diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 933abaa..dbd689b 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2025-01-03T16:28:57","documenter_version":"1.8.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2025-01-03T20:39:12","documenter_version":"1.8.0"}} \ No newline at end of file diff --git a/dev/api/index.html b/dev/api/index.html index 6b71411..7a311d3 100644 --- a/dev/api/index.html +++ b/dev/api/index.html @@ -1,31 +1,31 @@ -List of functions · Ket.jl

List of functions

Basic

Ket.ketFunction
ket([T=ComplexF64,] i::Integer, d::Integer = 2)

Produces a ket of dimension d with nonzero element i.

source
Ket.ketbraFunction
ketbra(v::AbstractVector)

Produces a ketbra of vector v.

source
Ket.projFunction
proj([T=ComplexF64,] i::Integer, d::Integer = 2)

Produces a projector onto the basis state i in dimension d.

source
Ket.pauliFunction
pauli([T=ComplexF64,], ind::Vector{<:Integer})

Constructs the Pauli matrices: 0 or "I" for the identity, 1 or "X" for the Pauli X operation, 2 or "Y" for the Pauli Y operator, and 3 or "Z" for the Pauli Z operator. Vectors of integers between 0 and 3 or strings of I, X, Y, Z automatically generate Kronecker products of the corresponding operators.

source
Ket.gellmann!Function
gellmann!(res::AbstractMatrix{T}, i::Integer, j::Integer, d::Integer = 3)

In-place version of gellmann.

source
Ket.partial_traceFunction
partial_trace(X::AbstractMatrix, remove::AbstractVector, dims::AbstractVector = _equal_sizes(X))

Takes the partial trace of matrix X with subsystem dimensions dims over the subsystems in remove. If the argument dims is omitted two equally-sized subsystems are assumed.

source
partial_trace(X::AbstractMatrix, remove::Integer, dims::AbstractVector = _equal_sizes(X)))

Takes the partial trace of matrix X with subsystem dimensions dims over the subsystem remove. If the argument dims is omitted two equally-sized subsystems are assumed.

source
Ket.partial_transposeFunction
partial_transpose(X::AbstractMatrix, transp::AbstractVector, dims::AbstractVector = _equal_sizes(X))

Takes the partial transpose of matrix X with subsystem dimensions dims on the subsystems in transp. If the argument dims is omitted two equally-sized subsystems are assumed.

source
partial_transpose(X::AbstractMatrix, transp::Integer, dims::AbstractVector = _equal_sizes(X))

Takes the partial transpose of matrix X with subsystem dimensions dims on the subsystem transp. If the argument dims is omitted two equally-sized subsystems are assumed.

source
Ket.permute_systems!Function
permute_systems!(X::AbstractVector, perm::AbstractVector, dims::AbstractVector = _equal_sizes(X))

Permutes the order of the subsystems of vector X with subsystem dimensions dims in-place according to the permutation perm. If the argument dims is omitted two equally-sized subsystems are assumed.

source
Ket.permute_systemsFunction
permute_systems(X::AbstractMatrix, perm::AbstractVector, dims::AbstractVector = _equal_sizes(X))

Permutes the order of the subsystems of the square matrix X, which is composed by square subsystems of dimensions dims, according to the permutation perm. If the argument dims is omitted two equally-sized subsystems are assumed.

source
permute_systems(X::AbstractMatrix, perm::Vector, dims::Matrix)

Permutes the order of the subsystems of the matrix X, which is composed by subsystems of dimensions dims, according to the permutation perm. dims should be a n x 2 matrix where dims[i, 1] is the number of rows of subsystem i, and dims[i,2] is its number of columns.

source
Ket.cleanup!Function
cleanup!(M::AbstractArray{T}; tol = Base.rtoldefault(real(T)))

Zeroes out real or imaginary parts of M that are smaller than tol.

source
Ket.symmetric_projectionFunction
symmetric_projection(dim::Integer, n::Integer; partial::Bool=true)

Orthogonal projection onto the symmetric subspace of n copies of a dim-dimensional space. By default (partial=true) it returns an isometry (say, V) encoding the symmetric subspace. If partial=false, then it returns the actual projection V * V'.

Reference: Watrous' book, Sec. 7.1.1

source
Ket.orthonormal_rangeFunction
orthonormal_range(A::AbstractMatrix{T}; mode::Integer=nothing, tol::T=nothing, sp::Bool=true) where {T<:Number}

Orthonormal basis for the range of A. When A is sparse (or mode = 0), uses a QR factorization and returns a sparse result, otherwise uses an SVD and returns a dense matrix (mode = 1). Input A will be overwritten during the factorization. Tolerance tol is used to compute the rank and is automatically set if not provided.

source
Ket.permutation_matrixFunction
permutation_matrix(dims::Union{Integer,AbstractVector}, perm::AbstractVector)

Unitary that permutes subsystems of dimension dims according to the permutation perm. If dims is an Integer, assumes there are length(perm) subsystems of equal dimensions dims.

source
Ket.n_body_basisFunction
n_body_basis(
+List of functions · Ket.jl

List of functions

Basic

Ket.ketFunction
ket([T=ComplexF64,] i::Integer, d::Integer = 2)

Produces a ket of dimension d with nonzero element i.

source
Ket.ketbraFunction
ketbra(v::AbstractVector)

Produces a ketbra of vector v.

source
Ket.projFunction
proj([T=ComplexF64,] i::Integer, d::Integer = 2)

Produces a projector onto the basis state i in dimension d.

source
Ket.pauliFunction
pauli([T=ComplexF64,], ind::Vector{<:Integer})

Constructs the Pauli matrices: 0 or "I" for the identity, 1 or "X" for the Pauli X operation, 2 or "Y" for the Pauli Y operator, and 3 or "Z" for the Pauli Z operator. Vectors of integers between 0 and 3 or strings of I, X, Y, Z automatically generate Kronecker products of the corresponding operators.

source
Ket.gellmann!Function
gellmann!(res::AbstractMatrix{T}, i::Integer, j::Integer, d::Integer = 3)

In-place version of gellmann.

