-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_queries.py
1453 lines (1306 loc) · 71 KB
/
create_queries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import pickle
import os.path as osp
import numpy as np
import click
from collections import defaultdict
import random
from copy import deepcopy
import time
import pdb
import logging
import os
from datetime import datetime
def set_logger(save_path, query_name, print_on_screen=False):
'''
Write logs to checkpoint and console
'''
log_file = os.path.join(save_path, '%s.log' % (query_name))
logging.basicConfig(
format='%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S',
filename=log_file,
filemode='w'
)
if print_on_screen:
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
def set_global_seed(seed):
np.random.seed(seed)
random.seed(seed)
def index_dataset(dataset_name, force=False):
print('Indexing dataset {0}'.format(dataset_name))
base_path = 'data/{0}/'.format(dataset_name)
files = ['train.txt', 'valid.txt', 'test.txt']
indexified_files = ['train_indexified.txt', 'valid_indexified.txt', 'test_indexified.txt']
#files = ['train.txt']
#indexified_files = ['train_indexified.txt']
return_flag = True
for i in range(len(indexified_files)):
if not osp.exists(osp.join(base_path, indexified_files[i])):
return_flag = False
break
if return_flag and not force:
print("index file exists")
return
ent2id, rel2id, id2rel, id2ent = {}, {}, {}, {}
entid, relid = 0, 0
with open(osp.join(base_path, files[0])) as f:
lines = f.readlines()
file_len = len(lines)
for p, indexified_p in zip(files, indexified_files):
fw = open(osp.join(base_path, indexified_p), "w")
with open(osp.join(base_path, p), 'r') as f:
for i, line in enumerate(f):
print('[%d/%d]' % (i, file_len), end='\r')
e1, rel, e2 = line.split('\t')
e1 = e1.strip()
e2 = e2.strip()
rel = rel.strip()
rel_reverse = '-' + rel
rel = '+' + rel
# rel_reverse = rel+ '_reverse'
if p == "train.txt":
if e1 not in ent2id.keys():
ent2id[e1] = entid
id2ent[entid] = e1
entid += 1
if e2 not in ent2id.keys():
ent2id[e2] = entid
id2ent[entid] = e2
entid += 1
if not rel in rel2id.keys():
rel2id[rel] = relid
id2rel[relid] = rel
assert relid % 2 == 0
relid += 1
if not rel_reverse in rel2id.keys():
rel2id[rel_reverse] = relid
id2rel[relid] = rel_reverse
assert relid % 2 == 1
relid += 1
if e1 in ent2id.keys() and e2 in ent2id.keys() and rel in rel2id.keys():
fw.write("\t".join([str(ent2id[e1]), str(rel2id[rel]), str(ent2id[e2])]) + "\n")
fw.write("\t".join([str(ent2id[e2]), str(rel2id[rel_reverse]), str(ent2id[e1])]) + "\n")
fw.close()
with open(osp.join(base_path, "stats.txt"), "w") as fw:
fw.write("numentity: " + str(len(ent2id)) + "\n")
fw.write("numrelations: " + str(len(rel2id)))
with open(osp.join(base_path, 'ent2id.pkl'), 'wb') as handle:
pickle.dump(ent2id, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open(osp.join(base_path, 'rel2id.pkl'), 'wb') as handle:
pickle.dump(rel2id, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open(osp.join(base_path, 'id2ent.pkl'), 'wb') as handle:
pickle.dump(id2ent, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open(osp.join(base_path, 'id2rel.pkl'), 'wb') as handle:
pickle.dump(id2rel, handle, protocol=pickle.HIGHEST_PROTOCOL)
print('num entity: %d, num relation: %d' % (len(ent2id), len(rel2id)))
print("indexing finished!!")
