMIatmwGt15EEP3H8bpXT62+5KAkOoRN47QpJveEbKN+arSK2lz+vKKdY+96s5fXkvqsSj3u/Rehv+SeuR+LK3u+aGCawIQMjejA0KmDhBCBiGDkKn3FzPUhJBByPTi0CxC5mwNWckqkdS4TkWna8gGjJ1P2789THtWT7Fc4getBokRtXQ0d3x3TFnUa3iTbDfLlMU/Y27RDw8ve4VKsdBsVCwku9NjIcuiV5rgkRwEQuYmVgiZOkAIGYQMQqbeX8xQE0IGIdOLQ7MIGWdZfL1Sazm61aZxDVq3ZR/1Gz3PkmXx5q27VKNpH2orRsDqVitHX67bSYPGLaAx/SKpUvk36M/T5+V2/n3H5rUgZHoNb5LtZhGyRXd+p57X9nuFyvI8Fal0WsfMoXxwCJlXmuCRHARC5iZWCJk6QAgZhAxCpt5fzFATQgYh04tDswgZn+d6keq+x9BZllNmsWLB4nLtxm16O6IDdWhWi1o1qka8/mjk1CW0ZvO39OBhlFxHViXsTerTsSEFBwdByPQa3iTbIWS2DQEhM0lgJuM0IGTJgGb9EwiZOkAIGYQMQqbeX8xQE0IGIdOLQzMJGZ8rfxT6zPnLlC93dgr5N/293jX8c+4SFcibiwKskhLgw9B61MyxHUIGITNHJLp/FhAyNxlCyNQBQsggZBAy9f5ihpoQMgiZXhyaTcj0zld1O4RMlZRv60HIIGS+jUDPHR1C5iZLCJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIWx/lAQgZBCyRxlf3tw3hMxN2hAydYAQMggZhEy9v5ihJoQMQqYXhxAyPULY/igJQMggZI8yvry5bwiZm7QhZOoAIWQQMgiZen8xQ00IGYRMLw4hZHqEsP1REoCQQcgeZXx5c98QMjdpQ8jUAULIIGQQMvX+YoaaEDIImV4cQsj0CHlue5z4EPIv0dfoXnyM53aaxJ6KheagzAHBXjlWcg8CIYOQJTd2zPY7CJmbLQIhUwcIIYOQQcjU+4sZakLIIGR6cQgh0yPkue3RCXFU6+ImOhx11XM7dbGnQEpDewvUooJBGR/5sdw5AIQMQuZO/JjptxAyN1sDQqYOEEIGIYOQqfcXM9SEkEHI9OIQQqZHyHPbIWSOLCFkEDLP9TDf7glC5iZ/CJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIc9th5BByJjA8jwVqXTavE4DCx+G9lx/8/aeIGRuEoeQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6RHy3HYIGYQMQua5/mS2PUHI3GwRCJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIc9th5BByCBknutPZtsThMzNFoGQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6RHy3HYIGYQMQua5/mS2PUHI3GwRCJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIc9th5BByCBknutPZtsThMzNFoGQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6RHy3HYIGYQMQua5/mS2PUHI3GwRCJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIc9th5BByCBknutPZttTNOqjdgAAIABJREFUqhWyW7fvUUxsLOXIlkW5TaKjY+j8pWuUN3d2Cg1J/Ho9hEwZH0HIIGQQMvX+YoaaEDIImV4cQsj0CHluO4QMQgYh81x/MtueUp2Q3b33gJp3HUNHj/8l2yJ/nhy0cEpvypMzm8u2OfHXWfqk/xT6++wlWadj81rUsmE1CJnBaIaQQch8JWQXr1ynzBnTU/p0aZWj9vbd+3Tz1l0qkDcnBQSkoaiYeLp2O8rp7wP/+pVCx3RU3re/VISQQcj0YhVCpkfIc9vNJGT3EmIpwXOXluSeQimAgtMEOK2DD0PbYsF3yLwUlI/gMKlOyMbOXEbL1+2kVXOHUIb06ahe5CAqXCgvTR/RySnecxevUoV6XemNl5+l5vWr0ssvPEX3H0RZRtYwQqYelRAyCJm3heyPU+foo47DiUfEuZR9swRNGtyegoODXAbupu0HacjEhZbfLJs1gF54pjCETL2rU8CV85S2f2MDv/Cfqg8Hf0bxOfMZOuE09+5IYQ+4dMbQ7/yhMoTMe61kJiEbcv0Q7Xh43isXPzNHWSoakhVC9i8BfBjaK2Hn9YOkOiErX6cTVSpfkrpF1pOwV2zYTf3HzKNjO+ZTmjRpHBqg5/BPafPOQ3Ro00wKCgx02A4hU49ZCBmEzNtCVrNZP/niZdboznTm/BWq03IA9WzXgOpHhDkN3A3bDlD3ITOpdtWy1KDme5QtayYxqhYqR9YwQqbe1yFktqwgZOqxY5aat+/H0N0HsWY5HXkeZhKyNpd30pr7p73CZ0e+cAiZFWkImVfCzusHSXVCVjzsYxrYpQnVrPy2hH346Elq1H4YfbtmCj2WJZNDA5QJby/Xi+XK8RhdvnqDnn3qcere9kMqlD+XrAshU49ZCBmEzJtCdv3mHeL+O2dsN3rztWISfueB08U60Ku0dEZ/h8BNSEigcrU+oaJPFqTZY7s6bIeQqfd1CBmEjAlkzxxKocHOp5qpR5NvakLI0tDeArWoYFBGpw0AIbPFsujO79Tz2n6vBCuEzCuYvX6QVCVk/MD1wjtNaUy/SKocVlLCPn7yb6rdYgBtWjzaIlnWrVCsXBMq8kR++jC8PIUEB9OMz1bT/YdRtPOriRQiRO3eQ+dv0K5ci6NxkwPowUOvt+kjP2DHNvH05OOOo4VJHTguLoGmzEqgU387jkI+8hN+xAf4+KN4KlHMGI94Mfl+wzfxtHV7yuNRp2Y8/a+kcx68FitdiDFWyW0+rW9v/XI85c2VuEZ06rxVtHLTbtq+fILDbq9cuymF7MXnniRO4PMwKppKv/YCdW5VV46SQcjUWwJCBiGDkKn3F9WaGCFzJIU1ZLZMsIZMtTeZr16qEjLGzyNkg7o2pYhKZWRraCNke9dMpaxZHN8EsZAN79WCalR8S9Y/eeoshTftK9+w84PbrXsxTlv12o14mjAlZQpZh8h4erygsbee8cJAps+mFClkTRvF0wvPGeMh3g3Q11uFkO0w9jvz3UIcz6hORDyVet35dQUFpqEMaV2v3/Lk9R344Vdq1mW0zej3nCUbaNaitWIK8iyHQ/34yx/UoO1QCivzCpV/6xW6efsujZ/1pVh39hJNGdqBomPj6UFUnNNTjPntKAWN6uDJ0zfFvjipR0LfqRSUMbOh84k5f5aC+jQy9Bt/qRw7bCEF5yto6HRjb9+mNMPbpcg1ZLHdJ1Hwc8Wd8kgXGkghQf55j8MIGUbI7IN6Q96q9FJoDqexjhEyonzZ0xm6L6KyLYFUJ2S8hqxyWCnq2voDSeKr9btowNj5LteQcf3qFd6iT1rUlvV/PXFarEMZSJ9N6kWvlXgGUxYN9ChMWbSFtWtPAG1LgUJWKzyOShR3nn/Lm1MWtRGybcvHW7KoJjVCpgnZzhUTKWf2xAXkny3fTONEIqCfts6lGDHKGyOkzFl5+OvPFDgyZQpZQL9pFJzZmJA9PHuGAnunTCGLG76I0hYwJmQxt25R/NCUKWRxPSZR2mIlnPaLYCFjEDIDfyR1qmKEzBEQRshsmWCEzHP9zdt7SnVCNmbGUilhKznLolio/2GbwTZZFifO/kok8fhOTmHkwv+bH8pWzBlMWTJloAFj5tPe74/RXrHmjBf6Yw2ZeshCyCBk3hQybQ3Z3HHdqdSrz0v4nQZMpQuXrztdQ8Yp7t+q0Y7mT+gps6pymb14vbwHcNKf6NgEpL1X7O6YsmgLCkk9FAPHRNUwQoYRMvtwxAiZLZGFucIoLP1/L6cwQubeDSzVCRl/h6xZ59F07PdTkhyvLVk0ta9ljUmv4bNpw7b99PO2eXJ7lFhL0rrHOPruyG/yf/NakmnDO1ke2CBk6gEIIYOQeVPImDZPL84kvj82cxRnWbxMdVsNtMmy2Kj9cPmdsRG9W8jGqdW8P/Fa0wViBPzylRuy7+fNnYMWiW8VYg2Zel+HkEHImACSeqj3GZWaGCFzpIQRMlsmGCFT6UnmrJPqhExrBn57Hh0Tk+QHoa2bjN+e84diC+bLaZMeH0KmHtgQMgiZt4WM13w2bDeM+EUMl7dLlaDJQ/77DlnZmh1FMp/cUri4nPrnglx3dknIGBdO6PPpmC7yPgEhU+/rEDIIGYRMvb+o1oSQQciYALIsqvYY/6qXaoXMU80EIVMnCSGDkHlbyDTi/IF3HinLLP6jUi5cukZBQYGWtWT8GwiZCrnEOhAyCFlKErLohHi6FHefYhOcJ/VR7xn6NYMogPIEZaDgNI7JUCBkEDIImX4f8tcaEDI3Ww5Cpg4QQgYh85WQqUep65oQMnWKEDIIWUoSsuvxUVT5/Do6E3tXvRMks2aewHS0OV91yiH+v32BkEHIIGTJ7Fh+8DMImZuNBCFTBwghg5BByNT7ixlqctr7hyKtOaXPZOh0IGQQMgiZoS5jqQwhc+S2I184FQ1JzHxrX7CGzJYI1pAlr9+Z4VcQMjdbAUKmDhBCBiGDkKn3FzPUhJA5tsLDwZ9RfM58hpoHWRYN4XKrMn/z8vylq5RbrPsMFtOOVcvlqzdl1Vw5Eh/8rbMsYoTMkWKbyztpzf3Tqnjdqgchs8WHNWRuhZNpfwwhc7NpIGTqACFkEDIImXp/MUNNCBmETC8Oo7pOpLgixZxW83aWxU3bD1KPYbMoLi7xe4GdWtah5vWruLwEljf+zuCS1dsoWmRUDgwMsGRYhpAh7b194CDtvS0RpL3Xuzsa2w4hM8bLoTaETB0ghAxCBiFT7y9mqAkhg5DpxaFZhOz+g4dUqmobKWCRjcNpw9b91GfkHFq/cIT81qiz0nfUXPGZmwPUokFVqlO1rPzMDX8GgwuEDEIGIUu690PI9O6OxrZDyIzxgpAJAm1axVKe3MbBQcggZBAy4/3Gl7+AkEHI9OLPLEK2cdtB6jZkBh3+ZjaFhgTL0y5dvS01rPketWkS7nAZnEn13Q+6UPe2H1LjOhUdtkPIIGQQMgiZ3v3Pk9shZG7SxAiZOkAIGYQMQqbeX8xQE0IGIdOLQ7MI2ZwlG2je0o20b+00yynXixxMT4lvCQ7t0czhMtZs3ku9R8ym995+jU78dYZCgoOpTrWy1EAIHBcIGYQMQgYh07v/eXI7hMxNmhAydYAQMggZhEy9v5ihJoQMQqYXh2YRsrFiLdhGMf1w+/IJllNu2mkkZcyQnqYM7eBwGdM/W0PT5q+iRrUr0AvPFKZjv5+iRV99Q/07fUQf1ChP9x7Gym8Pcrkc84AqnFnrtbT3WwuFU95gx28mPoiLo+pn19PhqKt6zeL29kBKQwcer