source
Ket.partial_traceFunction
partial_trace(X::AbstractMatrix, remove::AbstractVector, dims::AbstractVector = _equal_sizes(X))

Takes the partial trace of matrix X with subsystem dimensions dims over the subsystems in remove. If the argument dims is omitted two equally-sized subsystems are assumed.

source
partial_trace(X::AbstractMatrix, remove::Integer, dims::AbstractVector = _equal_sizes(X)))

Takes the partial trace of matrix X with subsystem dimensions dims over the subsystem remove. If the argument dims is omitted two equally-sized subsystems are assumed.

source
Ket.partial_transposeFunction
partial_transpose(X::AbstractMatrix, transp::AbstractVector, dims::AbstractVector = _equal_sizes(X))

Takes the partial transpose of matrix X with subsystem dimensions dims on the subsystems in transp. If the argument dims is omitted two equally-sized subsystems are assumed.

source
partial_transpose(X::AbstractMatrix, transp::Integer, dims::AbstractVector = _equal_sizes(X))

Takes the partial transpose of matrix X with subsystem dimensions dims on the subsystem transp. If the argument dims is omitted two equally-sized subsystems are assumed.

source
Ket.permute_systems!Function
permute_systems!(X::AbstractVector, perm::AbstractVector, dims::AbstractVector = _equal_sizes(X))

Permutes the order of the subsystems of vector X with subsystem dimensions dims in-place according to the permutation perm. If the argument dims is omitted two equally-sized subsystems are assumed.

source
Ket.permute_systemsFunction
permute_systems(X::AbstractMatrix, perm::AbstractVector, dims::AbstractVector = _equal_sizes(X))

Permutes the order of the subsystems of the square matrix X, which is composed by square subsystems of dimensions dims, according to the permutation perm. If the argument dims is omitted two equally-sized subsystems are assumed.

source
permute_systems(X::AbstractMatrix, perm::Vector, dims::Matrix)

Permutes the order of the subsystems of the matrix X, which is composed by subsystems of dimensions dims, according to the permutation perm. dims should be a n x 2 matrix where dims[i, 1] is the number of rows of subsystem i, and dims[i,2] is its number of columns.

source
Ket.cleanup!Function
cleanup!(M::AbstractArray{T}; tol = Base.rtoldefault(real(T)))

Zeroes out real or imaginary parts of M that are smaller than tol.

source
Ket.symmetric_projectionFunction
symmetric_projection(dim::Integer, n::Integer; partial::Bool=true)

Orthogonal projection onto the symmetric subspace of n copies of a dim-dimensional space. By default (partial=true) it returns an isometry (say, V) encoding the symmetric subspace. If partial=false, then it returns the actual projection V * V'.

Reference: Watrous' book, Sec. 7.1.1

source
Ket.orthonormal_rangeFunction
orthonormal_range(A::AbstractMatrix{T}; mode::Integer=nothing, tol::T=nothing, sp::Bool=true) where {T<:Number}

Orthonormal basis for the range of A. When A is sparse (or mode = 0), uses a QR factorization and returns a sparse result, otherwise uses an SVD and returns a dense matrix (mode = 1). Input A will be overwritten during the factorization. Tolerance tol is used to compute the rank and is automatically set if not provided.

source
Ket.permutation_matrixFunction
permutation_matrix(dims::Union{Integer,AbstractVector}, perm::AbstractVector)

Unitary that permutes subsystems of dimension dims according to the permutation perm. If dims is an Integer, assumes there are length(perm) subsystems of equal dimensions dims.

source
Ket.n_body_basisFunction
n_body_basis(
 n::Integer,
 n_parties::Integer;
 sb::AbstractVector{<:AbstractMatrix} = [pauli(1), pauli(2), pauli(3)],
 sparse::Bool = true,
-eye::AbstractMatrix = I(size(sb[1], 1))

Return the basis of n nontrivial operators acting on n_parties, by default using Pauli matrices.

For example, n_body_basis(2, 3) generates all products of two Paulis and one identity, so ${X ⊗ X ⊗ 1, X ⊗ 1 ⊗ X, ..., X ⊗ Y ⊗ 1, ..., 1 ⊗ Z ⊗ Z}$.

Instead of Paulis, a basis can be provided by the parameter sb, and the identity can be changed with eye. If sparse is true, the resulting basis will use sparse matrices, otherwise it will agree with sb.

This function returns a generator, which can then be used e.g. in for loops without fully allocating the entire basis at once. If you need a vector, call collect on it.

source

Entropy

Ket.entropyFunction
entropy([base=2,] ρ::AbstractMatrix)

Computes the von Neumann entropy -tr(ρ log ρ) of a positive semidefinite operator ρ using a base base logarithm.

Reference: von Neumann entropy.

source
entropy([base=2,] p::AbstractVector)

Computes the Shannon entropy -Σᵢpᵢlog(pᵢ) of a non-negative vector p using a base base logarithm.

Reference: Entropy (information theory).

source
Ket.relative_entropyFunction
relative_entropy([base=2,] ρ::AbstractMatrix, σ::AbstractMatrix)

Computes the (quantum) relative entropy tr(ρ (log ρ - log σ)) between positive semidefinite matrices ρ and σ using a base base logarithm. Note that the support of ρ must be contained in the support of σ but for efficiency this is not checked.

Reference: Quantum relative entropy.

source
relative_entropy([base=2,] p::AbstractVector, q::AbstractVector)

Computes the relative entropy D(p||q) = Σᵢpᵢlog(pᵢ/qᵢ) between two non-negative vectors p and q using a base base logarithm. Note that the support of p must be contained in the support of q but for efficiency this is not checked.

Reference: Relative entropy.

source
Ket.binary_relative_entropyFunction
binary_relative_entropy([base=2,] p::Real, q::Real)

Computes the binary relative entropy D(p||q) = p log(p/q) + (1-p) log((1-p)/(1-q)) between two probabilities p and q using a base base logarithm.

Reference: Relative entropy.

source
Ket.conditional_entropyFunction
conditional_entropy([base=2,] pAB::AbstractMatrix)

Computes the conditional Shannon entropy H(A|B) of the joint probability distribution pAB using a base base logarithm.