def construct_graph(base_path, indexified_files):
# knowledge graph
# kb[e][rel] = set([e, e, e])
ent_in, ent_out = defaultdict(lambda: defaultdict(set)), defaultdict(lambda: defaultdict(set))
for indexified_p in indexified_files:
with open(osp.join(base_path, indexified_p)) as f:
for i, line in enumerate(f):
if len(line) == 0:
continue
e1, rel, e2 = line.split('\t')
e1 = int(e1.strip())
e2 = int(e2.strip())
rel = int(rel.strip())
ent_out[e1][rel].add(e2)
ent_in[e2][rel].add(e1)
return ent_in, ent_out
def list2tuple(l):
return tuple(list2tuple(x) if type(x) == list else x for x in l)
def tuple2list(t):
return list(tuple2list(x) if type(x) == tuple else x for x in t)
def write_links(dataset, eval_ent_out, train_ent_out, max_ans_num, name):
queries = defaultdict(set)
train_answers = defaultdict(set)
hard_answers = defaultdict(set)
fp_answers = defaultdict(set)
num_more_answer = 0
for ent in eval_ent_out:
for rel in eval_ent_out[ent]:
if len(eval_ent_out[ent][rel]) <= max_ans_num:
queries[('e', ('r',))].add((ent, (rel,)))
train_answers[(ent, (rel,))] = train_ent_out[ent][rel]
hard_answers[(ent, (rel,))] = eval_ent_out[ent][rel]
else:
num_more_answer += 1
if name == 'train-':
with open('./data/%s/%s-1p-queries.pkl' % (dataset, name), 'wb') as f:
pickle.dump(queries, f)
with open('./data/%s/%s-1p-answers.pkl' % (dataset, name), 'wb') as f:
pickle.dump(hard_answers, f)
else:
with open('./data/%s/%s-1p-queries.pkl' % (dataset, name), 'wb') as f:
pickle.dump(queries, f)
with open('./data/%s/%seasy-1p-answers.pkl' % (dataset, name), 'wb') as f:
pickle.dump(train_answers, f)
with open('./data/%s/%shard-1p-answers.pkl' % (dataset, name), 'wb') as f:
pickle.dump(hard_answers, f)
print(num_more_answer)
def compute_answers_query_2p(entity, rels, ent_out1, ent_out2):
answer_set_final = set()
answer_set_inter = ent_out1[entity][rels[0]]
for i, ent in enumerate(answer_set_inter):
answer_set_final.update(ent_out2[ent][rels[1]])
return answer_set_final
def compute_answers_query_3p(entity, rels, ent_out1, ent_out2, ent_out3):
answer_set_final = set()
answer_set_inter2 = set()
answer_set_inter1 = ent_out1[entity][rels[0]]
for i, ent in enumerate(answer_set_inter1):
answer_set_inter2.update(ent_out2[ent][rels[1]])
for i, ent in enumerate(answer_set_inter2):
answer_set_final.update(ent_out3[ent][rels[2]])
return answer_set_final
def compute_answers_query_4p(entity, rels, ent_out1, ent_out2, ent_out3, ent_out4):
answer_set_final = set()
answer_set_inter2 = set()
answer_set_inter3 = set()
answer_set_inter1 = ent_out1[entity][rels[0]]
for i, ent in enumerate(answer_set_inter1):
answer_set_inter2.update(ent_out2[ent][rels[1]])
for i, ent in enumerate(answer_set_inter2):
answer_set_inter3.update(ent_out3[ent][rels[2]])
for i, ent in enumerate(answer_set_inter3):
answer_set_final.update(ent_out4[ent][rels[3]])
return answer_set_final
def add_to_freq_dict(n_answers, set_rels,set_anchs,rels_freq,anch_freqs):
new_set_rel = set()
for rel in set_rels:
if rel % 2 != 0:
# rel is the inverse
rel = rel - 1
new_set_rel.update({rel})
for rel in new_set_rel:
if rel in rels_freq:
rels_freq[rel] += n_answers
else:
rels_freq[rel] = n_answers
for entity in set_anchs:
if entity in anch_freqs:
anch_freqs[entity] += n_answers
else:
anch_freqs[entity] = n_answers
return rels_freq, anch_freqs, new_set_rel
def compute_fi_pi_answers(query_structure, query, test_only_ent_out, train_ent_out, all_ent_out, train_answer_set, test_answer_set, answer_set):
# 2p
if query_structure == ['e', ['r', 'r']]:
# 0 existing 1 predicted
# check if answer reachable with training link
entity = query[0]
rel1 = query[1][0]
rel2 = query[1][1]
reachableanswers01 = compute_answers_query_2p(entity, [rel1, rel2], train_ent_out, test_only_ent_out)
reachableanswers10 = compute_answers_query_2p(entity, [rel1, rel2], test_only_ent_out, train_ent_out)
reachable_answers_1p = (reachableanswers01 | reachableanswers10) - train_answer_set
reachableanswers11 = compute_answers_query_2p(entity, [rel1, rel2], test_only_ent_out, test_only_ent_out)
reachable_answers_2p = reachableanswers11 - reachable_answers_1p - train_answer_set
return len(reachable_answers_2p),reachable_answers_2p, [reachable_answers_1p],[rel1, rel2], [entity]
# 3p
if query_structure == ['e', ['r', 'r', 'r']]:
reachable_answers_3p = set()
entity = query[0]
rel1 = query[1][0]
rel2 = query[1][1]
rel3 = query[1][2]
reachable_answers_2p = set()
# existing + existing + predicted --> 1p 001
reachable_answers_001 = compute_answers_query_3p(entity, [rel1, rel2, rel3], train_ent_out, train_ent_out,
test_only_ent_out)
# existing + predicted + existing --> 1p 010
reachable_answers_010 = compute_answers_query_3p(entity, [rel1, rel2, rel3], train_ent_out, test_only_ent_out,
train_ent_out)
