From f759acb1a8a45b4c357a3d7fade54be2998221cb Mon Sep 17 00:00:00 2001 From: NicolasGensollen Date: Thu, 22 Aug 2024 16:10:10 +0200 Subject: [PATCH] fix broken unit tests --- .../t1_linear/test_anat_linear_utils.py | 165 --------------- .../pipelines/test_pipelines_utils.py | 188 ++++++++++++++++++ 2 files changed, 188 insertions(+), 165 deletions(-) create mode 100644 test/unittests/pipelines/test_pipelines_utils.py diff --git a/test/unittests/pipelines/t1_linear/test_anat_linear_utils.py b/test/unittests/pipelines/t1_linear/test_anat_linear_utils.py index 8f3388fe1..859105d33 100644 --- a/test/unittests/pipelines/t1_linear/test_anat_linear_utils.py +++ b/test/unittests/pipelines/t1_linear/test_anat_linear_utils.py @@ -1,10 +1,4 @@ -from pathlib import Path -from unittest.mock import patch - -import nibabel as nib -import numpy as np import pytest -from numpy.testing import assert_array_equal @pytest.mark.parametrize("suffix", ["T1w", "FLAIR", "fooo"]) @@ -30,162 +24,3 @@ def test_get_substitutions_datasink(suffix): f"sub-ADNI022S0004_ses-M000_{suffix}Warped.nii.gz", f"sub-ADNI022S0004_ses-M000_space-MNI152NLin2009cSym_res-1x1x1_{suffix}.nii.gz", ) - - -def n4biasfieldcorrection_mock( - input_image: Path, - bspline_fitting_distance: int, - save_bias: bool = False, - verbose: bool = False, -): - """The mock simply returns the input image without any processing.""" - return nib.load(input_image) - - -def test_run_n4biasfieldcorrection_no_bias_saving(tmp_path): - from clinica.pipelines.t1_linear.anat_linear_utils import run_n4biasfieldcorrection - - data = np.random.random((10, 10, 10)) - nib.save(nib.Nifti1Image(data, np.eye(4)), tmp_path / "test.nii.gz") - output_dir = tmp_path / "out" - output_dir.mkdir() - - with patch("ants.image_write", wraps=nib.save) as image_write_mock: - with patch( - "clinica.pipelines.t1_linear.anat_linear_utils._call_n4_bias_field_correction", - wraps=n4biasfieldcorrection_mock, - ) as ants_bias_correction_mock: - bias_corrected_image = run_n4biasfieldcorrection( - tmp_path / "test.nii.gz", - bspline_fitting_distance=300, - output_prefix="sub-01_ses-M000", - output_dir=output_dir, - ) - image_write_mock.assert_called_once() - ants_bias_correction_mock.assert_called_once_with( - tmp_path / "test.nii.gz", - 300, - save_bias=False, - verbose=False, - ) - # Verify that the bias corrected image exists - # If all went well, it will be the same as the input image because of the mocks. - assert [f.name for f in output_dir.iterdir()] == [ - "sub-01_ses-M000_bias_corrected_image.nii.gz" - ] - assert bias_corrected_image.exists() - bias_corrected_nifti = nib.load(bias_corrected_image) - assert_array_equal(bias_corrected_nifti.affine, np.eye(4)) - assert_array_equal(bias_corrected_nifti.get_fdata(), data) - - -def test_run_n4biasfieldcorrection(tmp_path): - from clinica.pipelines.t1_linear.anat_linear_utils import run_n4biasfieldcorrection - - data = np.random.random((10, 10, 10)) - nib.save(nib.Nifti1Image(data, np.eye(4)), tmp_path / "test.nii.gz") - output_dir = tmp_path / "out" - output_dir.mkdir() - - with patch("ants.image_write", wraps=nib.save) as image_write_mock: - with patch( - "clinica.pipelines.t1_linear.anat_linear_utils._call_n4_bias_field_correction", - wraps=n4biasfieldcorrection_mock, - ) as ants_bias_correction_mock: - bias_corrected_image = run_n4biasfieldcorrection( - tmp_path / "test.nii.gz", - bspline_fitting_distance=300, - output_prefix="sub-01_ses-M000", - output_dir=output_dir, - save_bias=True, - verbose=True, - ) - image_write_mock.assert_called() - ants_bias_correction_mock.assert_called_with( - tmp_path / "test.nii.gz", - 300, - save_bias=True, - verbose=True, - ) - assert set([f.name for f in output_dir.iterdir()]) == { - "sub-01_ses-M000_bias_corrected_image.nii.gz", - "sub-01_ses-M000_bias_image.nii.gz", - } - assert bias_corrected_image.exists() - bias_corrected_nifti = nib.load(bias_corrected_image) - assert_array_equal(bias_corrected_nifti.affine, np.eye(4)) - assert_array_equal(bias_corrected_nifti.get_fdata(), data) - - -def