Skip to content

Commit

Permalink
Proposition to merge in existing scans.tsv
Browse files Browse the repository at this point in the history
  • Loading branch information
AliceJoubert committed Jun 28, 2024
1 parent e834d41 commit c127022
Showing 1 changed file with 37 additions and 27 deletions.
64 changes: 37 additions & 27 deletions clinica/iotools/converters/adni_to_bids/adni_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -541,50 +541,60 @@ def create_adni_scans_files(conversion_path: Path, bids_subjs_paths: list[Path])
conversion_versions = sorted(
conversion_versions, key=lambda x: int(x.split("v")[1])
)
older_version = conversion_versions[-1]
current_version = conversion_versions[-1]
converted_dict = dict()
for tsv_path in (conversion_path / older_version).iterdir():
# Filling in the converted_dict with what was just converted
for tsv_path in (conversion_path / current_version).iterdir():
modality = tsv_path.name.split("_paths")[0]
df = pd.read_csv(conversion_path / older_version / tsv_path, sep="\t")
df = pd.read_csv(conversion_path / current_version / tsv_path, sep="\t")
df.set_index(["Subject_ID", "VISCODE"], inplace=True, drop=True)
converted_dict[modality] = df

for bids_subject_path in bids_subjs_paths:
# Create the file
bids_id = bids_subject_path.resolve().name
subject_id = "_S_".join(bids_id[8::].split("S"))
study_id = "_S_".join(bids_id[8::].split("S"))
for session_path in bids_subject_path.glob("ses-*"):
viscode = _session_label_to_viscode(session_path.name[4::])
tsv_name = f"{bids_id}_{session_path.name}_scans.tsv"
(session_path / tsv_name).unlink(missing_ok=True)
scans_tsv = open(session_path / tsv_name, "a")
scans_df = pd.DataFrame(columns=scans_fields_bids)
scans_df.to_csv(scans_tsv, sep="\t", index=False, encoding="utf-8")
scans_tsv = session_path / tsv_name
if scans_tsv.exists():
scans_df = pd.read_csv(scans_tsv, sep="\t")
else:
scans_df = pd.DataFrame(columns=scans_fields_bids)

# Extract modalities available for each subject
# Extract modalities available for each session
for mod in session_path.glob("*"):
for file in mod.glob("*"):
scans_df = pd.DataFrame(index=[0], columns=scans_fields_bids)
scans_df["filename"] = path.join(mod.name, file.name)
converted_mod = _find_conversion_mod(file.name)
conversion_df = converted_dict[converted_mod]
try:
scan_id = conversion_df.loc[(subject_id, viscode), "Image_ID"]
scans_df["scan_id"] = scan_id
if "Field_Strength" in conversion_df.columns.values:
field_strength = conversion_df.loc[
(subject_id, viscode), "Field_Strength"
if converted_mod in converted_dict.keys():
conversion_df = converted_dict[converted_mod]
scan_id = (
conversion_df.loc[(study_id, viscode), "Image_ID"]
if "Image_ID" in conversion_df.columns
else "n/a"
)
field = (
conversion_df.loc[(study_id, viscode), "Field_Strength"]
if "Field_Strength" in conversion_df.columns
else "n/a"
)
scans_df = pd.concat(
[
scans_df,
pd.DataFrame(
{
"filename": [path.join(mod.name, file.name)],
"scan_id": [scan_id],
"mri_field": [field],
}
),
]
scans_df["mri_field"] = field_strength
except KeyError:
cprint(
msg=f"No information found for file {file.name}",
lvl="warning",
)
scans_df = scans_df.fillna("n/a")
scans_df.to_csv(
scans_tsv, header=False, sep="\t", index=False, encoding="utf-8"
)

# Drop duplicates in case a modality was ran twice for the same images
scans_df.drop_duplicates(inplace=True)
scans_df.to_csv(scans_tsv, sep="\t", index=False, encoding="utf-8")


def _find_conversion_mod(file_name: str) -> str:
Expand Down

0 comments on commit c127022

Please sign in to comment.