0NPhjpmWBVL76j5+W205t5pt4+jsoPdBSKoWPpsjlUTEmjIlR9o4s2fVHbjdp1N+avSGxmcTw+ac+049bi2z+1jqOxgRd73qVym/E6rLr/5B7W+vEtlN27X+TzPu1Qp8+OW/WTLFOL2PlPzDiBkbrY+hEwdIIQMQgYhU+8vZqgJIYOQ6cWhWYTM6AgZC9kXq7bSntVTLJfYoutYevAwij6f2oceRv/3EejzD+5TudOrvSZku5+MoIJpMzqgvxcTSxVOrfWakH1fuC49mzGLw3nECiNreHqL14Rs7+M16ZXMORzOg5Oy9Dn/HU284R0h+6ZgNSqT1fl6xCkXj1H3K94RslX5K9H72Qo67ZqLLp+glpd26nVbj2xfkvc9ishR2LKvtCHqWU09cgIpbCcQMjcbFEKmDhBCBiGDkKn3FzPUhJBByPTi0CxC5mwNWckqkXJ9mLM1ZJyRsevgGfTjljkUHBwkL7NxxxH08GE0LZs1AFMWxQjZ3gK1qGCQoxgyK6S9t+0Zi+78Tj2v7dfrLh7ZjrT3HsFoup1AyNxsEgiZOkAIGYQMQqbeX8xQE0IGIdOLQ7MIGWdZfL1Sa2rZsBq1aVyD1m3ZR/1Gz7NkWbx56y7VaNqH2jaNoLrVytGt2/eoTER7qlX5berzSSM6ePg4tew2ljo0q0WtGlWDkEHIHEIfae9tkSDLot7d0dh2CJkxXg61IWTqACFkEDIImXp/MUNNCBmETC8OzSJkfJ7rRar7HkNnWU65Y/NaUtC4XLtxm96O6GARLv63bXsOU6eBUy3fLatY7g0a3a8VBQUGQsggZBAync4PIdO7OxrbDiEzxgtCJggg7b1tGDRuEEdFiohVzgbLrj0BtG1HgMFfmb96rfA4KlHcOQ8Imfnbz/oMIWQQMr2INZOQ8bnyR6HPnL9M+XJnp5B/098ndQ2xIlHG2fNXKEe2LCIBSDpLVWRZxJRF+7jBCJktEQiZ3t3R2HYImTFeEDIImUMMQMhskUDI3LypmOjnEDIImV44mk3I9M5XdTuEDEIGIUu6t0DIVO8mavUgZGqcXNbClEV1gJiyaMsKI2TqsWOGmpwC+9rtKKenEvjXrxQ6pqMZTtOj5wAhg5DpBRSETI+Qse15AtPR5nzVKYf4//YlOiGOal3c5LUsi0jqYdsCGCGz5QEhM9a39WpDyPQI6WyHkKkDhJBByDBlUb2/mKEmhAxCpheHEDI9Qsa2Q8gcee3IF05FQ7I6BTnq5hGa7KXvkEHIIGTGerOx2hAyY7wcakPI1AFCyCBkEDL1/mKGmhAyCJleHELI9AgZ2w4hg5DpRQzS3usR8s/tEDI32w1Cpg4QQgYhg5Cp9xcz1ISQQcj04hBCpkfI2HYIGYRML2IgZHqE/HM7hMzNdoOQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6REyth1CBiHTixgImR4h/9wOIXOz3SBk6gAhZBAyCJl6fzFDTQgZhEwvDiFkeoSMbYeQQcj0IgZCpkfIP7dDyNxsNwiZOkAIGYQMQqbeX8xQE0IGIdOLQwiZHiFj2yFkEDK9iIGQ6RHyz+0QMjfbDUKmDhBCBiGDkKn3FzPUhJBByPTiEEKmR8jYdggZhEwvYiBkeoT8czuEzM12g5CpA4SQQcggZOr9xQw1IWQQMr04hJDpETK2HUIGIdOLGAiZHiH/3A4hc7PdIGTqACFkEDIImXp/MUNNCBmETC8OIWR6hIxth5BByPQiBkKmR8g/t0PI3Gw3CJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIWPbIWQQMr2IgZDpEfLP7RAyN9sNQqYOEEIGIYOQqfcXM9SEkEHI9OIQQqZHyNh2CBmETC9iIGR6hPxzO4TMzXaDkKkDhJBByCBk6v3FDDUhZBAyvTiEkOkRMrYdQgYh04sYCJkeIf/cDiFzs90gZOoAIWQQMgiZen8xQ00IGYRMLw4hZHqEjG2HkEHI9CIGQqZHyD+3Q8jcbDcImTpACBmEDEKm3l/MUBNCBiHTi0MImR4hY9shZBAyvYiBkOkR8s/tEDI32w1Cpg4QQgYhg5Cp9xcz1ISQQcj04hBCpkfI2HYIGYRML2IgZHqE/HM7hMzNdoOQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6REyth1CBiHTixgImR4h/9wOIXOz3SBk6gAhZBAyCJl6fzFDTQgZhEwvDiFkeoSMbYeQQcj0IgZCpkfIP7enWiG7dfsexcTGUo5sWdxqOQiZOj4IGYQMQqbeX8xQE0IGIdOLQwiZHiFj2yFkEDK9iIGQ6RHyz+2pTsju3ntAzbuOoaPH/5Itlj9PDlo4pTflyZlNtwX7jZ5HKzfupr1rplLWLBllfQiZLjZLBQgZhMxXQnbxynXKnDE9pU+XVj1g7WpGxcTTtdtRTn8f+NevFDqmY7L3bdYfQsggZHqxCSHTI2RsO4QMQqYXMRAyPUL+uT3VCdnYmcto+bqdtGruEMqQPh3VixxEhQvlpekjOiXZgguXb6ZR076QdSBksZQnt/GAh5BByLwtZH+cOkcfdRxOPCLOpeybJWjS4PYUHByUZABHRcdQxMd96WFUNG1fPkHWhZCp9/mAK+cpbf/G6j/wo5oPB39G8TnzGTrjNPfuSGEPuHTG0O/8oTKEzLOtBCGDkOlFFIRMj5B/bk91Qla+TieqVL4kdYusJ1tsxYbd1H/MPDq2Yz6lSZPGaSvuPvATteszifp1+ogGjl0AIWsFIbMOlMYN4qhIkQTDd4BdewJo244Aw78z+w9qhcdRieLOeXhbyGo26ydfvMwa3ZnOnL9CdVoOoJ7tGlD9iDCXGBMSEiiy53jac/Ao5c75GISs+ySi9JkMhR2EzBYXhMxQ+Jii8u37MXT3Qaw8l+vxUVT5/Do6E3v3kZ8bhAxCphdkEDI9Qv65PdUJWfGwj2lglyZUs/LbssUOHz1JjdoPo2/XTKHHsjg+dJw8dZZqNe9P4wa0kdMb67QcCCGDkNn0dgiZ7c3PLEJ2/eYdKhPenuaM7UZvvlZMnmTngdPp/KWrtHRGf5d37DHTl9L6rfupeoW3aMO2/RAyCJlNrGCEzLbrYITMsw9/EDIImV5EQcj0CPnn9lQlZPzm+4V3mtKYfpFUOaykbLHjJ/+m2i0G0KbFo6lQ/lw2rXjtxm2q3LAHfVyvMrVqVI1+PXHaQchcrSm5cTOBJk0LpAcP/TMwkjrr9q3jqEB+56OJrn6XEE80a14aOvW3sd/5A70mjeLouaLGrovHj7ZuF/9JgSNktSPi6PVXnPMIDQ4kHiXzRtH69tYvx1PeXIlrRKfOW0UrN+22SJb9efAa0SETF9G6z4bTpu0H6YvV2yBkEDIIWRIdFkLm2bsZhAxCphdREDI9Qv65PVUJGTcRj5AN6tqUIiqVkS2mjZBZrwvTmvKr9btowNj5VPXdN+U/Xb1xiw788CuFlXmFmn5QiV5+4Wm5rsRZuXQ1lsZMTJMiheyTtgn0dGFjD9WxsfE0cUZ8ihSyZo3j6ZUXgw3dAeKFka3dFEtbthsTOUMH8VHlujXjqWxp5zz4pUjakECvnBn31WZdRtuMfs9ZsoFmLVpLhzbNcjiHQz/+JuvPn9CTXi1elGYvXm8jZNEihh9Gxzk99+jjRyloVAevXJc3D8JJPajvVArKlNnQYaPPnaWgPo0M/cZfKscOW0gh+QUXAyX29m2iYe1S5BqyWCHsIc8Xd0qD+3pIkH9Oy8aUxTS0t0AtKhiUmMDMvrS5vJPW3D9toBckv+qOfOFUNCSr0x2MunmEJt/8Kfk7N/DLDXmr0kuhOZz+YtGd36nntf0G9pb8qhCy5LMz8y9TnZDxGrLKYaWoa+sPZLto0uVsDRm/YeepS1q5cvWmmMJ0gOrVKE+1q5al555+HFkWDUQ3knrYwsIaMgPBk4yq2gjZtuXjLVlUkxoh6zRgKh08cpzKvJH4cPmLGBH/59wlqvROSerdoSGlE2vRol28gHl4/GcKGpkyhSxN32kUnNmYkEWdO0OBvVOmkMUNW0ShBYwJWcytW5SQUoWsxyRK+3wJpz00JDgAQmbw3oURMkdgEDJbJhAyg53KT6qnOiEbM2OplLCVnGVRpMD+sM1gmyyLE2d/RZt3fienMNoXZ1MWkfZePdIhZBAybyb10NaQzR3XnUq9+ryEz9J14fJ1p2vINu88RD8f/9PSSN//+DudEGtIOQFI5Ec1KDgkFGnvFbs7knrYgkJSD8XAMVE1jJBhhMw+HDFCZktkYa4wCkv/38upfNnTmagH+9+ppDoh4++QNes8mo79fkq2Fq8tWTS1r2WNSa/hs+VC/p+3zYOQuYjnNkjqYUMGST1sA8UsST34rMKb9qVM4vtjM0dxlsXLVLfVQJssi43aD6cCeXPSiN4tHKLdfsoi0t6r/4GDkEHImED2zKEUKkbJ/LFAyCBkELKkey6EzLN3tlQnZBo+fnseHROj9EHopJBjhEw9IDFCZssKUxbVYye5NTlLasN2w4hfxHB5u1QJmjzkv++Qla3ZUSTzyU2LxMfh7QuEjAgfhnaMPGRZtGVitqQe8WKBLmdSzZ0zGwUHJX+9KoQMQgYhg5Al99kjOb9LtUKWHFjOfgMhUycJIYOQeXPKojXtcxevypGyzOI/yS0YIVMnhxEyW1aYsqgeO+7U5MyoPYbNori4xGRbnVrWoeb1q+ju8vSZi1S9SW/5qYuhPZrJ+hAyCBmEDEKme/PwYAUImZswIWTqACFkEDJfCZl6lLquCSFTpwghg5AxAW9OWbwvvjFTqmobKWCRjcNpg0jI1WfkHFq/cIRcJ+6q3Lp9j6p+1JN41gxnX4aQJZIKJAgZhAxCpv5Xz/2aEDI3GULI1AFCyCBkEDL1/mKGmpiy6NgKmLJoy8QsUxY3bjtI3YbMoMPfzKbQkMTPbpSu3pYa1nyP2jQJd9qdYmLjqF7rQZQvTw66feceFcyXC0L2LykImWPIIKmHLROsIfPsX2kImZs8IWTqACFkEDIImXp/MUNNCBmETC8OzSJk/I3BeUs30r610yynXC9yMD31RH6LZNlfS5dB0+nkqXO0YvYgat51DITMChCEDEKm1/chZHqEjG2HkBnj5VAbQqYOEEIGIYOQqfcXM9SEkEHI9OLQLEI2duYy2ii+E7p9+QTLKTftNJIyZkhPU4Y6fiNwxsI1tGDZ1/ITN9myZqLGHUfYCJn1R+DPP7hP5U6vpjOxd/VwuL2dv0O2+8kIKpjW8YPM92JiqcKptXQ46qrbx9HbAQvZ94Xr0rMZszhUjRWJUxqe3kJr7p3W241Htu99vCa9ktnxg8ycwKXP+e9o4g3vfBj6m4LVqExW59Nfp1w8Rt2v7PPI9ertZFX+SvR+NuffQlx0+QS1vLRTbxce2b4k73sUkaOwZV/8IXiU5BOAkCWfnfwlhEwdIIQMQgYhU+8vZqgJIYOQ6cWhWYTM6