# predicted + existing + existing --> 1p 100
reachable_answers_100 = compute_answers_query_3p(entity, [rel1, rel2, rel3], test_only_ent_out, train_ent_out,
train_ent_out)
reachable_answers_1p = (reachable_answers_001 | reachable_answers_010 | reachable_answers_100) - train_answer_set # subtract the train answers
if len(reachable_answers_1p) < len(test_answer_set):
# continue the computation for 2p/3p
# existing + predicted + predicted --> 2p 011
reachable_answers_011 = compute_answers_query_3p(entity, [rel1, rel2, rel3], train_ent_out,
test_only_ent_out, test_only_ent_out)
# predicted + predicted + existing --> 2p 110
reachable_answers_110 = compute_answers_query_3p(entity, [rel1, rel2, rel3], test_only_ent_out,
test_only_ent_out, train_ent_out)
# predicted + existing + predicted --> 2p 101
reachable_answers_101 = compute_answers_query_3p(entity, [rel1, rel2, rel3], test_only_ent_out,
train_ent_out, test_only_ent_out)
reachable_answers_2p = (reachable_answers_011 | reachable_answers_110 | reachable_answers_101) - reachable_answers_1p - train_answer_set # subtract the train answers and the 1p answers
if len(reachable_answers_1p | reachable_answers_2p) < len(test_answer_set):
# predicted + predicted + existing --> 3p 111
reachable_answers_111 = compute_answers_query_3p(entity, [rel1, rel2, rel3], test_only_ent_out,
test_only_ent_out, test_only_ent_out)
reachable_answers_3p = reachable_answers_111 - reachable_answers_2p - reachable_answers_1p - train_answer_set # subtract the train answers and the 1p/2p answers
return len(reachable_answers_3p),reachable_answers_3p, [reachable_answers_1p,reachable_answers_2p],[rel1, rel2, rel3], [entity]
# 4p
if query_structure == ['e', ['r', 'r', 'r', 'r']]:
reachable_answers_4p = set()
entity = query[0]
rel1 = query[1][0]
rel2 = query[1][1]
rel3 = query[1][2]
rel4 = query[1][3]
reachable_answers_2p, reachable_answers_3p = set(), set()
# 1p 0001
reachable_answers_0001 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], train_ent_out,
train_ent_out, train_ent_out, test_only_ent_out)
# 0010
reachable_answers_0010 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], train_ent_out,
train_ent_out,
test_only_ent_out, train_ent_out)
# 0100
reachable_answers_0100 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], train_ent_out,
test_only_ent_out,
train_ent_out, train_ent_out)
# 1000
reachable_answers_1000 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], test_only_ent_out,
train_ent_out,
train_ent_out, train_ent_out)
reachable_answers_1p = (reachable_answers_0001 | reachable_answers_0010 | reachable_answers_0100 | reachable_answers_1000) - train_answer_set # subtract the train answers
if len(reachable_answers_1p) < len(test_answer_set):
# 2p
# 0011
reachable_answers_0011 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], train_ent_out,
train_ent_out, test_only_ent_out, test_only_ent_out)
# 0101
reachable_answers_0101 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], train_ent_out,
test_only_ent_out, train_ent_out, test_only_ent_out)
# 0110
reachable_answers_0110 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], train_ent_out,
test_only_ent_out, test_only_ent_out, train_ent_out)
# 1001
reachable_answers_1001 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], test_only_ent_out,
train_ent_out, train_ent_out, test_only_ent_out)
# 1010
reachable_answers_1010 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], test_only_ent_out,
train_ent_out, test_only_ent_out, train_ent_out)
# 1100
reachable_answers_1100 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], test_only_ent_out,
test_only_ent_out, train_ent_out, train_ent_out)
reachable_answers_2p = (reachable_answers_0011 | reachable_answers_0101 | reachable_answers_0110 | reachable_answers_1001 | reachable_answers_1010 | reachable_answers_1100) - reachable_answers_1p - train_answer_set # subtract the train answers and the 1p answers
if len(reachable_answers_1p | reachable_answers_2p) < len(test_answer_set):
# 3p
# 0111
reachable_answers_0111 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], train_ent_out,
test_only_ent_out, test_only_ent_out,
test_only_ent_out)
# 1011
reachable_answers_1011 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], test_only_ent_out,
train_ent_out, test_only_ent_out,
test_only_ent_out)
# 1101
reachable_answers_1101 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], test_only_ent_out,
test_only_ent_out, train_ent_out,
test_only_ent_out)
# 1110
reachable_answers_1110 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4], test_only_ent_out,
test_only_ent_out, test_only_ent_out,
train_ent_out)
reachable_answers_3p = (reachable_answers_0111 | reachable_answers_1011 | reachable_answers_1101 | reachable_answers_1110) - reachable_answers_2p - reachable_answers_1p - train_answer_set # subtract the train answers and the 1p/2p answers
