-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfim.py
149 lines (137 loc) · 5.2 KB
/
fim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# coding=utf-8
# Copyright 2024 Sourab Mangrulkar. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import numpy as np
# this is expensive so we cache it
@functools.lru_cache(maxsize=None)
def get_fim_token_ids(tokenizer):
if "codellama" in tokenizer.name_or_path:
return (
tokenizer.bos_token_id,
tokenizer.suffix_id,
tokenizer.prefix_id,
tokenizer.middle_id,
0,
)
elif "Llama-3.1" in tokenizer.name_or_path:
return (
tokenizer.bos_token_id,
tokenizer.encode("<|reserved_special_token_245|>")[1],
tokenizer.encode("<|reserved_special_token_246|>")[1],
tokenizer.encode("<|reserved_special_token_247|>")[1],
tokenizer.encode("<|finetune_right_pad_id|>")[1],
)
elif "deepseek-coder" in tokenizer.name_or_path:
return (
tokenizer.bos_token_id,
tokenizer.encode("<|fim▁hole|>", add_special_tokens=False)[0],
tokenizer.encode("<|fim▁begin|>", add_special_tokens=False)[0],
tokenizer.encode("<|fim▁end|>", add_special_tokens=False)[0],
tokenizer.encode("<pad>", add_special_tokens=False)[0],
)
elif "stable-code" in tokenizer.name_or_path:
return (
tokenizer.bos_token_id,
tokenizer.encode("<fim_suffix>")[0],
tokenizer.encode("<fim_prefix>")[0],
tokenizer.encode("<fim_middle>")[0],
tokenizer.encode("<fim_pad>")[0],
)
else:
bos_token_id = None
try:
FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD = tokenizer.special_tokens_map[
"additional_special_tokens"
][1:5]
suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = (
tokenizer.vocab[tok]
for tok in [FIM_SUFFIX, FIM_PREFIX, FIM_MIDDLE, FIM_PAD]
)
except KeyError:
suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = (
None,
None,
None,
None,
)
return bos_token_id, suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id
def _bos_token_processing(prefix_token_list, bos_token):
if bos_token is not None:
# add the BOS token to the beginning of the list
prefix_token_list.insert(0, bos_token)
return prefix_token_list
## Adapted from https://github.com/bigcode-project/Megatron-LM/blob/6c4bf908df8fd86b4977f54bf5b8bd4b521003d1/megatron/data/gpt_dataset.py
def permute(
sample,
np_rng,
suffix_tok_id,
prefix_tok_id,
middle_tok_id,
pad_tok_id,
fim_rate=0.5,
fim_spm_rate=0.5,
truncate_or_pad=False,
bos_token_id=None,
):
"""
Take in a sample (list of tokens) and perform a FIM transformation on it with a probability of fim_rate, using two FIM modes:
PSM and SPM (with a probability of fim_spm_rate).
"""
if np_rng.binomial(1, fim_rate):
boundaries = list(np_rng.randint(low=0, high=len(sample) + 1, size=2))
boundaries.sort()
prefix = np.array(sample[: boundaries[0]], dtype=np.int64)
middle = np.array(sample[boundaries[0] : boundaries[1]], dtype=np.int64)
suffix = np.array(sample[boundaries[1] :], dtype=np.int64)
if truncate_or_pad:
new_length = suffix.shape[0] + prefix.shape[0] + middle.shape[0] + 3
diff = new_length - len(sample)
if diff > 0:
if suffix.shape[0] <= diff:
return sample, np_rng
suffix = suffix[: suffix.shape[0] - diff]
elif diff < 0:
suffix = np.concatenate([suffix, np.full((-1 * diff), pad_tok_id)])
if np_rng.binomial(1, fim_spm_rate):
prefix_special_tokens = _bos_token_processing(
[prefix_tok_id, suffix_tok_id], bos_token_id
)
# SPM (variant 2 from FIM paper)
new_sample = np.concatenate(
[
prefix_special_tokens,
suffix,
[middle_tok_id],
prefix,
middle,
]
)
else:
prefix_special_tokens = _bos_token_processing([prefix_tok_id], bos_token_id)
# PSM
new_sample = np.concatenate(
[
prefix_special_tokens,
prefix,
[suffix_tok_id],
suffix,
[middle_tok_id],
middle,
]
)
else:
# don't do FIM preproc
new_sample = sample
return list(new_sample), np_rng