generate_fake_fixed_and_moving_images(folder: Path): - data = np.random.random((10, 10, 10)) - nib.save(nib.Nifti1Image(data, np.eye(4)), folder / "fixed.nii.gz") - nib.save(nib.Nifti1Image(data, np.eye(4)), folder / "moving.nii.gz") - - -def test_run_ants_registration_error(tmp_path, mocker): - import re - - from clinica.pipelines.t1_linear.anat_linear_utils import run_ants_registration - - generate_fake_fixed_and_moving_images(tmp_path) - mocker.patch( - "clinica.pipelines.t1_linear.anat_linear_utils._call_ants_registration", - return_value={}, - ) - with pytest.raises( - RuntimeError, - match=re.escape( - "Something went wrong when calling antsRegistration with the following parameters :\n" - f"- fixed_image = {tmp_path / 'fixed.nii.gz'}\n" - f"- moving_image = {tmp_path / 'moving.nii.gz'}\n" - f"- random_seed = 0\n" - f"- type_of_transformation='antsRegistrationSyN[a]'\n" - ), - ): - run_ants_registration( - tmp_path / "fixed.nii.gz", - tmp_path / "moving.nii.gz", - random_seed=0, - ) - - -def ants_registration_mock( - fixed_image: Path, - moving_image: Path, - random_seed: int, - verbose: bool = False, -) -> dict: - workdir = fixed_image.parent / "workdir" - workdir.mkdir() - mocked_transform = workdir / "transform.mat" - mocked_transform.touch() - return { - "warpedmovout": nib.load(fixed_image), - "fwdtransforms": ["fooo.txt", mocked_transform], - "foo": "bar", - } - - -def test_run_ants_registration(tmp_path): - from clinica.pipelines.t1_linear.anat_linear_utils import run_ants_registration - - output_dir = tmp_path / "out" - output_dir.mkdir() - generate_fake_fixed_and_moving_images(tmp_path) - - with patch( - "clinica.pipelines.t1_linear.anat_linear_utils._call_ants_registration", - wraps=ants_registration_mock, - ) as mock1: - with patch("ants.image_write", wraps=nib.save) as mock2: - run_ants_registration( - tmp_path / "fixed.nii.gz", - tmp_path / "moving.nii.gz", - random_seed=12, - output_dir=output_dir, - ) - mock1.assert_called_once_with( - tmp_path / "fixed.nii.gz", tmp_path / "moving.nii.gz", 12, verbose=False - ) - mock2.assert_called_once() diff --git a/test/unittests/pipelines/test_pipelines_utils.py b/test/unittests/pipelines/test_pipelines_utils.py new file mode 100644 index 000000000..e6a281f6a --- /dev/null +++ b/test/unittests/pipelines/test_pipelines_utils.py @@ -0,0 +1,188 @@ +from pathlib import Path +from typing import Optional, Tuple, Union +from unittest.mock import patch + +import nibabel as nib +import numpy as np +import pytest +from numpy.testing import assert_array_equal + +from clinica.pipelines.utils import ( + AntsRegistrationSynQuickTransformType, + AntsRegistrationTransformType, +) + + +def n4biasfieldcorrection_mock( + input_image: Path, + bspline_fitting_distance: int, + save_bias: bool = False, + verbose: bool = False, +): + """The mock simply returns the input image without any processing.""" + return nib.load(input_image) + + +def test_run_n4biasfieldcorrection_no_bias_saving(tmp_path): + from clinica.pipelines.utils import run_n4biasfieldcorrection + + data = np.random.random((10, 10, 10)) + nib.save(nib.Nifti1Image(data, np.eye(4)), tmp_path / "test.nii.gz") + output_dir = tmp_path / "out" + output_dir.mkdir() + + with patch("ants.image_write", wraps=nib.save) as image_write_mock: + with patch( + "clinica.pipelines.utils._call_n4_bias_field_correction", + wraps=n4biasfieldcorrection_mock, + ) as ants_bias_correction_mock: + bias_corrected_image = run_n4biasfieldcorrection( + tmp_path / "test.nii.gz", + bspline_fitting_distance=300, + output_prefix="sub-01_ses-M000", + output_dir=output_dir, + ) + image_write_mock.assert_called_once() + ants_bias_correction_mock.assert_called_once_with( + tmp_path / "test.nii.gz", + 300, + save_bias=False, + verbose=False, + ) + # Verify that the bias corrected image exists + # If all went well, it will be the same as the input image because of the mocks. + assert [f.name for f in output_dir.iterdir()] == [ + "sub-01_ses-M000_bias_corrected_image.nii.gz" + ] + assert