if len(reachable_answers_1p | reachable_answers_2p | reachable_answers_3p) < len(test_answer_set):
reachable_answers_1111 = compute_answers_query_4p(entity, [rel1, rel2, rel3, rel4],
test_only_ent_out,
test_only_ent_out, test_only_ent_out,
test_only_ent_out)
reachable_answers_4p = reachable_answers_1111 - reachable_answers_3p - reachable_answers_2p - reachable_answers_1p - train_answer_set # subtract the train answers and the 1p/2p answers
return len(reachable_answers_4p),reachable_answers_4p, [reachable_answers_1p,reachable_answers_2p,reachable_answers_3p], [rel1, rel2, rel3, rel4], [entity]
# 2i
if query_structure == [['e', ['r']], ['e', ['r']]]:
reachable_answers_2i = set()
# 2i
entity1 = query[0][0]
rel1 = query[0][1][0]
entity2 = query[1][0]
rel2 = query[1][1][0]
set_rel = ({rel1, rel2})
set_ent = ({entity1, entity2})
# 01
# compute the answers of the query (entity1,rel1,?y) on the training graph
answer_set_q1_1 = train_ent_out[entity1][rel1]
# compute the answers of the query (entity2,rel2,?y) on the test_only graph
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answers_01 = answer_set_q1_1 & answer_set_q1_2
# 10
# compute the answers of the query (entity1,rel1,?y) on the test_only graph
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
# compute the answers of the query (entity2,rel2,?y) on the training graph
answer_set_q1_2 = train_ent_out[entity2][rel2]
answers_10 = answer_set_q1_1 & answer_set_q1_2
reachable_answers_1p = (answers_01 | answers_10) - train_answer_set
if len(reachable_answers_1p) < len(test_answer_set):
# 11
# compute the answers of the query (entity1,rel1,?y) on the test_only graph
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
# compute the answers of the query (entity2,rel2,?y) on the test_only graph
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answers_11 = answer_set_q1_1 & answer_set_q1_2
reachable_answers_2i = answers_11 - reachable_answers_1p - train_answer_set
return len(reachable_answers_2i),reachable_answers_2i, [reachable_answers_1p], [rel1, rel2], [entity1, entity2]
# 3i
if query_structure == [['e', ['r']], ['e', ['r']], ['e', ['r']]]:
reachable_answers_3i = set()
# 3i
entity1 = query[0][0]
rel1 = query[0][1][0]
entity2 = query[1][0]
rel2 = query[1][1][0]
entity3 = query[2][0]
rel3 = query[2][1][0]
set_rel = ({rel1, rel2, rel3})
set_ent = ({entity1, entity2, entity3})
reachable_answers_2i = set()
# 001
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answers_001 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3
# 010
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = train_ent_out[entity3][rel3]
answers_010 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3
# 100
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answer_set_q1_3 = train_ent_out[entity3][rel3]
answers_100 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3
reachable_answers_1p = (answers_001 | answers_010 | answers_100) - train_answer_set
if len(reachable_answers_1p) < len(test_answer_set):
# 011
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answers_011 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3
# 101
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answers_101 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3
# 110
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = train_ent_out[entity3][rel3]
answers_110 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3
reachable_answers_2i = (answers_011 | answers_101 | answers_110) - reachable_answers_1p - train_answer_set
if len(reachable_answers_2i | reachable_answers_1p) < len(test_answer_set):
# 111
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answers_111 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3
reachable_answers_3i = (answers_111 - reachable_answers_1p - reachable_answers_2i) - train_answer_set
return len(reachable_answers_3i), reachable_answers_3i, [
reachable_answers_1p,reachable_answers_2i ], [
rel1, rel2,rel3], [entity1, entity2, entity3]
# 4i
if query_structure == [['e', ['r']], ['e', ['r']], ['e', ['r']], ['e', ['r']]]:
reachable_answers_4i = set()
# 4i
entity1 = query[0][0]
rel1 = query[0][1][0]
entity2 = query[1][0]
rel2 = query[1][1][0]
entity3 = query[2][0]
rel3 = query[2][1][0]
entity4 = query[3][0]
rel4 = query[3][1][0]
set_rel = ({rel1, rel2, rel3, rel4})
set_ent = ({entity1, entity2, entity3, entity4})
reachable_answers_2i = set()
reachable_answers_3i = set()
# 0001
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answer_set_q1_3 = train_ent_out[entity3][rel3]
answer_set_q1_4 = test_only_ent_out[entity4][rel4]
answers_0001 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
# 0010
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answer_set_q1_4 = train_ent_out[entity4][rel4]