Reference: Conditional entropy.

source
conditional_entropy([base=2,], rho::AbstractMatrix, csys::AbstractVector, dims::AbstractVector)

Computes the conditional von Neumann entropy of rho with subsystem dimensions dims and conditioning systems csys, using a base base logarithm.

Reference: Conditional quantum entropy.

source

Entanglement

Ket.schmidt_decompositionFunction
schmidt_decomposition(ψ::AbstractVector, dims::AbstractVector{<:Integer} = _equal_sizes(ψ))

Produces the Schmidt decomposition of ψ with subsystem dimensions dims. If the argument dims is omitted equally-sized subsystems are assumed. Returns the (sorted) Schmidt coefficients λ and isometries U, V such that kron(U', V')*ψ is of Schmidt form.

Reference: Schmidt decomposition.

source
Ket.entanglement_entropyFunction
entanglement_entropy(ψ::AbstractVector, dims::AbstractVector{<:Integer} = _equal_sizes(ψ))

Computes the relative entropy of entanglement of a bipartite pure state ψ with subsystem dimensions dims. If the argument dims is omitted equally-sized subsystems are assumed.

source
entanglement_entropy(ρ::AbstractMatrix, dims::AbstractVector = _equal_sizes(ρ), n::Integer = 1)

Lower bounds the relative entropy of entanglement of a bipartite state ρ with subsystem dimensions dims using level n of the DPS hierarchy. If the argument dims is omitted equally-sized subsystems are assumed.

source
Ket.random_robustnessFunction
random_robustness(
+eye::AbstractMatrix = I(size(sb[1], 1))

Return the basis of n nontrivial operators acting on n_parties, by default using Pauli matrices.

For example, n_body_basis(2, 3) generates all products of two Paulis and one identity, so ${X ⊗ X ⊗ 1, X ⊗ 1 ⊗ X, ..., X ⊗ Y ⊗ 1, ..., 1 ⊗ Z ⊗ Z}$.

Instead of Paulis, a basis can be provided by the parameter sb, and the identity can be changed with eye. If sparse is true, the resulting basis will use sparse matrices, otherwise it will agree with sb.

This function returns a generator, which can then be used e.g. in for loops without fully allocating the entire basis at once. If you need a vector, call collect on it.

source

Entropy

Ket.entropyFunction
entropy([base=2,] ρ::AbstractMatrix)

Computes the von Neumann entropy -tr(ρ log ρ) of a positive semidefinite operator ρ using a base base logarithm.

Reference: von Neumann entropy.

source
entropy([base=2,] p::AbstractVector)

Computes the Shannon entropy -Σᵢpᵢlog(pᵢ) of a non-negative vector p using a base base logarithm.

Reference: Entropy (information theory).

source
Ket.relative_entropyFunction
relative_entropy([base=2,] ρ::AbstractMatrix, σ::AbstractMatrix)

Computes the (quantum) relative entropy tr(ρ (log ρ - log σ)) between positive semidefinite matrices ρ and σ using a base base logarithm. Note that the support of ρ must be contained in the support of σ but for efficiency this is not checked.

Reference: Quantum relative entropy.

source
relative_entropy([base=2,] p::AbstractVector, q::AbstractVector)

Computes the relative entropy D(p||q) = Σᵢpᵢlog(pᵢ/qᵢ) between two non-negative vectors p and q using a base base logarithm. Note that the support of p must be contained in the support of q but for efficiency this is not checked.

Reference: Relative entropy.

source
Ket.binary_relative_entropyFunction
binary_relative_entropy([base=2,] p::Real, q::Real)

Computes the binary relative entropy D(p||q) = p log(p/q) + (1-p) log((1-p)/(1-q)) between two probabilities p and q using a base base logarithm.

Reference: Relative entropy.

source
Ket.conditional_entropyFunction
conditional_entropy([base=2,] pAB::AbstractMatrix)

Computes the conditional Shannon entropy H(A|B) of the joint probability distribution pAB using a base base logarithm.

Reference: Conditional entropy.

source
conditional_entropy([base=2,], rho::AbstractMatrix, csys::AbstractVector, dims::AbstractVector)

Computes the conditional von Neumann entropy of rho with subsystem dimensions dims and conditioning systems csys, using a base base logarithm.

Reference: Conditional quantum entropy.

source

Entanglement

Ket.schmidt_decompositionFunction
schmidt_decomposition(ψ::AbstractVector, dims::AbstractVector{<:Integer} = _equal_sizes(ψ))

Produces the Schmidt decomposition of ψ with subsystem dimensions dims. If the argument dims is omitted equally-sized subsystems are assumed. Returns the (sorted) Schmidt coefficients λ and isometries U, V such that kron(U', V')*ψ is of Schmidt form.

Reference: Schmidt decomposition.

source
Ket.entanglement_entropyFunction
entanglement_entropy(ψ::AbstractVector, dims::AbstractVector{<:Integer} = _equal_sizes(ψ))

Computes the relative entropy of entanglement of a bipartite pure state ψ with subsystem dimensions dims. If the argument dims is omitted equally-sized subsystems are assumed.

source
entanglement_entropy(ρ::AbstractMatrix, dims::AbstractVector = _equal_sizes(ρ), n::Integer = 1)

Lower bounds the relative entropy of entanglement of a bipartite state ρ with subsystem dimensions dims using level n of the DPS hierarchy. If the argument dims is omitted equally-sized subsystems are assumed.

source
Ket.random_robustnessFunction
random_robustness(
 ρ::AbstractMatrix{T},
 dims::AbstractVector{<:Integer} = _equal_sizes(ρ),
 n::Integer = 1;
 ppt::Bool = true,
 verbose::Bool = false,
-solver = Hypatia.Optimizer{_solver_type(T)})

Lower bounds the random robustness of state ρ with subsystem dimensions dims using level n of the DPS hierarchy. Argument ppt indicates whether to include the partial transposition constraints.

source
Ket.schmidt_numberFunction
schmidt_number(
+solver = Hypatia.Optimizer{_solver_type(T)})

Lower bounds the random robustness of state ρ with subsystem dimensions dims using level n of the DPS hierarchy. Argument ppt indicates whether to include the partial transposition constraints.

source
Ket.schmidt_numberFunction
schmidt_number(
     ρ::AbstractMatrix{T},
     s::Integer = 2,
     dims::AbstractVector{<:Integer} = _equal_sizes(ρ),
     n::Integer = 1;
     ppt::Bool = true,
     verbose::Bool = false,
-    solver = Hypatia.Optimizer{_solver_type(T)})

Upper bound on the random robustness of ρ such that it has a Schmidt number s.