AhZySqRlF9MVXy6cAF5iTv3/0hpQ0OoSlgp6t72Q7r7MNbyIfjLMQ+owpm1XhOyrYXCKW+wYwKiB3FxVP3seq8J2YHH69CToZkcQkB4EDU/v81rQra7QAQVS5/NMRQTEmjIlR9o4k3vCNmm/FXpjQy5nXaJOdeOU49r3hGyFXnfp3KZ8js9j+U3/6DWl3fpdVuPbP88z7tUKfPjln1lyxTikf2m1p1AyNxseQiZOkAIGYQMQqbeX8xQE0IGIdOLQ7MImbM1ZCxdjetUdLqGjAXuxq07lstbu3mvGE1LR7WqlJWJQZBlEUk97GMfa8hsiWDKot7d0dh2CJkxXg61IWTqACFkEDIImXp/MUNNCBmETC8OzSJknGXx9UqtqWXDatSmcQ1at2Uf9Rs9z5Jl8eatu1SjaR9q2zSC6lYr53BZ9lMWIWQQMghZ0r0fQqZ3dzS2HUJmjBeETBBo0yqW8jgftU+SJoQMQgYhc/OG4+WfQ8ggZHohZxYh4/NcL1Ld9xg6y3LKHZvXkoLG5dqN2/R2RAfq0KwWtWqU+G/WBUJmywNJPRwjHyNktkwgZHp3R2PbIWTGeEHIIGSOf8gbxFGRImJSvcGya08AbdsRYPBX5q9eKzyOShR3zgNCZv72sz5DCBmETC9izSRkfK78Uegz5y9TvtzZKeTf9Pd61+BsO0bIMEJmHxcQMghZcu4lqr+BkKmSclEPUxbVAWKEzJYVhEw9dsxQEx+GVm8FfBjallWae3codExHCrh0Rh2in9Q0m5B5ChuEDEIGIUu6N2GEzFN3m8T9QMjc5AkhUwcIIYOQYYRMvb+YoSZGyBxbAR+GtmUCIfNsT+W095vzVacc4v/bl+iEOKp1cZPXsizuLVCLCgY5pt/n82pzeSetuX/asxfvYm878oVT0ZCsTreOunmEJnspyyJGyGybAELm2fCHkLnJE0KmDhBCBiGDkKn3FzPUhJBByPTiEEKmR8jYdgiZIy8ImS2T5XkqUum0zr+HtvbeKYq84p209xAyY31brzaETI+QznYImTpACBmEDEKm3l/MUBNCBiHTi0MImR4hY9shZBAyvYiBkOkR8s/tEDI32w1Cpg4QQgYhg5Cp9xcz1ISQQcj04hBCpkfI2HYIGYRML2IgZHqE/HM7hMzNdoOQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6REyth1CBiHTixgImR4h/9wOIXOz3SBk6gAhZBAyCJl6fzFDTQgZhEwvDiFkeoSMbYeQQcj0IgZCpkfIP7dDyNxsNwiZOkAIGYQMQqbeX8xQE0IGIdOLQwiZHiFj2yFkEDK9iIGQ6RHyz+0QMjfbDUKmDhBCBiGDkKn3FzPUhJBByPTiEEKmR8jYdggZhEwvYiBkeoT8czuEzM12g5CpA4SQQcggZOr9xQw1IWQQMr04hJDpETK2HUIGIdOLGAiZHiH/3A4hc7PdIGTqACFkEDIImXp/MUNNCBmETC8OIWR6hIxth5BByPQiBkKmR8g/t0PI3Gw3CJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIWPbIWQQMr2IgZDpEfLP7RAyN9sNQqYOEEIGIYOQqfcXM9SEkEHI9OIQQqZHyNh2CBmETC9iIGR6hPxzO4TMzXaDkKkDhJBByCBk6v3FDDUhZBAyvTiEkOkRMrYdQgYh04sYCJkeIf/cDiFzs90gZOoAIWQQMgiZen99fwmmAAAgAElEQVQxQ00IGYRMLw4hZHqEjG2HkEHI9CIGQqZHyD+3Q8jcbDcImTpACBmEDEKm3l/MUBNCBiHTi0MImR4hY9shZBAyvYiBkOkR8s/tEDI32w1Cpg4QQgYhg5Cp9xcz1ISQQcj04hBCpkfI2HYIGYRML2IgZHqE/HM7hMzNdoOQqQOEkEHIIGTq/cUMNSFkEDK9OISQ6REyth1CBiHTixgImR4h/9wOIXOz3SBk6gAhZBAyCJl6fzFDTQgZhEwvDiFkeoSMbYeQQcj0IgZCpkfIP7dDyNxsNwiZOkAIGYQMQqbeX8xQE0IGIdOLQwiZHiFj2yFkEDK9iIGQ6RHyz+0QMjfbDUKmDhBCBiGDkKn3FzPUhJBByPTiEEKmR8jYdggZhEwvYiBkeoT8czuEzM12g5CpA4SQQcggZOr9xQw1IWQQMr04hJDpETK2HUIGIdOLGAiZHiH/3A4hc7PdIGTqACFkEDIImXp/MUNNCBmETC8OIWR6hIxth5BByPQiBkKmR8g/t0PI3Gw3CJk6QAgZhAxCpt5fzFATQgYh04tDCJkeIWPbIWQQMr2IgZDpEfLP7alWyG7dvkcxsbGUI1sW3ZaLiY2jC5euUc7sWSld2hCb+hAyXXyWChAyCJmvhOzileuUOWN6Sp8urW7A3n/wkK5ev0UF8uaigIA0lvpRMfF07XaU098H/vUrhY7pqLtvf6sAIYOQ6cUshEyPkLHtEDIImV7EQMj0CPnn9lQnZHfvPaDmXcfQ0eN/yRbLnycHLZzSm/LkzOa0BcfMWEoLln1t2fbKi0Vp4uB2lP2xzPLfIGTqgQ8hg5B5W8j+OHWOPuo4nPgFDJeyb5agSYPbU3BwkNPArRc52HJvCAkJpiphpWhoj2ayLoRMva8HXDlPafs3Vv+BH9V8OPgzis+Zz9AZp7l3Rwp7wKUzhn7nD5UhZJ5tJQgZhEwvoiBkeoT8c3uqE7KxM5fR8nU7adXcIZQhfTqqFzmIChfKS9NHdHLagnO/2EhPPp6XSr78HP31zwVq1H44Na5TkT5pURtCZjDmIWQQMm8LWc1m/WQ/nzW6M505f4XqtBxAPds1oPoRYU6jd8iEhRRRuQw9WSgf7dh3hLoPmUkLJvak1196FkJmoL9DyGxhQcgMBI9Jqt6+H0N3H8TKs7keH0WVz6+jM7F3H/nZQcggZHpBBiHTI+Sf21OdkJWv04kqlS9J3SLryRZbsWE39R8zj47tmE9p0vw3PclVc7bpNYHOXrhKaxcMg5AZjHkIGYTMm0J2/eYdKhPenuaM7UZvvlZMwu88cDqdv3SVls7orxS9r1dqRXWqlqPubT+EkCkRS6wEIYOQMYHsmUMpNDjAQOSYpyqELA3tLVCLCgZldNoobS7vpDX3T3ulwXbkC6eiIVmdHmvUzSM0+eZPXjmPDXmr0kuhOZwea9Gd36nntf1eOQ8ImVcwe/0gqU7Iiod9TAO7NKGald+WsA8fPSlGvYbRt2um0GNZMiXZADExsVS6eluqWO4NyzQmTFlUj1kIGYTMm0J2/OTfVLvFANr65XjKmytxSvLUeato5abdtH35BN3APXnqLIU37Utj+kVS5bCSEDJdYv9VgJBByCBkBjqMVVWMkDlyg5DZMoGQJa9vmf1XqUrIEhIS6IV3mloesLhxtIe2TYtHU6H8uVy2F/+2be+J9O13R2nzF2MtD3hx8QlOf3P+ciyNFs98Ij9Aiiud2yXQM0WCDV1XjEiIMG5aHJ36W38U0tCOTVC5eeMEMaXNGA8Om5XrY2jL9pTHo26teAr7n23yG62ZYuMSvPbG/MAPv1KzLqNtXrbMWbKBZi1aS4c2zUoycm7duUfVG/emTCIRyJr5wygwMICiY+OllDkrUcd/pqCRHUwQjZ49BU7qQX2nUXDmxDWzqiXq3BkK6t1Itbpf1YsdtohCCwguBkrMrVtEw9qlyDVksT0mUejzJZzS4NGxkCDvjpDFi5srj4LnFuvCg4MCdVvpxq079OBBFOUT68mtC0bIMEJmHzwYIbMlsjBXGIWl/+9emC97Ot3+hgquCaQqIWMMPEI2qGtTiqhURlLRRsj2rplKWbM4H5rnery2ZPn6nTR/Qk96tXhRC9FLN50b163bCTRlWlCKFLK2reMoX16D3UoIyJz5ASlSyBo3jKOiTxvjwRq/Y2ca2rbDuw8rxs4yebVrR8TRyy85/2360EDKlM6YvCbvLP572bJt+XhL0h6VETLOstiw3TC6cu0mrZo31JKJVQpZdJzT04k6fpSCRqVUIZtKwZmMCtlZCuqTUoVsIYXmNyhkt2+nXCHrzkJW3LmQhQR6Vcg2bT9IPYbNori4xBcnnVrWoeb1qzg9N868ymtMtYQ/2bJmosjG4Zb1pRAyCBmELOm/vhCy5D6dOP9dqhMyXkNWWWRO69r6A0nkq/W7aMDY+S7XkPGNvfeI2bRpx0H6bFIvevkF2ydvTFlUD0hMWbRltWtPQIoUslrhcVSiuPORY29OWdTWkM0d151Kvfp84gPagKl04fJ1l2vI+G15g7ZDKTo6hpbNGmjJpsq/RZZF9b6OKYu2rJDUQz12kluTX6SUqtpGChiL1Yat+6nP/9u7Digpqi14ARUEJUgOYgAFRECQICA555wl5yXDktOSYVlyzkkQJOeckSAKgkgQEAWRjIAiGf+tx591E/TM7szszFLvnH8+0j3dt+u9brr63ls1dLqsmTvECHeFHLCymbdkk9SuXFTejBNbxs9aJotWbZf9ayYaewwSMhIyEjISsvA+j8Lzu5eOkEHGHiRsGVQW9aFby6d/MJXF0dOWyMYd3wpKGDFadB0huw/8KCP9fCTte6kCMU6dIomRziYhs3/ZkZCRkLmTkAFt9ICh7HDyMKgsXpXqzf2CqSxCNTVV8sQypEdTgSVG8Vq+ZpImDe0ob8R5Vn6BsqfUKZOSkNl/q1PUIwRWJGQOLJ5w7rpu6wHpPGCSHNo0TWKqZQUGer6/qFxMfBpUtDzqOVVRLluvu0wd7it5c3xMQiYkZCRkJGSWDw4n7vDSETK8dDXu6C/HTp0zMKLZf974XoE9Yd0HT5O1W/fJ0a0zzfZcZVqaF7WQY8WsgfKBEjQSMvtXIwkZCZm7CRmEOVB+aLuH83+WRcYO+M+HrEDldoZszVMvwouXr0vxms8IWdABP7LD+pLHDJn99zozZMGxIiGzf+2Ed0/0h85cuE72rpoQeAj4CqZ9N2WgCNeLjj1n8Ubxn/CV7Fg6WhInjC9/3Xsk/9x/VqJ8/cl9KXXRfbL3m1JVkCQxQvfjPHj6RCpdWieHHlwPL0x2/y6GErK9b1eVd14N3cqB+ocWl7e7TWVxR8qKkj5mgtCxa2//kD8Pyxg3qSyuS1FWssVKHCaGc26flK5uUllckqyEfB47bC/E5X/9Ii2v7bR7niOy47ykRaVYnP/Kt5MmiBWRw730v33pCJltxlHO9PDRo+caQtu7MkjI7EVKhISMhMzdhMyGOMgWMmVx9X/hHSRk9iNHQkZCBgTcKXsPj9F1W/cHU1Bt2GGoZrpjy7iBL+7vxAfa2j4DpHq5QtKr/bPeR9zvr8R4Jrp04Z+7kv/scrf5kO1JU0XejROaCP2lpdRFzqx0GyE7lKaGZIwbWm7+kYoz1Ty7UVbe/dX+h0IE9tz3bmXJkSC06BoEXLqe3y+j/nSP7P2W1OWlYMKwidCo349K52t7I3CV9v90ZapSUibxO2H+YOalk9Ls8g77DxaBPb9KUUyqJU0TeIQY0aOeSFkE4HH4py8tIXMYqef8gITMfiRJyEjIIouQ2b9Kn78nCZn9KJKQkZC5m5CFN0OGUsXKTfpI9szpTGkzFFUx2EPGksWQTzyqLAZHhKIe9v+baM+eJGT2oPSCfUjI7AeQhIyEjITM/vvFE/aE7P19VdGT2C/2aAwZKwkZCZm7CVlYPWRoOahfrcRze8iQGUMfab5cmWSUX+tAMkZCJoKSRRpDB7+PSchIyFz57zIJWQTRJSGzH0ASMhIyEjL77xdP2JOELPQs3O8/R54mDrts6Xlzxh4y169mqCzmKNVCmn1RTnzqV5DVm/dKb/+ZgSqLt27/LRUa9pRWDStpaWJB+fHEL4Ies5xZ00uvdlqmGO1ZuRUUF5Mkis8MGQlZqEVLQkZC5sonGQlZBNElIbMfQBIyEjISMvvvF0/Yk4SMhMxqHT7wHS1P0mQMczd39pAhgDUqdd914H+m7+2aVDEEDePGn3ckf6W20rZxFWlet5zxFfULmB0q7jzZP5ZpAb4kZCRkJGQWNz9LFq2ejo5tJyFzDK9Qe5OQ2Q8gCRkJGQmZ/feLJ+xJQkZCZrUOPYmQIVZ4h8LiIkXShAKF1PAO9pCxZDHk2mGGLDgiJGThfbqE/TsSsgjiSUJmP4AkZCRkJGT23y+esCcJGQmZ1Tr0NEJmFa+920nISMhIyF58t5CQ2fs0sW8/EjL7cHruXiRk9gNIQkZCRkJm//3iCXuSkJGQWa1DEjIrhBzbnkz9xzamKC+JwvAhe/jvE6lyeb3bZO8p6hF87pghY4bMsbvZsb1JyBzDK9TeJGT2A0hCRkJGQmb//eIJe5KQkZBZrUMSMiuEHNtOQhYar+0pKsqHr4X2Q8Oew24dlrFuMoYmISMhc+xudmxvEjLH8CIhUwR8mj+WZEkdB46EjISMhMzx+yYyf0FCRkJmtf5IyKwQcmw7CRkJmdWKWZyshOSJlTzM3VbdPSctr+20OoRTtrNk0SkwBh6EhCyCeDJDZj+AJGQkZCRk9t8vnrAnCRkJmdU6JCGzQsix7SRkJGRWK4aEzAoh79xOQhbBeSMhsx9AEjISMhIy++8XT9iThIyEzGodkpBZIeTYdhIyEjKrFUNCZoWQd24nIYvgvJGQ2Q8gCRkJGQmZ/feLJ+xJQkZCZrUOScisEHJsOwkZCZnViiEhs0LIO7eTkEVw3kjI7AeQhIyEjITM/vvFE/YkISMhs1qHJGRWCDm2nYSMhMxqxZCQWSHkndtJyCI4byRk9gNIQkZCRkJm//3iCXuSkJGQWa1DEjIrhBzbTkJGQma1YkjIrBDyzu0kZBGcNxIy+wEkISMhIyGz/37xhD1JyEjIrNYhCZkVQo5tJyEjIbNaMSRkVgh553YSsgjOGwmZ/QCSkJGQkZDZf794wp4kZCRkVuuQhMwKIce2k5CRkFmtGBIyK4S8czsJWQTnjYTMfgBJyEjISMjsv188YU8SMhIyq3VIQmaFkGPbSchIyKxWDAmZFULeuZ2ELILzRkJmP4AkZCRkJGT23y+esCcJGQmZ1TokIbNCyLHtJGQkZFYrhoTMCiHv3E5CFsF5IyGzH0ASMhIyEjL77xdP2JOEjITMah2SkFkh5Nh2EjISMqsVQ0JmhZB3bichi+C8kZDZDyAJGQkZCZn994sn7ElCRkJmtQ5JyKwQcmw7CRkJmdWKISGzQsg7t5OQRXDeSMjsB5CEjISMhMz++8UT9iQhIyGzWockZFYIObadhIyEzGrFkJBZIeSd20nIIjhvJGT2A0hCRkJGQmb//eIJe5KQkZBZrUMSMiuEHNtOQkZCZrViSMisEPLO7SRkEZw3EjL7ASQhIyEjIbP/fvGEPUnISMis1iEJmRVCjm0nISMhs1oxJGRWCHnndhKyCM4bCZn9AJKQkZCRkNl/v3jCniRkJGRW65CEzAohx7aTkJGQWa0YEjIrhLxzOwlZBOeNhMx+AEnISMhIyOy/XzxhTxIyEjKrdUhCZoWQY9tJyEjIrFYMCZkVQt65nYQsgvNGQmY/gCRkJGQkZPbfL56wJwkZCZnVOiQhs0LIse0kZCRkViuGhMwKIe/cTkIWwXkjIbMfQBIyEjISMvvvF0/Yk4SMhMxqHZKQWSHk2HYSMhIyqxVDQmaFkHduJyGL4LyRkNkPIAkZCRkJmf33iyfsSUJGQma1DknIrBBybDsJGQmZ1YohIbNCyDu3k5BFcN5IyOwHkISMhIyEzP77xRP2JCEjIbNahyRkVgg5tp2EjITMasWQkFkh5J3bScgiOG8kZPYDSEJGQkZCZv/94gl7kpCRkFmtQxIyK4Qc205CRkJmtWJIyKwQ8s7tJGQRnDcSMvsBJCEjISMhs/9+8YQ9SchIyKzWIQmZFUKObSchIyGzWjEkZFYIeed2ErIIzhsJmf0AkpCRkJGQ2X+/eMKeJGQkZFbrkITMCiHHtpOQkZBZrRgSMiuEvHM7CVkE542EzH4ASchIyEjI7L9fPGFPEjISMqt1SEJmhZBj20nISMisVgwJmRVC3rmdhMzOebt95648evxYEr0VL9gvSMjsBFB3IyEjIfMWQnb52k2J+0Zsif16rMBJe/Doqdy48yDMBR/jl+MSc3g7+28GL9mThIyEzGqpejshe/r0X/njynVJmvgtefWVGIGXe+efR/L3vcfmv28+fSCl/1gtFx7/bQVHhLeTkJGQWS0iEjIrhLxzOwmZxbz9ffeeNPEdLj+e+MXsmTJZIpk7rock04c3BgmZ/QufhIyEzNMJ2ZlzF6Veu8GCDzAYBXJnkTH928irr74iJGT23+vRr/0hsfrUt/8HXrTn/f5z5GniFA5FHO3uX4awR79ywaHfecPO3kzI1m87IF0HTZEnT54aqDs0qyZNapcxfyYhiybfpKoib7/yRpjL0OfqDln5z69uWaLbU1SUD1+LH+a5ht06LGNvHXFLHGuTl5VPYiYK81zz/jol3W7sc0scJGRugdntJyEhs4A8YPIiWbx6hyyfMUDixH5darbsJ++lTi4Th3QgIXNwuZKQkZB5OiGr3Li3uc+n+HeUC39ck2rN+kq31nWkdqUiJGQO3O8kZMHBIiFzYPG4add/7t2Xz8r6GALWsn5FWbtln/QcOl3WzB1i/o0nISMhC7kUSciCIzI3SREpEvvtwL9MkfB1N929UfM0JGQW81q4WgcpVTiXdG5Z0+y5dO0u6TN8phzbPkuiRYvGDJkD9wUJGQmZJxOym7f+knwV28j0gM6SO3tGM1kd/SaacqaFk/qQkDlwr5OQkZABgYRxY0rMV6M7sHLct+u6rQek84BJcmjTNIn52qvmxHnKt5IvKhcTnwYVSciEhIyE7MX3IwmZc59XJGQWeGYu0kj8OjWQyqXzmz0P/Xha6rYZJHtWjpME8d4kIXNgPZKQkZB5MiE7cfo3qdq0r2z5eqQkT/KsJHn8zOWybP0u2bZ4FAmZA/c6CRkJmacTsukL1srMhetk76oJgZNVs2V/SftuShnYtTEJGQlZqCceM2TBISEhc+AfRTt2JSF7AUj//vuvfFyooQzv3VJKF8ll9rS9tK2f7y+pUyZ57q8vXnkk8xc/lUePotkxDd61S+VyIhnSvuZQ0A9VEGHe4kdy+UrUw6NoQZFcWR3DQ/vIZdPOB/L94aiHR85P/5Vi+WOGuT7Qh+WpX8z3f39cGnfyD/zYggvAS9uUeavk4PopKurzVJv+w/7af+PEKYk2f4xD94Q37PxvgiTyeqP2EjtB2P0bz7uGPy/8If9OGegNl+hwjDEad5F4773r0O/+uXlL7s0cJdFuXXPod96wc/QqTSR+1mxhhvqieyayrw3tCOu27jcfW2yjYYeh8kac2DJuYFvzAcb2rDp/9660ubBbrj295/Kw34oWU8alzifvxXkz1LnuPHgkrX/bLWce33Z5HNH136jJqQrKx/EShDrXoyf/Ss9fD8ieB5dcHgdOMCpZXsn1Vuj3LQiyjP79R1ny91m3xDEwSU4pnChlmOea+/vPMvnOT26Jo1vCrFI+adjPoGWXzknAnz+4JY62CTJJzeRp3XKul+EkJGQWs4wMWT/fhlKpVD6zpy1D9s3K8RI/XtjNri/DwuE1EoGohoDtY8vWxSMDRXuCZsii2vXyeojAy4yAVYbsZcaG104EiID7ESAhs8AcPWSli3wmvi1qmD2XrNkpfQNmBfaQuX/KeEYiQARcgYCth2zGiC7y2acfmVN06DteLl29aXrIOIgAEYg6CITVQ5arTEupX62E6SHjIAJEgAi4EwESMgu0h09aaEjYMqgsqidRLZ/+wVQW3TlZPBcRIAKuRaBiw17ypvqPTR4GlcWrUr25X6DKomvPzKMTASLgTgSgspijVAtp9kU58alfQVZv3iu9/WcGqiy6MxaeiwgQASJAQmaxBuBD1rijvxw7dc7siWb/eeN7BTb9e8oS+ufeA3klRnR57f9qUWHFBa+V+w8eqqz3f2a3nhJ/ZMWBrMjWPd9L1TIFjGrm7gM/SsIEb8pHH74bWSE55byPHj2WHft+kKvX/5QKJT7XvohncrSPnzyR6NGiS/ToUa93zRnAnT73u3zRepDgvsfI/1kWGTvgmQ+ZJ427/9yXmDFf1Xv+PyPbkPFhDTx6/ETNrcPu5/Ok63FXLKfOXpBLV25IwTyfSMh7310xuOI88M3bvOs7eUWNjSuW/DzwFJj/oGbHrji3Nx9zjUrddx04JfAS2jWpYggaBxEgAkTA3QiQkNmJOP7xfvjoUWBviZ0/c9tupep0kSwZ08rQHs2ee85tew5Jm15jZeeyMZLorXhui82TT3Tox59VNXOwHNk6w7zc1mjeT7Jl/lC6tqrlyWG/MDa8hOUp5yOxYr4mKZMnFv9ezVWAJqngi3CJWp1NOU6tikW89vrcEfjFy9dNpiyu/s/Thu3L/rCezaVssdzPDW/AqLmyZff35n7neIbAuJnLlLh8L6tmD9J+4OD3vrdihI+FeG7BOythgrgyZ0x3cylnf/tDytfvIevnDzP3P0fYCOBDJbLhKZImfOEHTeJHBIgAEXAlAiRkrkTXjcfGl9/XY8V8ofLj7b/uytlfL0rmj9K88Mu6G8OO9FNFRUK2a/8Rad1zjBzeNF1iaNYUo8eQabJy4zfmz73a1yUhi/SVF/4AoCz2w0+n5f3UKV4oLPSHkkrc8xk+eCf8J4tiv4yKhGzw2PlG/XfeuB6Bs1W8pq/gowIGCVkUW8S8HCJABKIkAiRkLp7WLgMmmzOcUSIE0gSp/PGD20uad1LI8Z9/lbaasRrQpbFMnLNSrqs0MuT0dx84Kv1GzJarN25J7k8zStM6ZSV7lnTmOOcvXpWeQ6ebEkqUKKKkakRfH+k2eKqkT5taGlQvKb+cvyTdB02VE2d+0xfyGJLt4w9k4tAOck7/vnWP0bLxqwDzon7yzHnpouUaIGlvxX9TOjavHqgmibhR/nL6HOI+LzmypJee+iL/vn6FddfAS0VbLSHZtPOgnDx9XsaqFDHw8wuYLZv1y//rsV4zJp4NapTUsqxYApuC2Ys2yOyvN8ift/+SVJod6tOhvqR9L6XU9hkgl6/dNKHja/GQ7k0lU4b3Q30l9/YM2fmLV6RKkz6aDXtgymo/Tv++jO7fWtfWbVOuWqlRLzPPzJC5ZhVjzebNmUmQjQbmebJ/bPBHmfCC5Vvl4A8nzL0Mg/l0aVLL4O5NjLT+rEXr5d79h1K2aG5pXrecWbsY3xw8JoPGzJPfL10zvocNa5Yy9zgy4oN1DWfVexvnGjz2S/O8QGlqpZL5pLNPTVm0cpvsUyl/nB8D5VnDxi8wpXrvpEoq/r1byMfp3jPbEHeRfJ/Kxh3fmrgRB4g77it3jOc9C7Ge8YzCdhDQetWKB3pCPu9ZCGXMOYs3mHsAJdxVy+SXHm2/MCXJUY2Qrd60V3oOw4eXGJJQn+F1VZACohQg479fui6QcSchc8cK5jmIABEgAhFDgIQsYvhZ/rpaMz9DxtA0/Fb8uDJ62mLJmO5dFQ3opC9nJ6VB+6GmxwN1/8hwVdD/R5lJ41qlpWShnLJs3W7NbOyRb9dNVk+zx1KwantznDaNKsvTp0/NC8a6L4cFK7Wr3Li3+Qe6T4d6hpjMW7JZRvj5yBntj7GV5z18+FgKVG4rH7yXSlrWryi79v9gXhi/HN/TvOQhbhCxFvUqSEbtpxowao4qz2U0hpnuGhkLNjCnKqMql6lSJFaM8glEVk4pkcQLFkaPodOkdcPKUrtSERM/Xl7r6QtJ4bxZZds3hyXem3GkRoVCisEmQ27xgjZ2+lI5d+GS8Z+JahkylLMNGDVPdup8oqQtftw3DPG0DaiItW9alYTMRYsYaxZEuFXDSuYDwCT90NK5ZU2pW7W43vtLZNr8NeajQrH82Q3pwkeEQUqmerWvJx++n0r8J3xlsl4Th3TQ+/WiVGjYUwrlySp1Khc1z5EDh07oB512gvPgGfKpltfmKNVcqpcrKNXLF5Kff/lddu47IiP1fg9KPkBocE9XK1tQihXILlO/XC1HT/wie1aMM2QRx8NHGXwAAQnrrh94sH5KFX7mv+jqEdazEM+4AlXaSSb9qNBSn5/o78PHmLXzhprysuc9C5ev3619U6/Iu6mTya/nL0vXQVMkoE9Lcy1RjZBBAbR5lxGm77VRzdKGaNvKE5EhA9EmIXP16n3x8YN+LI3MSDwljmXrdplSajzjInMwjuDo4+MXniVfTexDS6dIWpgkZC4GHi9BObOmNy9lGHgIDBg9Tw5tnCrfHTllCNm+NRMDe1VAKNaqWeUEzaJhPFQS1qjDMJk/oZfcuHlH2vYeKytmDTREKugImtnB13N8TR+uLyEpkyUK3C0o+diuZKV9n/GaLRse+DU+X8U25us++tBCxo2s06yF693aj4KXxJF+raREwRzmGmy9M3jZzf1/WXKQzctXb8iCib3Ny8c7qZLJtADfULOK3x44fEJO6wsrcIB4x087Zkc5QoYLxzzNX7ZZtnw9MhQOJGSuveGxZqcHdJbc2TOaE3X0myh//f2PWZMgZDCi3bBgeKCoCu5VvEQ3r1ve7H/k+FkZOeVr+X7jNJP1WrFhj3lWILsTdNgIWeaP3td+wVaG8KE3MGjPW1DygYz7um0H5MDaSeYwV6/fkkL6ccfWhxYybhhkJ0mYQIb0aILxnhAAACAASURBVOpawP5/dBshC/os3L73sGb0x8gkze6jnw+jc/9JUlkFeNK9//Zzn4XYDwT08LHT+mz4U77Ue6GhZtHbNq4S5QgZrhWiUyn0OT+gS6Ngc0VC5pal+8KT2Pr7UJGCvu2SBXOa7HXI+9nVkXpKHPh3uEDldiZ7jQ9AWTN9IP19G7mdADCO0Cuufrsh5p0U8/J2iiTSvU2dYB9zXb1GeXwREjIXr4KQxMb2YNy8MMDU+IOQHds+K/AB3dQ3QL47ekrFQxIEi8y3RU3TeDxy6tdydOvMUFEHJWQoeezoN8E89JB9w8tek9plgpGPL5XIjJmxVPuMpgUeCy8/6DlBL0LIuFFi5T/xq8AXOhfDZg4f8iURX/9RcocMRFDVuySJEphGdph4d2xW3ZQwBh14OaujynkocUS52IMHj2TPtyRk7pjDl+0cIdcsMlEzvlpn7hsQsh17fzAfVGwja/Gm8poqOOIfwaBj9ujuJvuLAV+0kMNGyPLlyiST564yRAMDH2BQaohS5qCEDAQL6ppBP1Ygs9akdllTIhkWkXz85LEqTLZ1yxTaCFnQZyE+Ag2fuDBUXyyyi6gSeN6zsFO/ibJh+7eSRXtl39fScJRh1tHSZmSGo1qGDJNDQuaWJRquk5Rv0FOS6r9PQ3s2kx81I41sLcrFsRbdOTwljmFaAYCP0qtmDzYKwAP14zTGwsl93EpSGUfw1YcP1C26jjDvfni2ovVj7dZ9poWGAnDuu1NJyFyMdUhiYyurO6RE6Kh+DQ9JyHoNm2GyOIum9A0VGTJn6O1CqV3SEIQtZO8TlKNQ4gMhh7mLN8rymQNVyvufwJJFvLBA7nfX8rFGmQsDGSb0HKHcyRMJGcovP6/Qxjw0smX6MBQ++PKW45P0pjwp6ABmJ7V/b7l6yeFLJTJlyDoyQ+bixf8SHj4ksfHpPsr0fa6ZOyRMQgbj+Uql8pkS5JADQiywLti7asILCRk2ov8ML3yT5q5QwY+z8t36KdqXuiJQUbD74Gmy97tjgRnuO5q1y13WR/p3biRVtMfKEwkZjHu7DZ4i32+YGsp24HnPQlvmD+VQBXJnMbihpzJfrswkZC/h/RiZl4x/e3EP4+MrMpgYyHqf0zLasKo4XBWrp8SBPlio/A5T1V/0qGJAgKqdVuoE/TDsKhxsx2UcwRHGuyL+HUK/s60i4sHDR5JNPxbivRGl9BzuQYCEzMU4g9gkThhPe6+aGCWs3v4zTDoYGZ2wvgqjib9Z5wDtkapj+j1uKglZsX6PfvHOLMgE4cYpkPsTNautbcjFhFkrTKlKUEKGWnE0/qdL87Yp20HfGEoe0XNm6yG7dftvc6zyxfMakQc8GCEWYuu18ERChqmCcS/sB/DChT4SvHziRRNfHFHuuUQzeYMU66L5smkf1RGBX9NPKoCyaed3WhvdW/CgGTZhwUtXsmjzpEKZGkrbsLaQMXR36YyLb7dIPzyIDdZi9XKFjC9Uf+29BNmCME9YGTJkgOYt3aQvaJ1NPxh6nmYuXGcEO2wleyi1Qw8ZavzRe4H/tmXI3kmVRL5cutlkuvBhZYpm5CbPXWkIGf5sk3i3WV74+TbQe+NTgfDFQhX92Lp4pLHy8ERCBvGRgtpDVjRfdunbsb7Wc4js3n9UvdUeG4IV1rPQt0UNyVO+lSkRR1/unoM/mpdi9Fe9TBkyEPSL+gKMHsSl0/sbSfyYL/CojPQbJ4oFAPzzV2pj+jpt7QqwI/m8Qmvjc4YecVSwLF27U2Lpcxh9oq7IRNgTB6DHxw9krPLpewYEx1wxUP1zTYWHglYI4IMVKlZmjHxWBcA4guNx6MfTWkZ4Uv9tSCefqK2RTTXZmfODSgSUycMeBa0uGEgcDB0/X45smWHeEdwRhzOvyVuPRULm4pmziWPgKwRGmndTytThncxLEOp1UbcbtEwH+9huENtv4sWNI3PH9DBqgXixQtkDHuYY6D+BqEfNlv2NmmIX9c/Cn/G1HAMlizUqFBa8qOCmqttmUKDn1nrtKcGxbOfBPx7mxUcH4s6VLYP5HQbKDJDmt/WguBg2c3i8JKJc67P/94vh71Dmid43lCHaBgQN+nZqYHrMUKqJ9DsGHl6DuzU1Mv8N2g+RK9f+NH8PNUooTD7LkAXHJCiO7rhGV5wD5QZf6kt+0B4yW3140PPx65fz0ceahXDMQyX+GCW0ZwRfhGHOO0bFZHZqxmuZZmptAx8I+vjPNAqItoGXZ2TUMMZqWfGUeav/W+v/v0dxnqnDfU1JXpUmvQXGwBjInOMFEAIWIF2blBTCcwtjqCosQtzGdm/gw0W54nnMf4e819D7hg84NoVG5yMV/IjPexbuV5XIzgMmGWVIW9xQpa1QIu9zn4V4uUCZKAZKQdGHaysTC4pJyHvf1dfoquOjHBUCMf18GwaeAuXbtuc6/hJr0p1ZCFddq7ccF8qpU+at0pfcsYHG7LiPJ5u/GyP4INpIFTDjquhUkkTx9aPiT0ZtGevamcMqDnhvosT3yPEzJkOyVd8vIKLlbPEufIyu2rSvLJ7qJx+pSBgG+mWhfjx3bA9jzcE4/sMDH+dQio4qh1KFcsn+Q8cNWYLoGpR0nTXwoTanCn211Y+GUPDFwHtUXq1EsvXduiMOZ12Ptx+HhMzFM2jLNPmokiEWPxTU7BlQX7uiX6zwVdP21SLo71Cagy9rzzOuBWG7pdk1W6nE885pM8XEPwrukri25/qt9sH1oYQRWUO87AYdeMm9+ecdsy3oFyVkGBImiGdU5TiIgCsQsGWaPtTsNFRT8UHEnvH4yRPzwSCBPh9C3oe4R6+oYmNCFQV4XpYDL3g4htVXdtw3ONbbqvSIlzFvGbjXoQyL51TIrG5Yz0KUZAITKFpyEAF3I4B7EaXKNpsYWEkgo9tVP5jiAynKhR/rfb1wUh9TyYKyQlTPHFg72VQuOGu8KA70VaJvCB8wkZEHGYRlTkXNqs4a1c1k7J050ANuK3/D+005VZNGtRBEexhHcDwgygV/QZSz42Mz3h3L1+8u5XWOUCHhzAEDeXzYt/17gLJarMfd2s6yeM0Ot8XhzGvy1mORkLl45kKW/rn4dDw8ESACkYhAyNK/SAyFpyYCRMBDEEAfM9R9Ny0cIVA4hloyqk/GqhgPMlKVS+c31StBe7phAB89enB11YheTtA47qiAV14toYSoD9Rc8QFzkNraoEoEJMDW5+WKOHA+tEigiuP1mK95TRyoPvlAe6ry5vg4olMR7PdB8YBoGfr5YVcDIv+LEiZkTxet2m5sbNDnhdaWn7Uv3pbVclYw+IgA5V9b60pkxeGs6/G245CQuXjG0EeC8sSgXlAuPiUPTwSIQCQhgC+b6HkKKboTSeHwtESACHgAAiiRR7YKRuxf64s11FdBRpDJHTn5a5OJwDMDgl3w0UN58d9375n3Bv9eLZyW6Q0ah+3lG20IyObj2TVKlWBRbr1j6WijROyqOG5oBcuRn85I4c+zmUwiSMDz4vjjyg3ji/jb71eMwnLfTg21hzSTU2bVkTjQj4c4h/duKaWLONefMWgcuDDY06BsFIqyyGD2UvN3kDMQJfhIFqnW0fTROru0FJk4CCah/zYy43DK5HrhQUjIvHDSGDIRIAJEgAgQASLgfQjYDN/RD5RV+74xUDaGF260GaB/s6aWNUL9FOIK+KjbtnFl7YMs6tSMGV6+P1fvUQjeIEuGgV5UCOG8ov3XnhAHTOHL1utmfFcHdWsi+7TXbtS0xVK/WklpUqeMxNMePGeNF+GBLCbsJVA6HbQHGOS5cN5sgj5/DMxXae3ftbc15Xmxt+w2yvRyzRzZ1bRdgMxD3A0ljFDNBga7tD/Rdh6QthTJEgYKskS1OJw1x55+HBIyT58hxkcEiAARIAJEgAhEGQRQ+gYfvdL6ol8ozyeSOUMaSabZH5QQwkNwaI9mgdcK2wYQgc1a7uhslT0oPTfrMkIV/NJIuWJ5jOAGeto8IQ6Ib4EUHlXBkbUqXGbrn7WJ9mxSOwH4LjpzhIUH4gARbOI7XJZM62cESDB+0AxfnVYDjQ1PquRJ5Hv1j/VV43qomuI3ERnoJ67TaoCx+6hRvrCZk9zZM5q+2PyV2wbzW4WSNIh1YyXWEGaLinFEBEtv+i0JmTfNFmMlAkSACBABIkAEvB6BY2rHAmIGW5Z543qajEipOl2NBylKGzFQYghCBkVV9C19e/ikqjCvV1ubUpIza3qnYICXfyg7QwG2i08tVW5N7hFxFFSiCvN6WIbAKgADZYOwwqhapoB09qlpMnrt+45TQZLPpWyx3E4RKgqJB+JAzx/G2AFtzf9DlKRM3W7y7tvJjAXPJLUagYIrMnnIoDmj9w/X+vXq7bJm8z7JrUrTsCdCuevo6UtMr2FQEQ6o9O5YMlpmqGVKVI3DKYvdww9CQubhE8TwiAARIAJEgAgQgaiNAIgAlBhtZu24WpAxCDnYfLrgK7pUvTZXbfpGZeozyqh+bZyqyohzekociCWfZn5yfJJBRvr5mMkfof12C1duDbQTuKT9ZV+t2Kr+ozsltvbBzVR1SFcoq8LbsH3TauovWdDEARug3mpXYvNxRBlhwORFkiRhfLN9/OD2Ec6ShbXaIcpy/+HDQGII5WiQ+BF9faRkoZymnPFliiOqPRFIyKLajPJ6iAARIAJEgAgQAa9DAJLj85dtkSL5shn7i9Wb9sr6+f6GZJw+97vxlkM5HEoYq6mvV1EVfejWura5TpCTfiNnK3lpFWELG0+JY+OOg8ZbNIt6iaLfDpk89JJBdALE8Y8r1+Vj7TNT72LpMmCK/PzLhUAPR6hDtu45Wjo0q2YyVxEZE+eslGnz10iLuuVNBhFm87ANgNk8snT51AS8jXp5Na5VRgnjNhUryWpUEHNl+8iphuwoqWzQfqjpMcyZNYPMVL9F9JehTNLT48B8JU+S0FiXcISNAAkZVwYRIAJEgAgQASJABCIJgdGqbgiBCsiYH//5V9m1/6iMU0n8OpWLSo+2X5jM0EwtR7P5GjasUUpOnj0v9+49lGkBvsZYftHK7Yao2Uzlw3MpnhIHSjNnLVovYwe2lRt/3patu7+XsTOWSWLNQOH6du0/IhC+AB7wHUUv3ntvJzfG2zBAh+k7BDdWbtwj27WUL2GCuOGBI9hvoIT5zbfHVHL+Ry1JjG7KBtHXhkzZjr2HZbsqU9rKCOG5VqlRL527OqqUmMOpJAQm0cvX7ZajJ84ahUpbz5onx4E5yl+prcnqgiCnTpk0wvMRFQ9AQhYVZ5XXRASIABEgAkSACHgFAlBS7NRvonyeM5OWxRWSOYs3GJn3NXOHGtKRtXhT6d6mjimZQ+/Z4DFfypHjZ8W/dwvjY9a6xxjZrqQAmbWhPZqb30BKvWGHYTJSy9nSvpfSLhxcEQdOXL/dEJPVKaUKhPaMc2pQXaf1QENSWzWsJCd+/k3mLd0ky6YPMNfS1DdAXn/9NVO6d1mN7qfMW236q2BuDZNrlDEOHD3PyOSjPy950oTmtI7GEVasOHait+IZSXoMzI1/r+aB/42/q9G8n5ps/2Hiv3T1pmTL9KER/3Dm+O7IKflWM2Y+9St4fBxjZyyV6QvWqvhJYrOu34r/pgqk9Kc9TIgFQULmzDuExyICRIAIEAEiQASIgIMIXLx8XeYv3SxbNBv0Tqpk2kvW0BAJlN59WrKZCnmUlHZNqpij+nQfZbIjq+cMVoEJkZK1O5t9Id2O0sYti0aaUraASYukW5vaDsnDOzuON+K8brJ9IJvZs6SzGxWInEC+fZ36Yj3WUs0+HeoF/h4S9PfuP5C5SnKQlcJ+Q8fPNz5uIEt+AbNl657vpUDuT0y/3bSAzpI9c7pwxfGigEEG4Qm2avYgSfPuM9ILUtu+z3iTyXsvdXIzT8igPXr8RC7onxvVKu30PjdPjgOlisVqdpLeOn/VyhYUqEKi/POzbBll7pINThWosXtxeeiOJGQeOjEMiwgQASJABIgAESAC3xw8piV6IyVBvDeNsh+yIwsm9ja9VYu0Z2mQ9p5tVaNplPQhgxb3jTjSvEuAzJ/Q22QjnDUcjQP9btWb+ZnsXo5PnKMKiWu5ev2WVGzU06guQrL/+6M/S6sGlYyfGjzdytfvIeO03BHG0/B9S6qZsvptBzs9DsQyfNJCmbdkkzk21B8LqApkqUK5DAEJOmC4vFrJITzDkPWzZbawD0r6Rk1dLK3170FgwzM8MY5aFYtIm15jdQ5+l3VqXRANzX7/H1YCNejbg1DJ+0pqX5ZBQvayzDSvkwgQASJABIgAEfBKBJAxOnnmgnToO16yKAlBud5DfZHPVdZHmtYuIz4NKgZeV1ATY5AokDhneXY5EseshesDTYx/0t44Z8YBgZMTZ36TyXNWyaFjPxvlxVdfiaFlmkMNUVs4qU8gHkHjuKl9djfUhNuZBBHkAmqYG3Z8K1O/XCO7tb/MRqyQGUNfIBQYkcUEYa7tM0AmqBJjvlyZTYxjpi+VL7Ukc+eyMRESZPG0OG7d+Vu+aD3IlI1my/TMBB3DSqDGJl6COcyU4X2vvF/DEzQJWXhQ42+IABEgAkSACBABIuBmBNAbhkwDMl/IlDXtHCD710wMVPMLaWKM8jkYSkMa3ZnDKg4IjBSo3C7QxNhVcaBM89LVG0YoAuTnk6KNg3m5hYwD4hzIRu1dNcGZcJhjTZ67ymQpq5TJb/4bZaN1fAYa4oiRLPFbJjsGc2uULtavVsL0wKHsMajdQUQD85Q4IL6yc9+RYNlCK4EalOiiBBfqmTa7g4ji4S2/JyHzlplinESACBABIkAEiAAR+D8C2/YcUmPk8drDNNhkn5A1Qr9OjizpZZgKTWCUb9DTCH+gnM9VI2QcOA+k4ZGdg1cX+rzcEcd1zXyBBOJFvkTBnOZyQ8bhP+Er+fEkzLidK7IRFrbIBFVs2MtYF0DQAn1t/UfOkZu3/pItWmIK0REIskAAZO28ocFK+pw5V54SB67JSqAGoilDxv3XD+hMHDz9WCRknj5DjI8IEAEiQASIABEgAmEgACNglOTNGNHFlIKhlyio1DtegAN6tzQKjMg+YPsBlU7/SsvBINvurBE0jgSavavcuLdMHtYxsCzPXXFs3X1IOviNl0Y1SxtVx5BxtOg6QksHE0nfjvXNpW/Y/q0hADNHdgkU5nAWJidO/yZV1S9u5qiukkt9w1BiWrBqeylbNLexM4A8f902g+TL8T2Nz5qrhqfEYSVQA8GPfCqP37RO2WA9dq7CxdOOS0LmaTPCeIgAESACRIAIEAEiYCcCyLigZylXmZbmRRYvtBh4wc1ZuoVR/EMpHby70MM0ZVgnNRZ2nsiGLUzEkSDeG9LEd7g81vLBOWO6R0ocEMl4ouWCEJQIGgeCKV7TV+qrYmXtSkWMCiXMpru0qmXKB10xxs9cLpPmrjRk7+nTpwIVy29WjpPXY8WU0l90VRn/VEaAxNXDU+J4kTAMrArWbdsvO5eOkVdffcXVkHjc8UnIPG5KGBARIAJEgAgQASJABBxDAAqD6KWCuAUGxCSqqcrh8pkDpXHHYZIgflyZrhLwSRLFlxUb9kg/LZ97TV98oWbXVUlJ7NdjOXbC5+x96/bfRjkwaeIEHhUHgslcpJGM8mutkusbDT5T/H2N4AT+3LrnGEHZIwyMu7aqbWTrnTFwTGSpWnQdKX07NTB+ckvW7JS+AbOMVL8NJ2ec60XH8JQ4whKGgfdc2XrdZXT/1sE83V50PVDbXL15r+TKlkE+Tveeq+Fz+fFJyFwOMU9ABIgAESACRIAIEAH3IrBmyz7pOnCKEfWoVCqfEVdAP9fQ8QtkkRopjx/UTpJpH1OXAZNNYEun93dJgJ4SB4RI8mtJ3Gtaqgk59Sn+nYxv2cYdB6Wj3wTp7FPTSNZPUsn1Zet3ye4V4xzycLMC7+yvF+X9d1IYD7W8FdoE85az+q0zt3tKHEGFYeq2GSz3HzyUxVP9LC8Vv/v90jVppoI2CRPENX+uUjq/IbvePEjIvHn2GDsRIAJEgAgQASJABMJAAAp3EP3w0xfVCiXymj3w8lqiVmfNhsVUo+X0xnD5X3WXLqalfCAgzvQts4XkKXFA0bCCipyUL55HurWuY4gqrj1vhdbGVBvkbFC3ptrPldb8Xc92dY0girMH5qDfiDkyfnA7u/r4oB5ZTXvRQKg/zfyh08LxlDhwfSDEbRpVlg/fT2V5fdMXrDVKmRBF2fDVcEFG9tTZC5I3x8eWv/XkHUjIPHl2GBsRIAJEgAgQASJABMKJAIQUokf/z5AXKnYTZ68wKn9T5q2SWYs2qOBEemNYfHD9FEPUXDE8NY7zF69IqTpdTengwSMnZcCouYb0gERCKOWzTz9yBRwOHXPa/DUyetoSk9lLpmWgDbQHrkaFwg4dwxk72+KAIfnbKZJI9fKFnEoQ7Y0R1gV+AbMNIcNYOn2AxIr1mpaB7pBCebJqH9oBJd15TWmuNw0SMm+aLcZKBIgAESACRIAIEIFwIrBu6wHtXZope1dPNL1mV679KQPHzJPXY74m/r1bhPOojv/MU+KwlTGizw7ZGfS+oWRx3db9slGzL/B8c8X48cQv8sNPZ1RcpKjJ1D1vQCilYJV20qFpNalY6nNZtHK7jJu5zKFeqxfFD+GXCbOWSwsVg4n7RmzLOGpWKKKm2ulM79YxtQ8AkXXGsDcO9J+h3LNhjZLSumFlYyVQLH92gd+cb/9Jsv/74yYcm62AM2Jz1zFIyNyFNM9DBIgAESACRIAIEIFIRADlYUWrd5QMH6SWAV0aG/VFDJTuuYp8hHW5nhIHYuvUb6IcPnZaJgxur7i84xAeIHDwEvvu6CkprsSge5s6El+VJq3G7b/uyqgpalD93THp59tQcquQSFgDPYDI3G1eOCKQuEEpMl+uzKaE0aYoGV5BFnjXzV+2WWZ8tU6afVFWalUsGiyjaosprDhu3bkr61UVEdYB6I2rrH2KmTK8b3XpYW63N47BY+fLyo17ZPfysSZjGHT8ffee5CnfylgetG9aNVxxROaPSMgiE32emwgQASJABIgAESACbkTAZBP6aTZB/chQ9jWqX2u7XqTRg3VNle3C+9Id8hLDGwfKH3fsPSyFP8/mFNRABuDPNm/JJokXN460alBJ6lQuanlsmExv1zgwICiBzBp6zlDKZ++AMmbvYTOMDD6OkTplksCf2vzDoIxpI2z/3HsgOUo1D5TqN75z3xyWdV8Os/eUYe53W8kVjvW9EkvE8Vm2/0o1w4oDB+noN9Fcv2+LGnLtxi1BSeOIvj5GtTO840VxnL94VctLu0hAn5bGYy7kgGw+Mnc7VDb/dS1h9LZBQuZtM8Z4iQARIAJEgAgQASIQQQQuXb0pJ1Tu3V5iAx8zkDhkgXJ+kl7efTtZBCN49nNH40BGB5mSuWN7SLo0