answers_0010 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
# 0100
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = train_ent_out[entity3][rel3]
answer_set_q1_4 = train_ent_out[entity4][rel4]
answers_0100 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
# 1000
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answer_set_q1_3 = train_ent_out[entity3][rel3]
answer_set_q1_4 = train_ent_out[entity4][rel4]
answers_1000 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
reachable_answers_1p = (answers_0001 | answers_0010 | answers_0100 | answers_1000) - train_answer_set
if len(reachable_answers_1p) < len(test_answer_set):
# 0011
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answer_set_q1_4 = test_only_ent_out[entity4][rel4]
answers_0011 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
# 0101
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = train_ent_out[entity3][rel3]
answer_set_q1_4 = test_only_ent_out[entity4][rel4]
answers_0101 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
# 0110
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answer_set_q1_4 = train_ent_out[entity4][rel4]
answers_0110 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
# 1001
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answer_set_q1_3 = train_ent_out[entity3][rel3]
answer_set_q1_4 = test_only_ent_out[entity4][rel4]
answers_1001 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
# 1010
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answer_set_q1_4 = train_ent_out[entity4][rel4]
answers_1010 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
# 1100
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = train_ent_out[entity3][rel3]
answer_set_q1_4 = train_ent_out[entity4][rel4]
answers_1100 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
reachable_answers_2i = (answers_0011 | answers_0101 | answers_0110 | answers_1001 | answers_1010 | answers_1100) - reachable_answers_1p - train_answer_set
if len(reachable_answers_2i | reachable_answers_1p) < len(test_answer_set):
# 0111
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answer_set_q1_4 = test_only_ent_out[entity4][rel4]
answers_0111 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
# 1011
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answer_set_q1_4 = test_only_ent_out[entity4][rel4]
answers_1011 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
# 1101
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = train_ent_out[entity3][rel3]
answer_set_q1_4 = test_only_ent_out[entity4][rel4]
answers_1101 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
# 1110
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answer_set_q1_4 = train_ent_out[entity4][rel4]
answers_1110 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
reachable_answers_3i = (answers_0111| answers_1011|answers_1101 |answers_1110) - reachable_answers_1p - reachable_answers_2i - train_answer_set
if len(reachable_answers_3i)>0:
print()
if len(reachable_answers_3i |reachable_answers_2i | reachable_answers_1p) < len(test_answer_set):
# 1111
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answer_set_q1_3 = test_only_ent_out[entity3][rel3]
answer_set_q1_4 = test_only_ent_out[entity4][rel4]
answers_1111 = answer_set_q1_1 & answer_set_q1_2 & answer_set_q1_3 & answer_set_q1_4
reachable_answers_4i = answers_1111 - reachable_answers_1p - reachable_answers_2i- reachable_answers_3i - train_answer_set
return len(reachable_answers_4i), reachable_answers_4i, [reachable_answers_1p,reachable_answers_2i,reachable_answers_3i], [
rel1, rel2,rel3,rel4], [entity1, entity2,entity3,entity4]
# pi
if query_structure == [['e', ['r', 'r']], ['e', ['r']]]:
reachable_answers_2i = set()
reachable_answers_2p = set()
reachable_answers_pi = set()
entity1 = query[0][0]
rel1 = query[0][1][0]
rel2 = query[0][1][1]
entity2 = query[1][0]
rel3 = query[1][1][0]
set_rel = ({rel1, rel2, rel3})
set_ent = ({entity1, entity2})
# 001
subquery_2p_answers_00 = compute_answers_query_2p(entity1, [rel1, rel2], train_ent_out, train_ent_out)
subquery_1p_answers_1 = test_only_ent_out[entity2][rel3]
answers_001 = subquery_2p_answers_00 & subquery_1p_answers_1
# 010
subquery_2p_answers_01 = compute_answers_query_2p(entity1, [rel1, rel2], train_ent_out, test_only_ent_out)
subquery_1p_answers_0 = train_ent_out[entity2][rel3]
answers_010 = subquery_2p_answers_01 & subquery_1p_answers_0
# 100
subquery_2p_answers_10 = compute_answers_query_2p(entity1, [rel1, rel2], test_only_ent_out, train_ent_out)
answers_100 = subquery_2p_answers_10 & subquery_1p_answers_0
reachable_answers_1p = (answers_001 | answers_010 | answers_100) - train_answer_set
if len(reachable_answers_1p) < len(test_answer_set):
# 2i
# 011
answers_011 = subquery_2p_answers_01 & subquery_1p_answers_1
