-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
178 lines (151 loc) · 6.89 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import os
import pickle
import numpy as np
import pandas as pd
import scipy.sparse as sp
import torch
from scipy.sparse import linalg
# from random import randint
DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
def sym_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).astype(np.float32).todense()
def asym_adj(adj):
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1)).flatten()
d_inv = np.power(rowsum, -1).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat = sp.diags(d_inv)
return d_mat.dot(adj).astype(np.float32).todense()
def calculate_normalized_laplacian(adj):
"""
# L = D^-1/2 (D-A) D^-1/2 = I - D^-1/2 A D^-1/2
# D = diag(A 1)
:param adj:
:return:
"""
adj = sp.coo_matrix(adj)
d = np.array(adj.sum(1))
d_inv_sqrt = np.power(d, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
normalized_laplacian = sp.eye(adj.shape[0]) - adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
return normalized_laplacian
def calculate_scaled_laplacian(adj_mx, lambda_max=2, undirected=True):
if undirected:
adj_mx = np.maximum.reduce([adj_mx, adj_mx.T])
L = calculate_normalized_laplacian(adj_mx)
if lambda_max is None:
lambda_max, _ = linalg.eigsh(L, 1, which='LM')
lambda_max = lambda_max[0]
L = sp.csr_matrix(L)
M, _ = L.shape
I = sp.identity(M, format='csr', dtype=L.dtype)
L = (2 / lambda_max * L) - I
return L.astype(np.float32).todense()
def load_pickle(pickle_file):
_, file_extension = os.path.splitext(pickle_file)
if file_extension == '.pkl':
try:
with open(pickle_file, 'rb') as f:
pickle_data = pickle.load(f)
except UnicodeDecodeError as e:
with open(pickle_file, 'rb') as f:
pickle_data = pickle.load(f, encoding='latin1')
except Exception as e:
print('Unable to load data ', pickle_file, ':', e)
raise
elif file_extension == '.csv':
w = pd.read_csv(pickle_file, header=None).values
pickle_data = (None, None, w)
else:
raise NotImplementedError('file_extension == ' + file_extension)
return pickle_data
ADJ_CHOICES = ['scalap', 'normlap', 'symnadj', 'transition', 'doubletransition', 'identity']
def load_adj(pkl_filename, adjtype):
sensor_ids, sensor_id_to_ind, adj_mx = load_pickle(pkl_filename)
if adjtype == "scalap":
adj = [calculate_scaled_laplacian(adj_mx)]
elif adjtype == "normlap":
adj = [calculate_normalized_laplacian(adj_mx).astype(np.float32).todense()]
elif adjtype == "symnadj":
adj = [sym_adj(adj_mx)]
elif adjtype == "transition":
adj = [asym_adj(adj_mx)]
elif adjtype == "doubletransition":
adj = [asym_adj(adj_mx), asym_adj(np.transpose(adj_mx))]
elif adjtype == "identity":
adj = [np.diag(np.ones(adj_mx.shape[0])).astype(np.float32)]
else:
error = 0
assert error, "adj type not defined"
return sensor_ids, sensor_id_to_ind, adj
def calc_metrics(preds, labels, null_val=0.):
if np.isnan(null_val):
mask = ~torch.isnan(labels)
else:
mask = (labels != null_val)
mask = mask.float()
mask /= torch.mean(mask)
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
mse = (preds - labels) ** 2
mae = torch.abs(preds - labels)
mape = mae / labels
mae, mape, mse = [mask_and_fillna(l, mask) for l in [mae, mape, mse]]
rmse = torch.sqrt(mse)
return mae, mape, rmse
def mask_and_fillna(loss, mask):
loss = loss * mask
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
return torch.mean(loss)
def make_graph_inputs(args, device):
sensor_ids, sensor_id_to_ind, adj_mx = load_adj(args.adjdata, args.adjtype)
supports = [torch.tensor(i).to(device) for i in adj_mx]
aptinit = None if args.randomadj else supports[0] # ignored without do_graph_conv and add_apt_adj
if args.aptonly:
if not args.addaptadj and args.do_graph_conv: raise ValueError(
'WARNING: not using adjacency matrix')
supports = None
return aptinit, supports
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_shared_arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cuda:0', help='')
parser.add_argument('--data', type=str, default='./data/METR-LA', help='data path')
parser.add_argument('--data_fn', type=str, default='./data/METR-LA/metr-la.h5', help='data filenmae')
parser.add_argument('--adjdata', type=str, default='./data/sensor_graph/adj_mx.pkl',
help='adj data path')
parser.add_argument('--adjtype', type=str, default='doubletransition', help='adj type', choices=ADJ_CHOICES)
parser.add_argument('--do_graph_conv', action='store_true',
help='whether to add graph convolution layer')
parser.add_argument('--aptonly', action='store_true', help='whether only adaptive adj')
parser.add_argument('--addaptadj', type=str2bool, nargs='?', const=True, default=True,
help='whether add adaptive adj')
parser.add_argument('--randomadj', action='store_true',
help='whether random initialize adaptive adj')
parser.add_argument('--seq_length', type=int, default=12, help='')
parser.add_argument('--nhid', type=int, default=40, help='Number of channels for internal conv')
parser.add_argument('--in_dim', type=int, default=2, help='inputs dimension')
parser.add_argument('--num_nodes', type=int, default=207, help='number of nodes')
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--dropout', type=float, default=0.3, help='dropout rate')
parser.add_argument('--n_obs', default=None, help='Only use this many observations. For unit testing.')
parser.add_argument('--apt_size', default=40, type=int)
parser.add_argument('--cat_feat_gc', type=str2bool, nargs='?', const=True, default=True,
help='cat_feat_gc: special temporal embedding at the start, and gcn residual')
parser.add_argument('--fill_zeroes', action='store_true')
return parser