If a state $ρ$ with local dimensions $d_A$ and $d_B$ has Schmidt number $s$, then there is a PSD matrix $ω$ in the extended space $AA′B′B$, where $A′$ and $B^′$ have dimension $s$, such that $ω / s$ is separable against $AA′|B′B$ and $Π† ω Π = ρ$, where $Π = 1_A ⊗ s ψ^+ ⊗ 1_B$, and $ψ^+$ is a non-normalized maximally entangled state. Separabiity is tested with the DPS hierarchy, with n controlling the how many copies of the $B′B$ subsystem are used.

References: Hulpke, Bruss, Lewenstein, Sanpera arXiv:quant-ph/0401118Weilenmann, Dive, Trillo, Aguilar, Navascués arXiv:1912.10056

source
Ket.ppt_mixtureFunction
function ppt_mixture(
+    solver = Hypatia.Optimizer{_solver_type(T)})

Upper bound on the random robustness of ρ such that it has a Schmidt number s.

If a state $ρ$ with local dimensions $d_A$ and $d_B$ has Schmidt number $s$, then there is a PSD matrix $ω$ in the extended space $AA′B′B$, where $A′$ and $B^′$ have dimension $s$, such that $ω / s$ is separable against $AA′|B′B$ and $Π† ω Π = ρ$, where $Π = 1_A ⊗ s ψ^+ ⊗ 1_B$, and $ψ^+$ is a non-normalized maximally entangled state. Separabiity is tested with the DPS hierarchy, with n controlling the how many copies of the $B′B$ subsystem are used.

References: Hulpke, Bruss, Lewenstein, Sanpera arXiv:quant-ph/0401118Weilenmann, Dive, Trillo, Aguilar, Navascués arXiv:1912.10056

source
Ket.ppt_mixtureFunction
function ppt_mixture(
 ρ::AbstractMatrix{T},
 dims::AbstractVector{<:Integer};
 verbose::Bool = false,
-solver = Hypatia.Optimizer{_solver_type(T)})

Lower bound on the white noise such that ρ is still a genuinely multipartite entangled state and a GME witness that detects ρ.

The set of GME states is approximated by the set of PPT mixtures, so the entanglement across the bipartitions is decided with the PPT criterion. If the state is a PPT mixture, returns a 0 matrix instead of a witness.

Reference: Jungnitsch, Moroder, Guehne arXiv:quant-ph/0401118

source
function ppt_mixture(
+solver = Hypatia.Optimizer{_solver_type(T)})

Lower bound on the white noise such that ρ is still a genuinely multipartite entangled state and a GME witness that detects ρ.

The set of GME states is approximated by the set of PPT mixtures, so the entanglement across the bipartitions is decided with the PPT criterion. If the state is a PPT mixture, returns a 0 matrix instead of a witness.

Reference: Jungnitsch, Moroder, Guehne arXiv:quant-ph/0401118

source
function ppt_mixture(
 ρ::AbstractMatrix{T},
 dims::AbstractVector{<:Integer},
 obs::AbstractVector{<:AbstractMatrix} = Vector{Matrix}();
 verbose::Bool = false,
 solver = Hypatia.Optimizer{_solver_type(T)})

Lower bound on the white noise such that ρ is still a genuinely multipartite entangled state that can be detected with a witness using only the operators provided in obs, and the values of the coefficients defining such a witness.

More precisely, if a list of observables $O_i$ is provided in the parameter obs, the witness will be of the form $∑_i α_i O_i$ and detects ρ only using these observables. For example, using only two-body operators (and lower order) one can call

julia> two_body_basis = collect(Iterators.flatten(n_body_basis(i, 3) for i ∈ 0:2))
-julia> ppt_mixture(state_ghz(2, 3), [2, 2, 2], two_body_basis)

Reference: Jungnitsch, Moroder, Guehne arXiv:quant-ph/0401118

source

Measurements

Ket.sic_povmFunction
sic_povm([T=ComplexF64,] d::Integer)

Constructs a vector of vectors |vᵢ⟩ such that |vᵢ⟩⟨vᵢ| forms a SIC-POVM of dimension d. This construction is based on the Weyl-Heisenberg fiducial.

Reference: Appleby, Yadsan-Appleby, Zauner, arXiv:1209.1813

source
Ket.test_sicFunction
test_sic(vecs)

Checks if vecs is a vector of vectors |vᵢ⟩ such that |vᵢ⟩⟨vᵢ| forms a SIC-POVM of dimension d.

source
Ket.test_povmFunction
test_povm(A::Vector{<:AbstractMatrix{T}})

Checks if the measurement defined by A is valid (hermitian, semi-definite positive, and normalized).

source
Ket.dilate_povmFunction
dilate_povm(vecs::Vector{Vector{T}})

Does the Naimark dilation of a rank-1 POVM given as a vector of vectors. This is the minimal dilation.

source
dilate_povm(E::Vector{<:AbstractMatrix})

Does the Naimark dilation of a POVM given as a vector of matrices. This always works, but is wasteful if the POVM elements are not full rank.

source
Ket.povmFunction
povm(B::Vector{<:AbstractMatrix{T}})

Creates a set of (projective) measurements from a set of bases given as unitary matrices.

source
Ket.tensor_to_povmFunction
tensor_to_povm(A::Array{T,4}, o::Vector{Int})

Converts a set of measurements in the common tensor format into a matrix of (hermitian) matrices. By default, the second argument is fixed by the size of A. It can also contain custom number of outcomes if there are measurements with less outcomes.

source
Ket.povm_to_tensorFunction
povm_to_tensor(Axa::Vector{<:Measurement})

Converts a matrix of (hermitian) matrices into a set of measurements in the common tensor format.

source
Ket.mubFunction
mub([T=ComplexF64,] d::Integer)

Construction of the standard complete set of MUBs. The output contains 1+minᵢ pᵢ^rᵢ bases, where d = ∏ᵢ pᵢ^rᵢ.