# 101
answers_101 = subquery_2p_answers_10 & subquery_1p_answers_1
reachable_answers_2i = (answers_011 | answers_101) - reachable_answers_1p - train_answer_set
# 2p
# 110
subquery_2p_answers_11 = compute_answers_query_2p(entity1, [rel1, rel2], test_only_ent_out,
test_only_ent_out)
answers_110 = subquery_2p_answers_11 & subquery_1p_answers_0
reachable_answers_2p = answers_110 - reachable_answers_1p - reachable_answers_2i - train_answer_set
if len(reachable_answers_2p | reachable_answers_2i | reachable_answers_1p) < len(test_answer_set):
# 111
# pi
answers_111 = subquery_2p_answers_11 & subquery_1p_answers_1
reachable_answers_pi = answers_111 - reachable_answers_1p - reachable_answers_2p - reachable_answers_2i - train_answer_set
return len(reachable_answers_pi),reachable_answers_pi, [reachable_answers_1p,reachable_answers_2i, reachable_answers_2p], [rel1, rel2, rel3], [entity1, entity2]
# ip
if query_structure == [[['e', ['r']], ['e', ['r']]], ['r']]:
reachable_answers_2i = set()
reachable_answers_2p = set()
reachable_answers_ip = set()
entity1 = query[0][0][0]
rel1 = query[0][0][1][0]
entity2 = query[0][1][0]
rel2 = query[0][1][1][0]
rel3 = query[1][0]
set_rel = ({rel1, rel2, rel3})
set_ent = ({entity1, entity2})
# 001
answers_001 = set()
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answers_00 = answer_set_q1_1 & answer_set_q1_2
n_intermediate_ext_answers = len(answers_00)
for ele in answers_00:
answers_001.update(test_only_ent_out[ele][rel3])
# 010
answers_010 = set()
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answers_01 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_01:
answers_010.update(train_ent_out[ele][rel3])
# 100
answers_100 = set()
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answers_10 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_10:
answers_100.update(train_ent_out[ele][rel3])
reachable_answers_1p = (answers_001 | answers_010 | answers_100) - train_answer_set
if len(reachable_answers_1p) < len(test_answer_set):
# compute 2p and 2i
# 2i
# 110
answers_110 = set()
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answers_11 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_11:
answers_110.update(train_ent_out[ele][rel3])
reachable_answers_2i = answers_110 - reachable_answers_1p - train_answer_set
# 2p
# 101
answers_101 = set()
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
answers_10 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_10:
answers_101.update(test_only_ent_out[ele][rel3])
# 011
answers_011 = set()
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answers_01 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_01:
answers_011.update(test_only_ent_out[ele][rel3])
reachable_answers_2p = (
answers_101 | answers_011) - reachable_answers_1p - reachable_answers_2i - train_answer_set
if len(reachable_answers_2p | reachable_answers_2i | reachable_answers_1p) < len(test_answer_set):
# 111
answers_111 = set()
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answers_11 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_11:
answers_111.update(test_only_ent_out[ele][rel3])
reachable_answers_ip = answers_111 - reachable_answers_1p - reachable_answers_2p - reachable_answers_2i - train_answer_set
return len(reachable_answers_ip), reachable_answers_ip, [reachable_answers_1p, reachable_answers_2i,
reachable_answers_2p], [
rel1, rel2, rel3], [entity1, entity2]
# up
if query_structure == [[['e', ['r']], ['e', ['r']], ['u']], ['r']]:
reachable_answers_2p = set()
reachable_answers_2u = set()
reachable_answers_up = set()
entity1 = query[0][0][0]
rel1 = query[0][0][1][0]
entity2 = query[0][1][0]
rel2 = query[0][1][1][0]
rel3 = query[1][0]
# 010
# If I can reach the same entity of the '2u' subgraph with both a predicted link and an existing link than
# this query,a is a 0p since there is a union. To do that I check the entities that are reachable by both link
# and that lead to an answer (those should already be contained in the easy answers)
answers_010 = set()
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
n_intermediate_ext_answers = max(len(answer_set_q1_1), len(answer_set_q1_2))
answers_01 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_01:
answers_010.update(train_ent_out[ele][rel3])
# 100
answers_100 = set()
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
n_intermediate_ext_answers = max(len(answer_set_q1_1), len(answer_set_q1_2))
answers_10 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_10:
answers_100.update(train_ent_out[ele][rel3])
reachable_answers_0p = (answers_010 | answers_100) - train_answer_set # should be zero
# n_up_0p += len(reachable_answers_0p)
# 001 #1p reduced
answers_001 = set()
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
n_intermediate_ext_answers = max(len(answer_set_q1_1), len(answer_set_q1_2))