bias_corrected_image.exists() + bias_corrected_nifti = nib.load(bias_corrected_image) + assert_array_equal(bias_corrected_nifti.affine, np.eye(4)) + assert_array_equal(bias_corrected_nifti.get_fdata(), data) + + +def test_run_n4biasfieldcorrection(tmp_path): + from clinica.pipelines.utils import run_n4biasfieldcorrection + + data = np.random.random((10, 10, 10)) + nib.save(nib.Nifti1Image(data, np.eye(4)), tmp_path / "test.nii.gz") + output_dir = tmp_path / "out" + output_dir.mkdir() + + with patch("ants.image_write", wraps=nib.save) as image_write_mock: + with patch( + "clinica.pipelines.utils._call_n4_bias_field_correction", + wraps=n4biasfieldcorrection_mock, + ) as ants_bias_correction_mock: + bias_corrected_image = run_n4biasfieldcorrection( + tmp_path / "test.nii.gz", + bspline_fitting_distance=300, + output_prefix="sub-01_ses-M000", + output_dir=output_dir, + save_bias=True, + verbose=True, + ) + image_write_mock.assert_called() + ants_bias_correction_mock.assert_called_with( + tmp_path / "test.nii.gz", + 300, + save_bias=True, + verbose=True, + ) + assert set([f.name for f in output_dir.iterdir()]) == { + "sub-01_ses-M000_bias_corrected_image.nii.gz", + "sub-01_ses-M000_bias_image.nii.gz", + } + assert bias_corrected_image.exists() + bias_corrected_nifti = nib.load(bias_corrected_image) + assert_array_equal(bias_corrected_nifti.affine, np.eye(4)) + assert_array_equal(bias_corrected_nifti.get_fdata(), data) + + +def generate_fake_fixed_and_moving_images(folder: Path): + data = np.random.random((10, 10, 10)) + nib.save(nib.Nifti1Image(data, np.eye(4)), folder / "fixed.nii.gz") + nib.save(nib.Nifti1Image(data, np.eye(4)), folder / "moving.nii.gz") + + +def test_run_ants_registration_synquick_error(tmp_path, mocker): + import re + + from clinica.pipelines.utils import run_ants_registration_synquick + + generate_fake_fixed_and_moving_images(tmp_path) + mocker.patch( + "clinica.pipelines.utils._call_ants_registration", + return_value={}, + ) + with pytest.raises( + RuntimeError, + match=re.escape( + "Something went wrong when calling antsRegistration with the following parameters :\n" + f"- fixed_image = {tmp_path / 'fixed.nii.gz'}\n" + f"- moving_image = {tmp_path / 'moving.nii.gz'}\n" + f"- random_seed = 0\n" + f"- type_of_transformation='antsRegistrationSyN[a]'\n" + ), + ): + run_ants_registration_synquick( + tmp_path / "fixed.nii.gz", + tmp_path / "moving.nii.gz", + random_seed=0, + transform_type=AntsRegistrationSynQuickTransformType.AFFINE, + ) + + +def ants_registration_mock( + fixed_image: Path, + moving_image: Path, + random_seed: int, + transform_type: Union[ + AntsRegistrationTransformType, AntsRegistrationSynQuickTransformType + ], + verbose: bool = False, + shrink_factors: Optional[Tuple[int, ...]] = None, + smoothing_sigmas: Optional[Tuple[int, ...]] = None, + number_of_iterations: Optional[Tuple[int, ...]] = None, +) -> dict: + workdir = fixed_image.parent / "workdir" + workdir.mkdir() + mocked_transform = workdir / "transform.mat" + mocked_transform.touch() + return { + "warpedmovout": nib.load(fixed_image), + "fwdtransforms": ["fooo.txt", mocked_transform], + "invtransforms": [mocked_transform], + "foo": "bar", + } + + +def test_run_ants_registration_synquick(tmp_path): + from clinica.pipelines.utils import run_ants_registration_synquick + + output_dir = tmp_path / "out" + output_dir.mkdir() + generate_fake_fixed_and_moving_images(tmp_path) + + with patch( + "clinica.pipelines.utils._call_ants_registration", + wraps=ants_registration_mock, + ) as mock1: + with patch("ants.image_write", wraps=nib.save) as mock2: + run_ants_registration_synquick( + tmp_path / "fixed.nii.gz", + tmp_path / "moving.nii.gz", + random_seed=12, + transform_type=AntsRegistrationSynQuickTransformType.AFFINE, + output_dir=output_dir, + ) + mock1.assert_called_once_with( + tmp_path / "fixed.nii.gz", + tmp_path / "moving.nii.gz", + 12, + AntsRegistrationSynQuickTransformType.AFFINE, + verbose=False, + shrink_factors=None, + smoothing_sigmas=None, + number_of_iterations=None, + ) + mock2.assert_called_once()