diff --git a/examples/healthcare/application/Diabetic_Readmission_Prediction/README.md b/examples/healthcare/application/Diabetic_Disease/Diabetic_Readmission_Prediction/README.md similarity index 98% rename from examples/healthcare/application/Diabetic_Readmission_Prediction/README.md rename to examples/healthcare/application/Diabetic_Disease/Diabetic_Readmission_Prediction/README.md index 4bca2070a..f0cea4738 100644 --- a/examples/healthcare/application/Diabetic_Readmission_Prediction/README.md +++ b/examples/healthcare/application/Diabetic_Disease/Diabetic_Readmission_Prediction/README.md @@ -41,5 +41,5 @@ To address this issue, we use Singa to implement a machine learning model for pr ## Command ```bash -python train_mlp.py mlp diabetic +python train.py mlp diabetic ``` diff --git a/examples/healthcare/application/Diabetic_Readmission_Prediction/run.sh b/examples/healthcare/application/Diabetic_Disease/Diabetic_Readmission_Prediction/run.sh similarity index 100% rename from examples/healthcare/application/Diabetic_Readmission_Prediction/run.sh rename to examples/healthcare/application/Diabetic_Disease/Diabetic_Readmission_Prediction/run.sh diff --git a/examples/healthcare/application/Diabetic_Readmission_Prediction/train.py b/examples/healthcare/application/Diabetic_Disease/Diabetic_Readmission_Prediction/train.py similarity index 99% rename from examples/healthcare/application/Diabetic_Readmission_Prediction/train.py rename to examples/healthcare/application/Diabetic_Disease/Diabetic_Readmission_Prediction/train.py index a51b4b059..7d18cb0e8 100644 --- a/examples/healthcare/application/Diabetic_Readmission_Prediction/train.py +++ b/examples/healthcare/application/Diabetic_Disease/Diabetic_Readmission_Prediction/train.py @@ -23,9 +23,12 @@ import numpy as np import time import argparse +import sys +sys.path.append("../../../..") from healthcare.data import diabetic from healthcare.models import diabetic_net + np_dtype = {"float16": np.float16, "float32": np.float32} singa_dtype = {"float16": tensor.float16, "float32": tensor.float32} diff --git a/examples/healthcare/application/Diabetic_Retinopathy_Classification/README.md b/examples/healthcare/application/Diabetic_Disease/Diabetic_Retinopathy_Classification/README.md similarity index 100% rename from examples/healthcare/application/Diabetic_Retinopathy_Classification/README.md rename to examples/healthcare/application/Diabetic_Disease/Diabetic_Retinopathy_Classification/README.md diff --git a/examples/healthcare/application/Diabetic_Retinopathy_Classification/run.sh b/examples/healthcare/application/Diabetic_Disease/Diabetic_Retinopathy_Classification/run.sh similarity index 100% rename from examples/healthcare/application/Diabetic_Retinopathy_Classification/run.sh rename to examples/healthcare/application/Diabetic_Disease/Diabetic_Retinopathy_Classification/run.sh diff --git a/examples/healthcare/application/Diabetic_Retinopathy_Classification/train.py b/examples/healthcare/application/Diabetic_Disease/Diabetic_Retinopathy_Classification/train.py similarity index 99% rename from examples/healthcare/application/Diabetic_Retinopathy_Classification/train.py rename to examples/healthcare/application/Diabetic_Disease/Diabetic_Retinopathy_Classification/train.py index 5ef41851a..9f17cb495 100644 --- a/examples/healthcare/application/Diabetic_Retinopathy_Classification/train.py +++ b/examples/healthcare/application/Diabetic_Disease/Diabetic_Retinopathy_Classification/train.py @@ -6,7 +6,7 @@ import time import argparse import sys -sys.path.append("../../..") +sys.path.append("../../../..") from PIL import Image diff --git a/examples/healthcare/data/diabetic.py b/examples/healthcare/data/diabetic.py new file mode 100644 index 000000000..e7f2a76b7 --- /dev/null +++ b/examples/healthcare/data/diabetic.py @@ -0,0 +1,78 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# + +from ucimlrepo import fetch_ucirepo +from sklearn.model_selection import train_test_split +import pandas as pd +import numpy as np + + +def load_dataset(columns_to_encode=None, flag=True): + """ + Load the dataset and apply one-hot encoding to features (all columns or specific columns). + Targets will first be one-hot encoded and then converted to categorical integer labels. + + Parameters: + columns_to_encode (list or None): List of column names to be one-hot encoded. + If None and `flag=True`, all columns are encoded. + flag (bool): Whether to apply one-hot encoding to all columns. + If True, `columns_to_encode` will be ignored, and all columns will be processed. + + Returns: + train_x, train_y, test_x, test_y (numpy.ndarray): + Train features, train labels, test features, and test labels in NumPy array format. + """ + # Load the dataset + diabetes_data = fetch_ucirepo(id=296) + + # Extract features and targets + features = diabetes_data.data.features + targets = diabetes_data.data.targets + + # Apply one-hot encoding to features + if flag or columns_to_encode is None: + features_encoded = pd.get_dummies(features, drop_first=True) + else: + features_encoded = pd.get_dummies(features, columns=columns_to_encode, drop_first=True) + + # One-hot encode targets and convert to a single categorical variable + targets_encoded = pd.get_dummies(targets, drop_first=False) + targets_categorical = targets_encoded.idxmax(axis=1) # Get the column name with the max value (One-Hot index) + targets_categorical = targets_categorical.astype('category').cat.codes # Convert to integer codes + + # Convert to NumPy arrays + features_np = features_encoded.to_numpy(dtype=np.float32) + targets_np = targets_categorical.to_numpy(dtype=np.float32) + + # Split the data + train_x, test_x, train_y, test_y = train_test_split( + features_np, targets_np, test_size=0.2, random_state=42 + ) + + return train_x, train_y, test_x, test_y + + + +def load(): + train_x, train_y, val_x, val_y = load_dataset() + train_x = train_x.astype(np.float32) + val_x = val_x.astype(np.float32) + train_y = train_y.astype(np.int32) + val_y = val_y.astype(np.int32) + return train_x, train_y, val_x, val_y \ No newline at end of file diff --git a/examples/healthcare/models/diabetic_net.py b/examples/healthcare/models/diabetic_net.py new file mode 100644 index 000000000..83874c896 --- /dev/null +++ b/examples/healthcare/models/diabetic_net.py @@ -0,0 +1,147 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# + +from singa import layer +from singa import model +from singa import tensor +from singa import opt +from singa import device +import argparse +import numpy as np + +np_dtype = {"float16": np.float16, "float32": np.float32} + +singa_dtype = {"float16": tensor.float16, "float32": tensor.float32} + + +class MLP(model.Model): + + def __init__(self, data_size=10, perceptron_size=100, num_classes=10): + super(MLP, self).__init__() + self.num_classes = num_classes + self.dimension = 2 + + self.relu = layer.ReLU() + self.linear1 = layer.Linear(perceptron_size) + self.linear2 = layer.Linear(num_classes) + self.softmax_cross_entropy = layer.SoftMaxCrossEntropy() + + def forward(self, inputs): + y = self.linear1(inputs) + y = self.relu(y) + y = self.linear2(y) + return y + + def train_one_batch(self, x, y, dist_option, spars): + out = self.forward(x) + loss = self.softmax_cross_entropy(out, y) + + if dist_option == 'plain': + self.optimizer(loss) + elif dist_option == 'half': + self.optimizer.backward_and_update_half(loss) + elif dist_option == 'partialUpdate': + self.optimizer.backward_and_partial_update(loss) + elif dist_option == 'sparseTopK': + self.optimizer.backward_and_sparse_update(loss, + topK=True, + spars=spars) + elif dist_option == 'sparseThreshold': + self.optimizer.backward_and_sparse_update(loss, + topK=False, + spars=spars) + return out, loss + + def set_optimizer(self, optimizer): + self.optimizer = optimizer + + +def create_model(pretrained=False, **kwargs): + """Constructs a CNN model. + + Args: + pretrained (bool): If True, returns a pre-trained model. + + Returns: + The created CNN model. + """ + model = MLP(**kwargs) + + return model + + +__all__ = ['MLP', 'create_model'] + +if __name__ == "__main__": + np.random.seed(0) + + parser = argparse.ArgumentParser() + parser.add_argument('-p', + choices=['float32', 'float16'], + default='float32', + dest='precision') + parser.add_argument('-g', + '--disable-graph', + default='True', + action='store_false', + help='disable graph', + dest='graph') + parser.add_argument('-m', + '--max-epoch', + default=1001, + type=int, + help='maximum epochs', + dest='max_epoch') + args = parser.parse_args() + + # generate the boundary + f = lambda x: (5 * x + 1) + bd_x = np.linspace(-1.0, 1, 200) + bd_y = f(bd_x) + + # generate the training data + x = np.random.uniform(-1, 1, 400) + y = f(x) + 2 * np.random.randn(len(x)) + + # choose one precision + precision = singa_dtype[args.precision] + np_precision = np_dtype[args.precision] + + # convert training data to 2d space + label = np.asarray([5 * a + 1 > b for (a, b) in zip(x, y)]).astype(np.int32) + data = np.array([[a, b] for (a, b) in zip(x, y)], dtype=np_precision) + + dev = device.create_cuda_gpu_on(0) + sgd = opt.SGD(0.1, 0.9, 1e-5, dtype=singa_dtype[args.precision]) + tx = tensor.Tensor((400, 2), dev, precision) + ty = tensor.Tensor((400,), dev, tensor.int32) + model = MLP(data_size=2, perceptron_size=3, num_classes=2) + + # attach model to graph + model.set_optimizer(sgd) + model.compile([tx], is_train=True, use_graph=args.graph, sequential=True) + model.train() + + for i in range(args.max_epoch): + tx.copy_from_numpy(data) + ty.copy_from_numpy(label) + out, loss = model(tx, ty, 'fp32', spars=None) + + if i % 100 == 0: + print("training loss = ", tensor.to_numpy(loss)[0]) \ No newline at end of file