Reference: Durt, Englert, Bengtsson, Życzkowski, arXiv:1004.3348.

source
Ket.test_mubFunction
test_mub(B::Vector{Matrix{<:Number}})

Checks if the input bases are mutually unbiased.

source

Incompatibility

Ket.incompatibility_robustnessFunction
incompatibility_robustness(A::Vector{Measurement{<:Number}}, measure::String = "g")

Computes the incompatibility robustness of the measurements in the vector A. Depending on the noise model chosen, the second argument can be "d" (depolarizing), "r" (random), "p" (probabilistic), "jm" (jointly measurable), or "g" (generalized), see the corresponding functions below. Returns the parent POVM if return_parent = true.

Reference: Designolle, Farkas, Kaniewski, arXiv:1906.00448

source

Nonlocality

Ket.chshFunction
chsh([T=Float64,] d::Integer = 2)

CHSH-d nonlocal game in full probability notation. If T is an integer type the game is unnormalized.

Reference: Buhrman and Massar, arXiv:quant-ph/0409066.

source
Ket.cglmpFunction
cglmp([T=Float64,] d::Integer = 3)

CGLMP nonlocal game in full probability notation. If T is an integer type the game is unnormalized.

References: arXiv:quant-ph/0106024 for the original game, and arXiv:2005.13418 for the form presented here.

source
Ket.gyniFunction
gyni([T=Float64,] n::Integer)

Guess your neighbour's input nonlocal game in full probability notation. If T is an integer type the game is unnormalized.

Reference: Mafalda et al., arXiv:1003.3844.

source
Ket.local_boundFunction
local_bound(G::Array{T,N}; correlation = N < 4, marg = true)

Computes the local bound of a multipartite Bell functional G given as an N-dimensional array. If correlation is false, G is assumed to be written in full probability notation. If correlation is true, G is assumed to be written in correlation notation, with or without marginals depending on marg.

Reference: Araújo, Hirsch, and Quintino, arXiv:2005.13418.

source
Ket.tsirelson_boundFunction
tsirelson_bound(CG::Matrix, scenario::AbstractVecOrTuple, level)

Upper bounds the Tsirelson bound of a multipartite Bell funcional CG, written in Collins-Gisin notation. scenario is a tuple detailing the number of inputs and outputs, in the order (oa, ob, ..., ia, ib, ...). level is an integer or string determining the level of the NPA hierarchy.

source
tsirelson_bound(FC::Matrix, level::Integer)

Upper bounds the Tsirelson bound of a bipartite Bell funcional FC, written in full correlation notation. level is an integer or string determining the level of the NPA hierarchy.

source
Ket.seesawFunction
seesaw(CG::Matrix, scenario::AbstractVecOrTuple, d::Integer)

Maximizes bipartite Bell functional in Collins-Gisin notation CG using the seesaw heuristic. scenario is a vector detailing the number of inputs and outputs, in the order [oa, ob, ia, ib]. d is an integer determining the local dimension of the strategy.

If oa == ob == 2 the heuristic reduces to a bunch of eigenvalue problems. Otherwise semidefinite programming is needed and we use the assemblage version of seesaw.

References: Pál and Vértesi, arXiv:1006.3032, section II.B.1 of Tavakoli et al., arXiv:2307.02551

source
Ket.tensor_probabilityFunction
tensor_probability(CG::Array, scenario::AbstractVecOrTuple, behaviour::Bool = false)

Takes a multipartite Bell functional CG in Collins-Gisin notation and transforms it to full probability notation. scenario is a tuple detailing the number of inputs and outputs, in the order (oa, ob, ..., ia, ib, ...). If behaviour is true do instead the transformation for behaviours. Doesn't assume normalization.

source
tensor_probability(FC::Matrix, behaviour::Bool = false)

Takes a bipartite Bell functional FC in full correlator notation and transforms it to full probability notation. If behaviour is true do instead the transformation for behaviours. Doesn't assume normalization.

source
tensor_probability(rho::Hermitian, all_Aax::Vector{Measurement}...)
-tensor_probability(rho::Hermitian, Aax::Vector{Measurement}, N::Integer)

Applies N sets of measurements onto a state rho to form a probability array. If all parties apply the same measurements, use the shorthand notation.

source
Ket.tensor_collinsgisinFunction
tensor_collinsgisin(p::Array, behaviour::Bool = false)

Takes a multipartite Bell functional p in full probability notation and transforms it to Collins-Gisin notation. If behaviour is true do instead the transformation for behaviours. Doesn't assume normalization.

Also accepts the arguments of tensor_probability (state and measurements) for convenience.

source
Ket.tensor_correlationFunction
tensor_correlation(p::AbstractArray{T, N2}, behaviour::Bool = false; marg::Bool = true)

Converts a 2x...x2xmx...xm probability array into

  • a mx...xm correlation array (no marginals)
  • a (m+1)x...x(m+1) correlation array (marginals).

If behaviour is true do the transformation for behaviours. Doesn't assume normalization.

Also accepts the arguments of tensor_probability (state and measurements) for convenience.

source

Norms

Ket.kyfan_normFunction
kyfan_norm(X::AbstractMatrix, k::Integer, p::Real = 2)

Computes Ky-Fan (k,p) norm of matrix X.

source
Ket.diamond_normFunction
diamond_norm(J::AbstractMatrix, dims::AbstractVector)

Computes the diamond norm of the supermap J given in the Choi-Jamiołkowski representation, with subsystem dimensions dims.

Reference: Diamond norm

source
diamond_norm(K::Vector{<:AbstractMatrix})

Computes the diamond norm of the CP map given by the Kraus operators K.

source

Random

Ket.random_stateFunction
random_state([T=ComplexF64,] d::Integer, k::Integer = d)

Produces a uniformly distributed random quantum state in dimension d with rank k.