answers_00 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_00:
answers_001.update(test_only_ent_out[ele][rel3])
answers_101 = set()
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = train_ent_out[entity2][rel2]
n_intermediate_ext_answers = max(len(answer_set_q1_1), len(answer_set_q1_2))
answers_00 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_00:
answers_101.update(test_only_ent_out[ele][rel3])
answers_011 = set()
answer_set_q1_1 = train_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
n_intermediate_ext_answers = max(len(answer_set_q1_1), len(answer_set_q1_2))
answers_00 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_00:
answers_011.update(test_only_ent_out[ele][rel3])
reachable_answers_1p = (answers_001 | answers_101 | answers_011) - reachable_answers_0p - train_answer_set
# reachable_answers_1p = answers_001 - reachable_answers_0p - train_answer_set
# reachable_answers_1p = (answers_101 | answers_011) - reachable_answers_0p - train_answer_set
answers_110 = set()
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
n_intermediate_ext_answers = max(len(answer_set_q1_1), len(answer_set_q1_2))
answers_11 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_11:
answers_110.update(train_ent_out[ele][rel3])
reachable_answers_2u = answers_110 - reachable_answers_1p - reachable_answers_0p - train_answer_set
# 111 #up reduced
answers_111 = set()
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
n_intermediate_ext_answers = max(len(answer_set_q1_1), len(answer_set_q1_2))
answers_11 = answer_set_q1_1 & answer_set_q1_2
for ele in answers_11:
answers_111.update(test_only_ent_out[ele][rel3])
reachable_answers_up = answers_111 - reachable_answers_1p - reachable_answers_2u - reachable_answers_0p - train_answer_set
return len(reachable_answers_up), reachable_answers_up, [reachable_answers_1p, reachable_answers_2u], [
rel1, rel2, rel3], [entity1, entity2]
# 2u
if query_structure == [['e', ['r']], ['e', ['r']], ['u']]:
entity1 = query[0][0]
rel1 = query[0][1][0]
entity2 = query[1][0]
rel2 = query[1][1][0]
reachable_answers_2u = set()
rel_per_query_partial_inf = {}
anch_per_query_partial_inf = {}
# 01
# compute the answers of the query (entity1,rel1,?y) on the training graph
answer_set_q1_1 = train_ent_out[entity1][rel1]
# compute the answers of the query (entity2,rel2,?y) on the missing graph
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answers_01 = answer_set_q1_1 & answer_set_q1_2
# 10
# compute the answers of the query (entity1,rel1,?y) on the missing graph
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
# compute the answers of the query (entity2,rel2,?y) on the training graph
answer_set_q1_2 = train_ent_out[entity2][rel2]
answers_10 = answer_set_q1_1 & answer_set_q1_2
reachable_answers_1p = (answers_01 | answers_10) - train_answer_set
answer_set_q1_1 = test_only_ent_out[entity1][rel1]
# compute the answers of the query (entity2,rel2,?y) on the training graph
answer_set_q1_2 = test_only_ent_out[entity2][rel2]
answers_11 = answer_set_q1_1 & answer_set_q1_2
reachable_answers_2u = answers_11 - reachable_answers_1p - train_answer_set
return len(reachable_answers_2u),reachable_answers_2u, [],[rel1, rel2], [entity1, entity2]
# Negation
# 2in
if query_structure == [['e', ['r']], ['e', ['r', 'n']]]:
# n_tot_hard_answers_2in += len(hard_answer_set)
entity1 = query[0][0]
rel1 = query[0][1][0] # positive
entity2 = query[1][0]
rel2 = query[1][1][0] # negative
all_ent_r2 = all_ent_out[entity2][rel2]
train_ent_r1 = train_ent_out[entity1][rel1]
train_ent_r2 = train_ent_out[entity2][rel2]
missing_ent_r1 = test_only_ent_out[entity1][rel1]
# easy answer set
new_train_answer_set = (train_ent_r1 - train_ent_r2) & answer_set
answers0x = train_ent_r1 - all_ent_r2
answers1x = missing_ent_r1 - all_ent_r2
reachable_2in_pos_exist = answers0x - new_train_answer_set
reachable_2in_pos_only_missing = answers1x - reachable_2in_pos_exist - new_train_answer_set
return len(reachable_2in_pos_only_missing),reachable_2in_pos_only_missing, [reachable_2in_pos_exist],[rel1, rel2], [entity1, entity2]
# 3in
if query_structure == [['e', ['r']], ['e', ['r']], ['e', ['r', 'n']]]:
entity1 = query[0][0]
rel1 = query[0][1][0] # positive
entity2 = query[1][0]
rel2 = query[1][1][0] # positive
entity3 = query[2][0]
rel3 = query[2][1][0] # negative
all_ent_r3 = all_ent_out[entity3][rel3]
train_ent_r1 = train_ent_out[entity1][rel1]
train_ent_r2 = train_ent_out[entity2][rel2]
train_ent_r3 = train_ent_out[entity3][rel3]
missing_ent_r1 = test_only_ent_out[entity1][rel1]
missing_ent_r2 = test_only_ent_out[entity2][rel2]
missing_ent_r3 = test_only_ent_out[entity3][rel3]
# easy answer set
new_train_answer_set = train_answer_set & answer_set
new_hard_answer_set = answer_set - new_train_answer_set