bxsPNmeMO3//I4fVrPmTjGkNMbMa6DdbuHKbkccf2rOZZPzwXfOT8GQat+05pNf0pRTVLFvbxpWNBQFMrSFWsWrOYEmjGShkMXsOnS5QrYQAy13NCEGMBQPZIki/9+lYTz5Qb7PwjjPnLkov/xnyZpzY4ufbQFImSyQNOwyV6NGiyww1z7YN9BzCZBsiMP69WhjCOPXL1bJ8/W5ZP98/vKcP/F1YcbTtPVYuXroephrorxcuS5m63WRYz+ZStljuCJ8/Mg5AQhYZqPOcRIAIEAEiQASIABGIZARAQl7UO2QL77sjp6R+uyFGPv/i5Wvy7eGTRhWvRb3yTrkCe+PAfgUqtzMxP3r8WJBRQQyIxRnjoZYg/qsHihmiHC7ksVEqCAn9skVzS0JVZ9z33U8yb1wPzdz9IFt2fy8Z072rfWgHZPqIzpbHsh0bZZyzF6035CrxW/Gl84BJUk8Nq0FAIVKBfj+UONqyUM27jDBkFlLxICTI2LVuVElVIj+IMBRbdx8y/VmDuzc1KobA2lbeioOjzBMlgjU0Gwg/tQ/ff1uSJ02oPVw/mf4tZ42QcdzVHjKQxJADaxNrYcWsgc46tduPQ0Lmdsh5QiJABIgAESACRIAIRD4CyGqAOAzs1vi55rooESxZu7N8pBkgGPdiBExeJLMWrpfDm6aF6uUJz1XZEweOC3U9EIVtS0YbURJkap4+fSoFcmcJz2lD/QZEE0QInmQgW88bUD0EUdq5bEwwQ21byR0yRVBohFKjowMllPkqtdHz55EebesYsgffuOjRoxsxC5SMIk5krhZN6Rts3lxp+B30OlCuCPyH9WquZO2JzNQetAmzl0uzOuUMKfx69Q4ZMm6+Ic4lCuYwPV3h7XN7Hn6rN+2VC2ohkE7JILJnIbFwFPfI3p+ELLJngOcnAkSACBABIkAEiEAkIXDk+Fnp7T9T0r6b0hAA+HEFHYu0LG+QltNt1cyHLUuCF3+Uzx3ZOsOYTQ+fuFCqlSsYoTJGqzjQb1W+fg8ZN7BtsDLL41p22brnGLl+87bk0dK5rq1qmzLC8A6b8uRFfdkf2LWxIaJBB3rpilTrqKIojaSyGhKHHCBjvbQvDCqNqZInDlcYUGCE6mNYJAYEuXjNTpL5o7Qy0s8n8PjuNPwGEW7VY5TMHt1NsmV65o0G/GGbMGTcAlm2bpfpRXsnVVIZpkbkMMNeMWuQ3dlCe0CDwXVPxRmKlSCpCyf1sednHrsPCZnHTg0DIwJEgAgQASJABIiA6xFAfxJIFjI/tSoWkca1Ssurr74ikCP/vGIbqVa2oCFrtlG3zWC5/+ChKZdD/1ObXmOlpnpjZVaPqiIqthHevq7nxYHz1vYZIE81zqAv3ht3HDSmwsholSqUywhrLFu/y/RYxXvTug/sRchCeRFE9SNVXuzaurYkTBDX7O7TfZQpEVw7b2iofjHIsqOkskqZAmo+XdslE3fyzHmp22aQ6dWykefIMPyev2yL6XtDHx+82zo0q6ak7I4R3gjay4UyMn7QRAAAEOZJREFU0NJfdJWFk/saf7e076UUeJk5a6CssffwGaZ3bs6Y7s46rNuPQ0Lmdsh5QiJABIgAESACRIAIeB4CIBTjZy6XDTu+lcnDOsni1dtlydpdmgWLruWKbYz6HrI/qzZ9Y3qmMmVII4WrtpcUSRMZyfhNuw5KDC2tAyGKyAgZx3sqINJR+5baN6kiaTSThwHylrdCa3n06LEhJoO6NdX+qbTm73q2q2sUDyM6cI6lev3w/urcsqaU1mO26zPOEFaIf4Qc6OOCcXHIUsaIxhHy94+fPDGZSduwx/AbmT/gGpHsYcg4kBVbs3mf6TFrWqeszF28UYYpBrbMqW1/nBfxtlKLgAOHj0uGtO+Y8lf0ndkGVDd//+NauFQ8sQaOaqYMxNBbBwmZt84c4yYCRIAIEAEiQASIgAsQuHj5uhFJqNasrymLQ+Zj2IQFgv4miE6gXA89VlPmrZbJ81YZAvJMaOOJGgb/InE1O4XM2fupUxgFPpSyhWcgjvhx35A4sWOF+vn5i1c0G9PVmBPDqwuqh3ghRxYGvVvo4Tr0489y5KezkiNreqOCGB4FRJwYhAImzWGVIKKEMHr0aCp2cl1LCX2lf+dGmiELXcoYnuu39zdWRtuQpEf2EybUkNiH95lNnn7X/iMqWb9Wpvh3Cvc82eJcsmanKW/do4Q8rDnDfhAD6a1KjgcOn5Dt2gtoE1DpNniq9sadcJrZtL3Yecp+JGSeMhOMgwgQASJABIgAESACHoIAPKYWrthmXtQxUHp2Tkv1UqdManyekB0pXK2D9mzVUt+uYoFR20rZILRx7cZtLe+7pNm0npI+bWqnXtmNP+8YpcPlMweafisoH6Jkcd3W/aacb9S0xUZ4JHuWdII+M8Q9c1TXCJcyhrwIKPy9nSKJXPjjqvHjCquU0akXHsbBXmS07a/9fchcQZ0RAhtrt+yXroOmmAxovlyZBD5jEOHo27F+hMOET1ohzZhirmE8nuituEoCYxiJfAiRwGetYsl8Rq0T+y2d3t/sizLMKk36yNThvpI3x8fy8y+/K7H+wWTdXpZBQvayzDSvkwgQASJABIgAESACTkLAt/8k+UH7rDYtHGEyRBinz/0uFRv2MmWFc8Z0kwTx3pSuA6eYniuo4Dl7QH4dvV4TBrc3JZMYKDOEyTNK50b6tTIkBEQBfVco14OxsC2r5Yx4QEzhi7ZRyzwh8uGnYhbIRLl7hGW0/aH2d8FIGrYAQckNylJLFMqhRPU3Wb9tvyFnzhrAo9ew6UYBE4Io1coWkCEq7DFX+7uQHZv+1VqVxz9uMq3frpts1BpBxuK+GVtmjepmwqjWzM9k67y5J8xRPEnIHEWM+xMBIkAEiAARIAJE4CVHACbRsWK+FqyXqt/IOXLwh5OSK2sGFdfYLW2VCERXcgJZdJQ1OnughHL4pIWGgMHMuVWDSpqtKypFq3fU8sV0RpbdNs5fvKpeXjflLRXnqNSolxQv8EyOPbxKiCGvBWp/UP2DYAVKOiNrBDXahlpjnVYDZaUqHEJMI+gASS1Qua3UUDEW3xY1nB4u5uah9nZN0ZLWNZv3yvoFww35gq9Zfj1vx2bVpYHK+K/fdkBA7pHVRAbNJtSCTKOzzMedfnEuOCAJmQtA5SGJABEgAkSACBABIvCyIQA/qLfixRU/3wZy7vwl6TN8lunjQokaJORRijZyyiKJr5kzqCIG9Q8DkYNKo5Upc1iYwjD68I+nDTkEMctavKn0UmGPsHq5UHp5WInKV8u3yrZvDsn4Qe0k/2f/+Zit2bJP3owTO9zeZug3c7bnVnjXEbJVUH0c1K2Jlgp+Huww8JKDpcHOZWO1X/BvGTB6rpGnr1Dic/1f3mD9drf/uhvuUk9k7krW7iJvxX9TyqnB9QEl8siYbl08Up4az7W25nw92n5hBFoKVGknpQt/Jr3a1w3vZXvl70jIvHLaGDQRIAJEgAgQASJABDwLAZglj52xTDYs8DflihgQ2fhAszMHj5ySHkOmSZF82eTdVMlk3tLNSspyyuDuTQWqgXnLtzbZrbaNq0T4or5oPUhA0pbN6B9MjRDiF+hp++zTjEaRcfqCtTJr0XrZu2qCOSeIR8Eq7cWnfgVT4hcRIhLhi3DSASbNXWl663zqVzS9dp9qT91dLR0spgIkwB5kqHEnf/lDRUmQLYNJN1QQJ2vvIDJaZ85dlAoNe8r8Cb3CVJa0J0xkxdZu3Sf7D6loh4q9TB7WUfvXMhv1ypna5/fNynGGxE6cvUKm6Zy8SBTEnvN54z4kZN44a4yZCBABIkAEiAARIAIehgDK1Nr0GmPKFvFyn+3jDwz5gSx6nnKtDOFCJgQD3lnwp0Kp2i+/XVJxh7dVme/1CCv92Y6NUj0Qinya/SpfPI/2u50RZIUK5ckqR46f0b636CYjB2W/A2snmZj6BswyhGGbqv89evTIZJcgTmFTJPQwuO0OB0qKc77eKHc1ezd/fC9j6vzHlZuyavYgc4yaLfubrOC0AF9TUliufneTVUPmEOIp+77/yWQ0I9obB5K8VjOQ8Lq7ev2WFK3RUTNh9aS6mopDEKWIlpr21PWBtfOyDRKyl23Geb1EgAgQASJABIgAEXAhAugD+lo9zB6rDP7s0d3Uy2yn+AXMloPrJwcr5zt19oLxOCvfoKdMGtohWOlgRMOD6iL6k44cP6seYjWkeZeR8nH694wqJMbKjd+YjB0EL1rUKy9nf71o4hg3sK0UVnProSpEsVz74HYtHxuuMsqIxu+q39sUDWGwDfEVKGZiHqo39zM+a0M0a/bb71dM/xak6Rt1GGZ85VBy6MwBvzaoYNpUKTv0HS8/nfpVs6vDA0VinHk+Tz8WCZmnzxDjIwJEgAgQASJABIiAFyNgK2Xcv2ZiKC8wZGeiR4smCyb2NuqHx0//qp5mcYzAgzMHDK0hpT5dPcrSqfrgYPXLQr/YzqVj5NVXXzFZIlscEAApVaeL+Pdu4RSDaWdehzOOBQIGDIBJ5gzvS/XyheTYqXNS22eAMcCuW7W4mYviNTtJFu3Lg2S+Kwbk+pHFhCAK8IeqImwKXsZBQvYyzjqvmQgQASJABIgAESACbkIAyn9QPkRfFpQNbQPlgW16jZVVcwZLmndSSFPfANn73TFTGgfJ9LED2kqSRPHN7hu2f2v+vlj+7OGKGoIRnQdMNkIeGCivtMnih4yjcUd/gRjFshkDwnUub/nR0rW7VHhlplGFhOAGsmGJE8Y3ZuDwk4MZOIy348d7w2SzkHH84L1U8kWVYpJJiZyzxu4DR2Xr7kNGDOZlHSRkL+vM87qJABEgAkSACBABIuAmBCCT36bnGNO7lS3ThzIWpYFqDlzk80/Ni/i9+w8le8lmhoTlUXPgziqFfujYz7JZfc7ixI4lw9Xg+I8r12VUv9YRjnj21xtkvQp8wBsNWZqgcez77idp4jtclkzrF+htFuETevABYAA+RH3ULqqoBwgvSkzTKulC/1yLuuWled1yAvVM+Ip1bFbNGGCDrMFkG/YGHM5BgITMOTjyKESACBABIkAEiAARIAIvQABqihDXiPtmHNmhRGDS3FWyY+noQEl1lK3BH+srLV+ExxlK6iAusWzdLkmaOIFR5nPWQCyvxIhhVAVtcbyhoiLFtEwvR5b0wTzMnHVOTz4ORDViKuZx34gt/UbMlo07DxpJ/P0q6NGi60hBz5ktKwZDbkjqv0zGza6eOxIyVyPM4xMBIkAEiAARIAJEgAgEQ2DKvNWSQIUioLAH8YzyWjKHMsGaLfqZnq7Vc4cYwoQX/8LVOqgYR22j0ujsETQOGEzDaHq7qiwmVAPpl3HYMoZ+nRoai4L2fcbLL+opZ1NkBCbdB09TIZDzpqQT+1dr2ld6d6inZtwfvoyQOeWaScicAiMPQgSIABEgAkSACBABIuAoAhCPyFWmhVQtW9AoIN689Zd6gbULJGAd/SbKUZWp36Sli9GjRzPy6Gd/+8OIUTjTgBnEImfpFoEeZI5eR