-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
221 lines (177 loc) · 6.54 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#
# Copyright (C) 2023 Apple Inc. All rights reserved.
#
"""Utilities for training."""
from enum import Enum
from typing import Dict, Any, Iterable, List, Optional
import torch
from torch import Tensor
import numpy as np
import logging
import torch.distributed as dist
class Summary(Enum):
"""Meter value types."""
NONE = 0
AVERAGE = 1
SUM = 2
COUNT = 3
class AverageMeter(object):
"""Computes and stores the average and current value."""
def __init__(self, name, fmt=":f", summary_type=Summary.AVERAGE):
self.name = name
self.fmt = fmt
self.summary_type = summary_type
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def all_reduce(self):
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
total = torch.tensor([self.sum, self.count], dtype=torch.float32, device=device)
dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
self.sum, self.count = total.tolist()
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
def summary(self):
fmtstr = ""
if self.summary_type is Summary.NONE:
fmtstr = ""
elif self.summary_type is Summary.AVERAGE:
fmtstr = "{name} {avg:.3f}"
elif self.summary_type is Summary.SUM:
fmtstr = "{name} {sum:.3f}"
elif self.summary_type is Summary.COUNT:
fmtstr = "{name} {count:.3f}"
else:
raise ValueError("invalid summary type %r" % self.summary_type)
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
logging.info("\t".join(entries))
def display_summary(self):
entries = [" *"]
entries += [meter.summary() for meter in self.meters]
logging.info(" ".join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
def accuracy(
output: Tensor, target: Tensor, topk: Optional[Iterable[int]] = (1,)
) -> List[float]:
"""Compute the accuracy over the k top predictions for the specified values of k."""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
if len(target.shape) > 1 and target.shape[1] > 1:
# soft labels
_, target = target.max(dim=1)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size).item())
return res
def assign_learning_rate(optimizer: torch.optim.Optimizer, new_lr: float) -> None:
"""Update lr parameter of an optimizer.
Args:
optimizer: A torch optimizer.
new_lr: updated value of learning rate.
"""
for param_group in optimizer.param_groups:
param_group["lr"] = new_lr
def _warmup_lr(base_lr: float, warmup_length: int, n_iter: int) -> float:
"""Get updated lr after applying initial warmup.
Args:
base_lr: Nominal learning rate.
warmup_length: Number of total iterations for initial warmup.
n_iter: Current iteration number.
Returns:
Warmup-updated learning rate.
"""
return base_lr * (n_iter + 1) / warmup_length
class CosineLR:
"""LR adjustment callable with cosine schedule.
Args:
optimizer: A torch optimizer.
warmup_length: Number of iterations for initial warmup.
total_steps: Total number of iterations.
lr: Nominal learning rate value.
Returns:
A callable to adjust learning rate per iteration.
"""
def __init__(
self,
optimizer: torch.optim.Optimizer,
warmup_length: int,
total_steps: int,
lr: float,
end_lr: float = 0.0,
**kwargs
) -> None:
"""Set parameters of cosine learning rate with warmup."""
assert lr > end_lr, (
"End LR should be less than the LR. Got:" " lr={} and last_lr={}"
).format(lr, end_lr)
self.optimizer = optimizer
self.warmup_length = warmup_length
self.total_steps = total_steps
self.lr = lr
self.last_lr = 0
self.end_lr = end_lr
self.last_n_iter = 0
def step(self) -> float:
"""Return updated learning rate for the next iteration."""
self.last_n_iter += 1
n_iter = self.last_n_iter
if n_iter < self.warmup_length:
new_lr = _warmup_lr(self.lr, self.warmup_length, n_iter)
else:
e = n_iter - self.warmup_length + 1
es = self.total_steps - self.warmup_length
new_lr = self.end_lr + 0.5 * (self.lr - self.end_lr) * (
1 + np.cos(np.pi * e / es)
)
assign_learning_rate(self.optimizer, new_lr)
self.last_lr = new_lr
def get_last_lr(self) -> List[float]:
"""Return the value of the last learning rate."""
return [self.last_lr]
def state_dict(self) -> Dict[str, Any]:
"""Return the state dictionary to recover optimization in training restart."""
return {
"warmup_length": self.warmup_length,
"total_steps": self.total_steps,
"lr": self.lr,
"last_lr": self.last_lr,
"last_n_iter": self.last_n_iter,
}
def load_state_dict(self, state: Dict[str, Any]) -> None:
"""Restore scheduler state."""
self.warmup_length = state["warmup_length"]
self.total_steps = state["total_steps"]
self.lr = state["lr"]
self.last_lr = state["last_lr"]
self.last_n_iter = state["last_n_iter"]