
Delegation

March 2021

Definition 1: Lattice Congruence For each lattice L, let θ be an equiva-
lence relation on L. θ is a Congruence iff for all a, b, c ∈ L:

a ≡ b (mod θ)⇒ a ∨ c ≡ b ∨ c (mod θ) and a ∧ c ≡ b ∧ c (mod θ)

Note 1: For any lattice L, The set of congruences on L form a subset lattice
of L2. We denote it as ConL.

Definition 2: Quotient Lattice Let L be a lattice and θ be a congruence
of L. Define L/θ = {[a]θ | a ∈ L}.

Note 2.1: Join and meet operations are preserved in the quotient lattice.
Note 2.2: Each equivalent class of L/θ is a sublattice of L.

Definition 3: Principal congruence Let L be a lattice, θ be a congruence
of L and a, b ∈ L. The principle congruence generated by a and b is defined as:

θ(a, b) =
∧
{θ ∈ ConL | (a, b) ∈ θ}

An extension of the definition above:

θ({a1, b1}, {a2, b2}, · · · {an, bn}) =
∧
{θ ∈ ConL | (a1, b1) ∈ θ, · · · (an, bn) ∈ θ}

Note 3: θ(a, b) is the smallest congruence in ConL that contains (a, b).

Lattice representation of delegation Let {A1 v B1}, {A2 v B2}, · · · , {An v
Bn} be delegations in an authority lattice L. It follows from definition that the
authority lattice of the program is effectively:

L/θ({A1, A1 ∧B1}, · · · {An, An ∧Bn})

1



Theorem 4: Equivalence class membership criteria Let L be distribu-
tive lattice and assume that c ≤ d in L. Then:

[a]θ(c,d) = [b]θ(c,d) ⇐⇒ a ∧ c = b ∧ c and a ∨ d = b ∨ d

Note 4: This theorem provides a practical way for us to check whether two
labels are in θ(Ai, Ai ∧Bi).

Theorem 5: Join of principal congruences

θ({a1, b1}, {a2, b2}, · · · {an, bn}) = θ(a1, b1) ∨ · · · ∨ θ(an, bn)

Note 5: Intuitively, this theorem means that the smallest congruence that
contains n relation elements is the join (union) of their principle congruences.

Corollary 6: Extended equivalence class membership criteria Let L
be distributive lattice and assume that for all i, ci ≤ di in L. Let c =

∧n
1 ci and

d =
∨n

1 di We can prove from the two theorems above that:

[a]θ({c1,d1},···{cn,dn}) = [b]θ({c1,d1},···{cn,dn}) ⇐⇒ a ∧ c = b ∧ c and a ∨ d = b ∨ d

Algorithm 7: Modifying existing inference algorithm Let {A1 v B1}, {A2 v
B2}, · · · , {An v Bn} be delegations in an authority lattice L. Let C =

∧
(Ai ∧

Bi) D =
∨
Ai. We override equality operator between labels to:

Equal(X,Y ){ return X ∧ C = Y ∧X and X ∨D = Y ∨D }

Note 7: The correctness of the algorithm follows from the correctness of
corollary 6.

polymorphisms

2