1Ta3ya2gWtCX1/ihPGMZxkGjK8LVe2g81XACIBMm79GRk9bYuwK0H/W7ItyoUyooxI2rroWEjJXIcvjEgEiQASIABEgAkSACFgiAJW9Rh2HGcGIT1TVb87ijcY8GBm0Gs37BfYr4e/9J3wl8eLGkdt37pqX/3ZNIm4kbQsQRC91yqRG+Y/jGQJfr95hShihggmDb5hun7twWXv7Akw/IMgzrAOQ4dyy+3sjBDJ1uK98lu0jQugAAiRkDoDFXYkAESACRIAIEAEiQAScj8Dtv+4K/Mv2fHtU6lUtYeTPKzbsZbIuMCy2iW2gp6xiyc/l8LHThhzg5T+vioBwuA4BZMBmLlxnlCnhRzZ+cHvJoqbaXQdOkYNHThrhFZtpdNl63U32rEH1kq4LKAoemYQsCk4qL4kIEAEiQASIABEgAt6MwOpNe6Xb4KlaqhggKZMlMpmyBPHf0MxZp8DLqtbMT3JlyyC+LWoIjKCfqFCHM8sYvRk/Z8cOMnb52k1JniShKR09cfo3qaq9Y9MDOkvu7BnN6ZBhLF+/hyyd3l/Sp03t7BCi9PFIyKL09PLiiAARIAJEgAgQASLgfQjAnPno8bNStlhuE3zmIo1kWM/mUqpwLvPf6HP6tERTlWKvLg1qlDRiHBvVq2zBxD6B3mXed9XeE3HDDkPVSDu6zBjZJTDoum0Gy0MlxrAT4HAMARIyx/Di3kSACBABIkAEiAARIAJuRgC+WKWLfGaEPzD6jZwjX6/aLrtXjJP79x+oXL2v6S37++49eT1WTOOnleGDd9wc5ctzulu3/1ZS/NiUlGLs3HdEfLqPkhWzBppeQA7HECAhcwwv7k0EiAARIAJEgAgQASLgZgQ27/rOSLBXKJFXbt352xCA/p0bSZUy+aV5lxFy6epNI80OfzEYHa/ffkD2rBhvyus4XIsAyhlhTQCfuIFdG7v2ZFH06CRkUXRieVlEgAgQASJABIgAEYhKCJw6e0FWbtgjV1X6vnalIpIt04fy7eGTgvI5lMl9nO49c7nrtx2QAaPnyt5VE6LS5Xv0tYAw5/wkg8lScjiOAAmZ45jxF0SACBABIkAEiAARIAKRjAA8zIrX7CSZP0orI/18AqOB0t9HWq7o37tFJEfI0xMB+xAgIbMPJ+5FBIgAESACRIAIEAEi4EEInDxzXuq2GSTr5/tLorfimchWbvxGegyZZnyyUqg6IwcR8AYESMi8YZYYIxEgAkSACBABIkAEiEAoBNAz9kqMZ0bO9+4/lPyV2kj18oWkc8uaRIsIeA0CJGReM1UMlAgQASJABIgAESACROB5CMxftkVGT1ssO5eNVT+ymASKCHgNAiRkXjNVDJQIEAEiQASIABEgAkTgRQhcunJDkidNSJCIgFchQELmVdPFYIkAESACRIAIEAEiQASIABGISgiQkEWl2eS1EAEiQASIABEgAkSACBABIuBVCJCQedV0MVgiQASIABEgAkSACBABIkAEohICJGRRaTZ5LUSACBABIkAEiAARIAJEgAh4FQIkZF41XQyWCBABIkAEiAARIAJEgAgQgaiEAAlZVJpNXgsRIAJEgAgQASJABIgAESACXoUACZlXTReDJQJEgAgQASJABIgAESACRCAqIUBCFpVmk9dCBIgAESACRIAIEAEiQASIgFchQELmVdPFYIkAESACRIAIEAEiQASIABGISgiQkEWl2eS1EAEiQASIABEgAkSACBABIuBVCJCQedV0MVgiQASIABEgAkSACBABIkAEohIC/wNe1k3uRbs4vwAAAABJRU5ErkJggg==",
+ "text/html": [
+ "\n", + " | text | \n", + "label | \n", + "prediction | \n", + "explanation | \n", + "
---|---|---|---|---|
0 | \n", + "My card payment had the wrong exchange rate | \n", + "0 | \n", + "negative | \n", + "The customer is expressing dissatisfaction with their card payment having the wrong exchange rate, indicating a negative sentiment. | \n", + "
1 | \n", + "I believe that a card payment I made was cancelled. | \n", + "1 | \n", + "neutral | \n", + "The customer is expressing a belief, but not expressing any sentiment about the situation. | \n", + "
2 | \n", + "Why was I charged for getting cash? | \n", + "1 | \n", + "negative | \n", + "The customer is expressing frustration and confusion about being charged for getting cash, indicating a negative sentiment. | \n", + "
3 | \n", + "I deposited cash into my account a week ago and it is still not available, please tell me why? I need the cash back now. | \n", + "0 | \n", + "negative | \n", + "The customer is expressing frustration and urgency due to the delay in their cash being available, indicating a negative sentiment. | \n", + "
4 | \n", + "Do you accept cash? | \n", + "1 | \n", + "neutral | \n", + "The customer is simply asking a question and does not express any sentiment. | \n", + "
5 | \n", + "Is the top-up amount unlimited? | \n", + "1 | \n", + "neutral | \n", + "The customer is asking a factual question, not expressing an opinion or emotion. | \n", + "
6 | \n", + "I think I am a victim of fraud. I noticed there was a charge on my account that I didn't do because I haven't touched my card today. Can you please reverse the charge and refund my money? | \n", + "0 | \n", + "negative | \n", + "The customer is expressing concern about a fraudulent charge on their account, indicating a negative sentiment. | \n", + "
7 | \n", + "Why do I see an extra โฌ1 charge on my statement? | \n", + "0 | \n", + "neutral | \n", + "The customer is asking a question without expressing any sentiment. | \n", + "
8 | \n", + "I tried to transfer money to a receiver and they didn't get the right amount. What is going on and who do I contact to help me? | \n", + "0 | \n", + "negative | \n", + "The customer is expressing frustration with an issue that has not been resolved, indicating a negative sentiment. | \n", + "
9 | \n", + "The check I deposited yesterday isn't listed yet. Isn't that pretty slow? I need to see the balance increased by that check. | \n", + "0 | \n", + "negative | \n", + "The customer is expressing frustration with the slow processing of their check deposit, indicating a negative sentiment. | \n", + "
10 | \n", + "I couldn't get money from the ATM | \n", + "1 | \n", + "negative | \n", + "The customer is expressing frustration with not being able to access money from the ATM, indicating a negative sentiment. | \n", + "
11 | \n", + "There are a couple payments with my card shown that I'm not responsible for. What is going on? Maybe someone has access to my account. | \n", + "0 | \n", + "negative | \n", + "The customer is expressing concern and worry about their account security, indicating a negative sentiment. | \n", + "
12 | \n", + "will you be able to activate my card | \n", + "1 | \n", + "neutral | \n", + "The customer is making a request for a service, which does not indicate any sentiment. | \n", + "
13 | \n", + "Why would a cash withdrawal be pending? | \n", + "0 | \n", + "neutral | \n", + "The customer is asking a question without expressing any sentiment. | \n", + "
14 | \n", + "I was charged twice for the same purchase! | \n", + "0 | \n", + "negative | \n", + "The customer is expressing frustration with being charged twice for the same purchase, indicating a negative sentiment. | \n", + "