# answers00x = (train_ent_r1 & train_ent_r2) - all_ent_r3
answers01x = (train_ent_r1 & missing_ent_r2) - all_ent_r3
answers10x = (missing_ent_r1 & train_ent_r2) - all_ent_r3
answers11x = (missing_ent_r1 & missing_ent_r2) - all_ent_r3
reachable_3in_pos_exist = (answers01x | answers10x) - new_train_answer_set
reachable_3in_pos_only_missing = answers11x - reachable_3in_pos_exist - new_train_answer_set
return len(reachable_3in_pos_only_missing), reachable_3in_pos_only_missing, [reachable_3in_pos_exist], [
rel1, rel2, rel3], [entity1, entity2, entity3]
# pin
if query_structure == [['e', ['r', 'r']], ['e', ['r', 'n']]]:
# n_tot_hard_answers_pin += len(hard_answer_set)
entity1 = query[0][0]
rel1 = query[0][1][0]
rel2 = query[0][1][1]
entity2 = query[1][0]
rel3 = query[1][1][0] # negation
all_ent_r3 = all_ent_out[entity2][rel3]
trainr1_trainr2 = compute_answers_query_2p(entity1, [rel1, rel2], train_ent_out, train_ent_out)
trainr1_missingr2 = compute_answers_query_2p(entity1, [rel1, rel2], train_ent_out, test_only_ent_out)
missingr1_trainr2 = compute_answers_query_2p(entity1, [rel1, rel2], test_only_ent_out, train_ent_out)
missingr1_missingr2 = compute_answers_query_2p(entity1, [rel1, rel2], test_only_ent_out, test_only_ent_out)
# easy answer set
new_train_answer_set = train_answer_set & answer_set
new_hard_answer_set = answer_set - new_train_answer_set
# answers00x = trainr1_trainr2 - all_ent_r3
answers01x = trainr1_missingr2 - all_ent_r3
answers10x = missingr1_trainr2 - all_ent_r3
answers11x = missingr1_missingr2 - all_ent_r3
reachable_pin_pos_exist = (answers01x | answers10x) - new_train_answer_set
reachable_pin_pos_only_missing = answers11x - reachable_pin_pos_exist - new_train_answer_set
return len(reachable_pin_pos_only_missing), reachable_pin_pos_only_missing, [reachable_pin_pos_exist], [
rel1, rel2, rel3], [entity1, entity2]
# pni
if query_structure == [['e', ['r', 'r', 'n']], ['e', ['r']]]:
entity1 = query[0][0]
rel1 = query[0][1][0]
rel2 = query[0][1][1] # negation on the 2p path query
entity2 = query[1][0]
rel3 = query[1][1][0]
# easy answer set
new_train_answer_set = train_answer_set & answer_set
all_answers_2p = compute_answers_query_2p(entity1, [rel1, rel2], all_ent_out, all_ent_out)
easy_ent_r3 = train_ent_out[entity2][rel3]
missing_ent_r3 = test_only_ent_out[entity2][rel3]
answersxx0 = easy_ent_r3 - all_answers_2p
answersxx1 = missing_ent_r3 - all_answers_2p
reachable_pni_pos_exist = answersxx0 - new_train_answer_set
reachable_pni_pos_only_missing = answersxx1 - new_train_answer_set
return len(reachable_pni_pos_only_missing), reachable_pni_pos_only_missing, [reachable_pni_pos_exist], [
rel1, rel2, rel3], [entity1, entity2]
# inp
if query_structure == [[['e', ['r']], ['e', ['r', 'n']]], ['r']]:
entity1 = query[0][0][0]
rel1 = query[0][0][1][0]
entity2 = query[0][1][0]
rel2 = query[0][1][1][0] # negated
rel3 = query[1][0]
all_ent_r2 = all_ent_out[entity2][rel2]
train_ent_r1 = train_ent_out[entity1][rel1]
missing_ent_r1 = test_only_ent_out[entity1][rel1]
# easy answer set
new_train_answer_set = train_answer_set & answer_set
new_hard_answer_set = answer_set - new_train_answer_set
answers_0x0 = set()
answers_0x1 = set()
answers_1x0 = set()
answers_1x1 = set()
answers_0x = train_ent_r1 - all_ent_r2
for ele in answers_0x:
answers_0x0.update(train_ent_out[ele][rel3])
for ele in answers_0x:
answers_0x1.update(test_only_ent_out[ele][rel3])
answers_1x = missing_ent_r1 - all_ent_r2
for ele in answers_1x:
answers_1x0.update(train_ent_out[ele][rel3])
for ele in answers_1x:
answers_1x1.update(test_only_ent_out[ele][rel3])
reachable_inp_pos_exist = (answers_0x1 | answers_1x0) - new_train_answer_set
reachable_inp_pos_only_missing = answers_1x1 - reachable_inp_pos_exist - new_train_answer_set
return len(reachable_inp_pos_only_missing), reachable_inp_pos_only_missing, [reachable_inp_pos_exist], [
rel1, rel2, rel3], [entity1, entity2]
def top_k_dict_values_sorting(d, k):
# Sort the dictionary by values in descending order and get the top-k items
sorted_items = sorted(d.items(), key=lambda item: item[1], reverse=True)[:k]
# Extract the keys and values from the sorted items
top_k_keys = [item[0] for item in sorted_items]
top_k_values = [item[1] for item in sorted_items]
return top_k_keys, top_k_values
def get_top_k_frequency(dataset, num_sampled,ele_per_query, type):
top_k_keys, top_k_values = top_k_dict_values_sorting(ele_per_query, 5)
#print(top_k_values)
perc_top = (top_k_values[0] * 100) / num_sampled
name_top = top_k_keys[0]
if type == 'rel':
id2rel = "./data/{}/{}".format(dataset, "id2rel.pkl")
with open(id2rel, 'rb') as f:
data_dict = pickle.load(f)
else:
id2ent = "./data/{}/{}".format(dataset, "id2ent.pkl")
with open(id2ent, 'rb') as f:
data_dict = pickle.load(f)
return data_dict[name_top], perc_top