Reference: Życzkowski and Sommers, arXiv:quant-ph/0012101.

source
Ket.random_unitaryFunction
random_unitary([T=ComplexF64,] d::Integer)

Produces a Haar-random unitary matrix in dimension d. If T is a real type the output is instead a Haar-random (real) orthogonal matrix.

Reference: Stewart, doi:10.1137/0717034.

source
Ket.random_povmFunction
random_povm([T=ComplexF64,] d::Integer, n::Integer, r::Integer)

Produces a random POVM of dimension d with n outcomes and rank min(k, d).

Reference: Heinosaari et al., arXiv:1902.04751.

source

States

Ket.state_phiplus_ketFunction
state_phiplus_ket([T=ComplexF64,] d::Integer = 2)

Produces the vector of the maximally entangled state Φ⁺ of local dimension d.

source
Ket.state_phiplusFunction
state_phiplus([T=ComplexF64,] d::Integer = 2; v::Real = 1)

Produces the maximally entangled state Φ⁺ of local dimension d with visibility v.

source
Ket.isotropicFunction
isotropic(v::Real, d::Integer = 2)

Produces the isotropic state of local dimension d with visibility v.

source
Ket.state_psiminus_ketFunction
state_psiminus_ket([T=ComplexF64,] d::Integer = 2)

Produces the vector of the maximally entangled state ψ⁻ of local dimension d.

source
Ket.state_psiminusFunction
state_psiminus([T=ComplexF64,] d::Integer = 2; v::Real = 1)

Produces the maximally entangled state ψ⁻ of local dimension d with visibility v.

source
Ket.state_super_singletFunction
state_super_singlet([T=ComplexF64,] N::Integer = 3; v::Real = 1, coeff = 1/√d)

Produces the N-partite N-level singlet state with visibility v. This state is invariant under simultaneous rotations on all parties: (U⊗…⊗U)ρ(U⊗…⊗U)'=ρ.

Reference: Adán Cabello, arXiv:quant-ph/0203119

source
Ket.state_ghz_ketFunction
state_ghz_ket([T=ComplexF64,] d::Integer = 2, N::Integer = 3; coeff = 1/√d)

Produces the vector of the GHZ state local dimension d.

source
Ket.state_ghzFunction
state_ghz([T=ComplexF64,] d::Integer = 2, N::Integer = 3; v::Real = 1, coeff = 1/√d)

Produces the GHZ state of local dimension d with visibility v.

source
Ket.state_w_ketFunction
state_w_ket([T=ComplexF64,] N::Integer = 3; coeff = 1/√d)

Produces the vector of the N-partite W state.

source
Ket.state_wFunction
state_w([T=ComplexF64,] N::Integer = 3; v::Real = 1, coeff = 1/√d)

Produces the N-partite W state with visibility v.

source
Ket.white_noiseFunction
white_noise(rho::AbstractMatrix, v::Real)

Returns v * rho + (1 - v) * id, where id is the maximally mixed state.

source
Ket.white_noise!Function
white_noise!(rho::AbstractMatrix, v::Real)

Modifies rho in place to tranform it into v * rho + (1 - v) * id where id is the maximally mixed state.

source

Supermaps

Ket.choiFunction
choi(K::Vector{<:AbstractMatrix})

Constructs the Choi-Jamiołkowski representation of the CP map given by the Kraus operators K. The convention used is that choi(K) = ∑ᵢⱼ |i⟩⟨j|⊗K|i⟩⟨j|K'

source

Internal functions

Ket._partitionFunction
partition(n::Integer, k::Integer)

If n ≥ k partitions the set 1:n into k parts as equally sized as possible. Otherwise partitions it into n parts of size 1.

source
Ket._fiducial_WHFunction
_fiducial_WH([T=ComplexF64,] d::Integer)

Computes the fiducial Weyl-Heisenberg vector of dimension d.

Reference: Appleby, Yadsan-Appleby, Zauner, arXiv:1209.1813, http://www.gerhardzauner.at/sicfiducials.html

source
Ket._idxFunction
_idx(tidx::Vector, dims::Vector)

Converts a tensor index tidx = [i₁, i₂, ...] with subsystems dimensions dims to a standard index.

source
Ket._tidxFunction
_tidx(idx::Integer, dims::Vector)

Converts a standard index idx to a tensor index [i₁, i₂, ...] with subsystems dimensions dims.

source
Ket._idxpermFunction
_idxperm(perm::Vector, dims::Vector)

Computes the index permutation associated with permuting the subsystems of a vector with subsystem dimensions dims according to perm.

source
+julia> ppt_mixture(state_ghz(2, 3), [2, 2, 2], two_body_basis)

Reference: Jungnitsch, Moroder, Guehne arXiv:quant-ph/0401118

source

Measurements

Ket.sic_povmFunction
sic_povm([T=ComplexF64,] d::Integer)

Constructs a vector of vectors |vᵢ⟩ such that |vᵢ⟩⟨vᵢ| forms a SIC-POVM of dimension d. This construction is based on the Weyl-Heisenberg fiducial.

Reference: Appleby, Yadsan-Appleby, Zauner, arXiv:1209.1813

source
Ket.test_sicFunction
test_sic(vecs)

Checks if vecs is a vector of vectors |vᵢ⟩ such that |vᵢ⟩⟨vᵢ| forms a SIC-POVM of dimension d.

source
Ket.test_povmFunction
test_povm(A::Vector{<:AbstractMatrix{T}})

Checks if the measurement defined by A is valid (hermitian, semi-definite positive, and normalized).

source
Ket.dilate_povmFunction
dilate_povm(vecs::Vector{Vector{T}})

Does the Naimark dilation of a rank-1 POVM given as a vector of vectors. This is the minimal dilation.

source
dilate_povm(E::Vector{<:AbstractMatrix})

Does the Naimark dilation of a POVM given as a vector of matrices. This always works, but is wasteful if the POVM elements are not full rank.

source
Ket.povmFunction
povm(B::Vector{<:AbstractMatrix{T}})

Creates a set of (projective) measurements from a set of bases given as unitary matrices.

source
Ket.tensor_to_povmFunction
tensor_to_povm(A::Array{T,4}, o::Vector{Int})

Converts a set of measurements in the common tensor format into a matrix of (hermitian) matrices. By default, the second argument is fixed by the size of A. It can also contain custom number of outcomes if there are measurements with less outcomes.

source
Ket.povm_to_tensorFunction
povm_to_tensor(Axa::Vector{<:Measurement})

Converts a matrix of (hermitian) matrices into a set of measurements in the common tensor format.

source
Ket.mubFunction
mub([T=ComplexF64,] d::Integer)

Construction of the standard complete set of MUBs. The output contains 1+minᵢ pᵢ^rᵢ bases, where d = ∏ᵢ pᵢ^rᵢ.

