Delegation

March 2021

Definition 1: Lattice Congruence For each lattice L, let θ be an equivalence relation on L. θ is a *Congruence* iff for all $a, b, c \in L$:

 $a \equiv b \pmod{\theta} \Rightarrow a \lor c \equiv b \lor c \pmod{\theta}$ and $a \land c \equiv b \land c \pmod{\theta}$

Note 1: For any lattice L, The set of congruences on L form a subset lattice of L^2 . We denote it as ConL.

Definition 2: Quotient Lattice Let *L* be a lattice and θ be a congruence of *L*. Define $L/\theta = \{[a]_{\theta} \mid a \in L\}$.

Note 2.1: Join and meet operations are preserved in the quotient lattice. **Note 2.2:** Each equivalent class of L/θ is a sublattice of L.

Definition 3: Principal congruence Let L be a lattice, θ be a congruence of L and $a, b \in L$. The *principle congruence* generated by a and b is defined as:

$$\theta(a,b) = \bigwedge \{ \theta \in \mathsf{Con}L \mid (a,b) \in \theta \}$$

An extension of the definition above:

$$\theta(\{a_1, b_1\}, \{a_2, b_2\}, \dots \{a_n, b_n\}) = \bigwedge \{\theta \in \mathsf{Con}L \mid (a_1, b_1) \in \theta, \dots (a_n, b_n) \in \theta\}$$

Note 3: $\theta(a, b)$ is the smallest congruence in ConL that contains (a, b).

Lattice representation of delegation Let $\{A_1 \sqsubseteq B_1\}, \{A_2 \sqsubseteq B_2\}, \dots, \{A_n \sqsubseteq B_n\}$ be delegations in an authority lattice *L*. It follows from definition that the authority lattice of the program is effectively:

$$L/\theta(\{A_1, A_1 \land B_1\}, \cdots \{A_n, A_n \land B_n\})$$

Theorem 4: Equivalence class membership criteria Let *L* be distributive lattice and assume that $c \leq d$ in *L*. Then:

$$[a]_{\theta(c,d)} = [b]_{\theta(c,d)} \iff a \wedge c = b \wedge c \text{ and } a \vee d = b \vee d$$

Note 4: This theorem provides a practical way for us to check whether two labels are in $\theta(A_i, A_i \wedge B_i)$.

Theorem 5: Join of principal congruences

 $\theta(\{a_1, b_1\}, \{a_2, b_2\}, \dots \{a_n, b_n\}) = \theta(a_1, b_1) \vee \dots \vee \theta(a_n, b_n)$

Note 5: Intuitively, this theorem means that the smallest congruence that contains n relation elements is the join (union) of their principle congruences.

Corollary 6: Extended equivalence class membership criteria Let L be distributive lattice and assume that for all $i, c_i \leq d_i$ in L. Let $c = \bigwedge_1^n c_i$ and $d = \bigvee_1^n d_i$ We can prove from the two theorems above that:

 $[a]_{\theta(\{c_1,d_1\},\cdots\{c_n,d_n\})} = [b]_{\theta(\{c_1,d_1\},\cdots\{c_n,d_n\})} \iff a \wedge c = b \wedge c \text{ and } a \vee d = b \vee d$

Algorithm 7: Modifying existing inference algorithm Let $\{A_1 \sqsubseteq B_1\}, \{A_2 \sqsubseteq B_2\}, \dots, \{A_n \sqsubseteq B_n\}$ be delegations in an authority lattice *L*. Let $C = \bigwedge (A_i \land B_i)$ $D = \bigvee A_i$. We override equality operator between labels to:

Equal(X, Y){ return $X \wedge C = Y \wedge X$ and $X \vee D = Y \vee D$ }

Note 7: The correctness of the algorithm follows from the correctness of corollary 6.

polymorphisms