-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
118 lines (81 loc) · 3.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
### IMPORTS ###
from argparse import ArgumentParser
from tqdm import tqdm
import torch
### FUNCTIONS ###
def loss_mrrmse(y_pred, y_true):
loss = (y_true - y_pred) ** 2
loss = loss.mean(dim=1)
loss = torch.sqrt(loss)
loss = loss.mean(dim=0)
return loss
def train_one_epoch(model, train_loader, loss_fn,
optimizer, device):
# Send model to device
model.to(device)
# Set model to train mode
model.train()
# Iterate over batches and take optimization steps
losses = []
for batch in train_loader:
x_batch, y_batch = batch
y_batch = y_batch.to(device)
y_pred = model(*x_batch, device) # TODO: Send to device the x in model?
loss = loss_fn(y_pred, y_batch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss)
return losses
def infer_model(model, data_loader, loss_fn,
metrics: dict, device, calculate_loss=False):
data_len = len(data_loader)
# Send model to device
model.to(device)
# Set model to evaluation mode
model.eval()
# Create Output Dict
metric_values = dict()
for metric_name in metrics:
metric_values[metric_name] = 0
with torch.no_grad():
losses = []
for batch in data_loader:
x_batch, y_batch = batch
y_batch = y_batch.to(device)
print(x_batch)
y_pred = model(*x_batch, device)
if calculate_loss:
loss = loss_fn(y_pred, y_batch)
losses.append(loss)
for metric_name in metrics:
metric_value = metrics[metric_name](y_pred, y_batch)
metric_values[metric_name] += (metric_value / data_len)
if calculate_loss:
return losses, metric_values
else:
return metric_values
def train_many_epochs(model, train_loader, val_loader, epochs,
loss_fn, optimizer, scheduler=None,
metrics=[], writer=None, device="cpu"):
for epoch in tqdm(range(epochs)):
# Train model for one epoch and calculate metrics for the
# resulting model...
train_b_losses = train_one_epoch(model, train_loader, loss_fn,
optimizer, device)
train_b_metrics = infer_model(model, train_loader, loss_fn,
metrics, device)
val_b_losses, val_b_metrics = infer_model(model, val_loader, loss_fn,
metrics, device, calculate_loss=True)
epoch_train_loss = sum(train_b_losses) / len(train_b_losses)
epoch_val_loss = sum(val_b_losses) / len(val_b_losses)
if writer:
writer.add_scalar("Training Loss", epoch_train_loss, global_step=epoch)
writer.add_scalar("Validation Loss", epoch_val_loss, global_step=epoch)
if scheduler:
scheduler.step(epoch_train_loss)
if __name__ == "__main__":
# Parse input arguments:
argparser = ArgumentParser()
argparser.add_argument("--config", type=str)
### TODO: FINISH