Reference: Durt, Englert, Bengtsson, Życzkowski, arXiv:1004.3348.

source
Ket.test_mubFunction
test_mub(B::Vector{Matrix{<:Number}})

Checks if the input bases are mutually unbiased.

source

Incompatibility

Ket.incompatibility_robustnessFunction
incompatibility_robustness(A::Vector{Measurement{<:Number}}, measure::String = "g")

Computes the incompatibility robustness of the measurements in the vector A. Depending on the noise model chosen, the second argument can be "d" (depolarizing), "r" (random), "p" (probabilistic), "jm" (jointly measurable), or "g" (generalized), see the corresponding functions below. Returns the parent POVM if return_parent = true.

Reference: Designolle, Farkas, Kaniewski, arXiv:1906.00448

source

Nonlocality

Ket.chshFunction
chsh([T=Float64,] d::Integer = 2)

CHSH-d nonlocal game in full probability notation. If T is an integer type the game is unnormalized.

Reference: Buhrman and Massar, arXiv:quant-ph/0409066.

source
Ket.cglmpFunction
cglmp([T=Float64,] d::Integer = 3)

CGLMP nonlocal game in full probability notation. If T is an integer type the game is unnormalized.

References: arXiv:quant-ph/0106024 for the original game, and arXiv:2005.13418 for the form presented here.

source
Ket.gyniFunction
gyni([T=Float64,] n::Integer)

Guess your neighbour's input nonlocal game in full probability notation. If T is an integer type the game is unnormalized.

Reference: Mafalda et al., arXiv:1003.3844.

source
Ket.local_boundFunction
local_bound(G::Array{T,N}; correlation = N < 4, marg = true)

Computes the local bound of a multipartite Bell functional G given as an N-dimensional array. If correlation is false, G is assumed to be written in full probability notation. If correlation is true, G is assumed to be written in correlation notation, with or without marginals depending on marg.

Reference: Araújo, Hirsch, and Quintino, arXiv:2005.13418.

source
Ket.tsirelson_boundFunction
tsirelson_bound(CG::Matrix, scenario::AbstractVecOrTuple, level)

Upper bounds the Tsirelson bound of a multipartite Bell funcional CG, written in Collins-Gisin notation. scenario is a tuple detailing the number of inputs and outputs, in the order (oa, ob, ..., ia, ib, ...). level is an integer or string determining the level of the NPA hierarchy.

source
tsirelson_bound(FC::Matrix, level::Integer)

Upper bounds the Tsirelson bound of a bipartite Bell funcional FC, written in full correlation notation. level is an integer or string determining the level of the NPA hierarchy.

source
Ket.seesawFunction
seesaw(CG::Matrix, scenario::AbstractVecOrTuple, d::Integer)

Maximizes bipartite Bell functional in Collins-Gisin notation CG using the seesaw heuristic. scenario is a vector detailing the number of inputs and outputs, in the order [oa, ob, ia, ib]. d is an integer determining the local dimension of the strategy.

If oa == ob == 2 the heuristic reduces to a bunch of eigenvalue problems. Otherwise semidefinite programming is needed and we use the assemblage version of seesaw.

References: Pál and Vértesi, arXiv:1006.3032, section II.B.1 of Tavakoli et al., arXiv:2307.02551

source
Ket.tensor_probabilityFunction
tensor_probability(CG::Array, scenario::AbstractVecOrTuple, behaviour::Bool = false)

Takes a multipartite Bell functional CG in Collins-Gisin notation and transforms it to full probability notation. scenario is a tuple detailing the number of inputs and outputs, in the order (oa, ob, ..., ia, ib, ...). If behaviour is true do instead the transformation for behaviours. Doesn't assume normalization.

source
tensor_probability(FC::Matrix, behaviour::Bool = false)

Takes a bipartite Bell functional FC in full correlator notation and transforms it to full probability notation. If behaviour is true do instead the transformation for behaviours. Doesn't assume normalization.

source
tensor_probability(rho::Hermitian, all_Aax::Vector{Measurement}...)
+tensor_probability(rho::Hermitian, Aax::Vector{Measurement}, N::Integer)

Applies N sets of measurements onto a state rho to form a probability array. If all parties apply the same measurements, use the shorthand notation.

source
Ket.tensor_collinsgisinFunction
tensor_collinsgisin(p::Array, behaviour::Bool = false)

Takes a multipartite Bell functional p in full probability notation and transforms it to Collins-Gisin notation. If behaviour is true do instead the transformation for behaviours. Doesn't assume normalization.

Also accepts the arguments of tensor_probability (state and measurements) for convenience.

source
Ket.tensor_correlationFunction
tensor_correlation(p::AbstractArray{T, N2}, behaviour::Bool = false; marg::Bool = true)

Converts a 2x...x2xmx...xm probability array into

  • a mx...xm correlation array (no marginals)
  • a (m+1)x...x(m+1) correlation array (marginals).

If behaviour is true do the transformation for behaviours. Doesn't assume normalization.

Also accepts the arguments of tensor_probability (state and measurements) for convenience.

source

Norms

Ket.kyfan_normFunction
kyfan_norm(X::AbstractMatrix, k::Integer, p::Real = 2)

Computes Ky-Fan (k,p) norm of matrix X.

source
Ket.diamond_normFunction
diamond_norm(J::AbstractMatrix, dims::AbstractVector)

Computes the diamond norm of the supermap J given in the Choi-Jamiołkowski representation, with subsystem dimensions dims.

Reference: Diamond norm

source
diamond_norm(K::Vector{<:AbstractMatrix})

Computes the diamond norm of the CP map given by the Kraus operators K.

source

Random

Ket.random_stateFunction
random_state([T=ComplexF64,] d::Integer, k::Integer = d)

Produces a uniformly distributed random quantum state in dimension d with rank k.

Reference: Życzkowski and Sommers, arXiv:quant-ph/0012101.

source
Ket.random_unitaryFunction
random_unitary([T=ComplexF64,] d::Integer)

Produces a Haar-random unitary matrix in dimension d. If T is a real type the output is instead a Haar-random (real) orthogonal matrix.

Reference: Stewart, doi:10.1137/0717034.

source
Ket.random_povmFunction
random_povm([T=ComplexF64,] d::Integer, n::Integer, r::Integer)

Produces a random POVM of dimension d with n outcomes and rank min(k, d).

Reference: Heinosaari et al., arXiv:1902.04751.

source

States

Ket.state_phiplus_ketFunction
state_phiplus_ket([T=ComplexF64,] d::Integer = 2)

Produces the vector of the maximally entangled state Φ⁺ of local dimension d.

source
Ket.state_phiplusFunction
state_phiplus([T=ComplexF64,] d::Integer = 2; v::Real = 1)

Produces the maximally entangled state Φ⁺ of local dimension d with visibility v.

source
Ket.isotropicFunction
isotropic(v::Real, d::Integer = 2)

Produces the isotropic state of local dimension d with visibility v.

source
Ket.state_psiminus_ketFunction
state_psiminus_ket([T=ComplexF64,] d::Integer = 2)

Produces the vector of the maximally entangled state ψ⁻ of local dimension d.

source
Ket.state_psiminusFunction
state_psiminus([T=ComplexF64,] d::Integer = 2; v::Real = 1)

Produces the maximally entangled state ψ⁻ of local dimension d with visibility v.

source
Ket.state_super_singletFunction
state_super_singlet([T=ComplexF64,] N::Integer = 3; v::Real = 1, coeff = 1/√d)

Produces the N-partite N-level singlet state with visibility v. This state is invariant under simultaneous rotations on all parties: (U⊗…⊗U)ρ(U⊗…⊗U)'=ρ.

Reference: Adán Cabello, arXiv:quant-ph/0203119

source
Ket.state_ghz_ketFunction
state_ghz_ket([T=ComplexF64,] d::Integer = 2, N::Integer = 3; coeff = 1/√d)

Produces the vector of the GHZ state local dimension d.

source
Ket.state_ghzFunction
state_ghz([T=ComplexF64,] d::Integer = 2, N::Integer = 3; v::Real = 1, coeff = 1/√d)

Produces the GHZ state of local dimension d with visibility v.

source
Ket.state_w_ketFunction
state_w_ket([T=ComplexF64,] N::Integer = 3; coeff = 1/√d)

Produces the vector of the N-partite W state.

source
Ket.state_wFunction
state_w([T=ComplexF64,] N::Integer = 3; v::Real = 1, coeff = 1/√d)

Produces the N-partite W state with visibility v.

source
Ket.white_noiseFunction
white_noise(rho::AbstractMatrix, v::Real)

Returns v * rho + (1 - v) * id, where id is the maximally mixed state.

source
Ket.white_noise!Function
white_noise!(rho::AbstractMatrix, v::Real)

Modifies rho in place to tranform it into v * rho + (1 - v) * id where id is the maximally mixed state.

source

Supermaps

Ket.choiFunction
choi(K::Vector{<:AbstractMatrix})

Constructs the Choi-Jamiołkowski representation of the CP map given by the Kraus operators K. The convention used is that choi(K) = ∑ᵢⱼ |i⟩⟨j|⊗K|i⟩⟨j|K'

source

Internal functions

Ket._partitionFunction
partition(n::Integer, k::Integer)

If n ≥ k partitions the set 1:n into k parts as equally sized as possible. Otherwise partitions it into n parts of size 1.

source
Ket._fiducial_WHFunction
_fiducial_WH([T=ComplexF64,] d::Integer)

Computes the fiducial Weyl-Heisenberg vector of dimension d.

Reference: Appleby, Yadsan-Appleby, Zauner, arXiv:1209.1813, http://www.gerhardzauner.at/sicfiducials.html

source
Ket._idxFunction
_idx(tidx::Vector, dims::Vector)

Converts a tensor index tidx = [i₁, i₂, ...] with subsystems dimensions dims to a standard index.

source
Ket._tidxFunction
_tidx(idx::Integer, dims::Vector)

Converts a standard index idx to a tensor index [i₁, i₂, ...] with subsystems dimensions dims.

source
Ket._idxpermFunction
_idxperm(perm::Vector, dims::Vector)

Computes the index permutation associated with permuting the subsystems of a vector with subsystem dimensions dims according to perm.

source
diff --git a/dev/index.html b/dev/index.html index 304620b..0defa9f 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,2 +1,2 @@ -Home · Ket.jl

Banner

Dev

Toolbox for quantum information, nonlocality, and entanglement.

Highlights are the functions mub and sic_povm, that produce respectively MUBs and SIC-POVMs with arbitrary precision, local_bound that uses a parallelized algorithm to compute the local bound of a Bell inequality, and partial_trace and partial_transpose, that compute the partial trace and partial transpose in a way that can be used for optimization with JuMP. Also worth mentioning are the functions to produce uniformly-distributed random states, unitaries, and POVMs: random_state, random_unitary, random_povm. And the eponymous ket, of course.

For the full list of functions see the documentation.

+Home · Ket.jl

Banner

Dev

Toolbox for quantum information, nonlocality, and entanglement.

Highlights are the functions mub and sic_povm, that produce respectively MUBs and SIC-POVMs with arbitrary precision, local_bound that uses a parallelized algorithm to compute the local bound of a Bell inequality, and partial_trace and partial_transpose, that compute the partial trace and partial transpose in a way that can be used for optimization with JuMP. Also worth mentioning are the functions to produce uniformly-distributed random states, unitaries, and POVMs: random_state, random_unitary, random_povm. And the eponymous ket, of course.

For the full list of functions see the documentation.