From 44b1c9a497d6595ac7dc54cac590f80923c48cd2 Mon Sep 17 00:00:00 2001 From: "shicong.lin" <13751447+dcslin@users.noreply.github.com> Date: Sat, 15 Jun 2024 21:05:26 +0800 Subject: [PATCH] Add the implementations of alexnet model in the autograd --- examples/cnn_ms/model/alexnet.py | 118 +++++++++++++++++++++++++++++++ 1 file changed, 118 insertions(+) create mode 100644 examples/cnn_ms/model/alexnet.py diff --git a/examples/cnn_ms/model/alexnet.py b/examples/cnn_ms/model/alexnet.py new file mode 100644 index 000000000..85209f63f --- /dev/null +++ b/examples/cnn_ms/model/alexnet.py @@ -0,0 +1,118 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# + +from singa import layer +from singa import model + + +class AlexNet(model.Model): + + def __init__(self, num_classes=10, num_channels=1): + super(AlexNet, self).__init__() + self.num_classes = num_classes + self.input_size = 224 + self.dimension = 4 + self.conv1 = layer.Conv2d(num_channels, 64, 11, stride=4, padding=2) + self.conv2 = layer.Conv2d(64, 192, 5, padding=2) + self.conv3 = layer.Conv2d(192, 384, 3, padding=1) + self.conv4 = layer.Conv2d(384, 256, 3, padding=1) + self.conv5 = layer.Conv2d(256, 256, 3, padding=1) + self.linear1 = layer.Linear(4096) + self.linear2 = layer.Linear(4096) + self.linear3 = layer.Linear(num_classes) + self.pooling1 = layer.MaxPool2d(2, 2, padding=0) + self.pooling2 = layer.MaxPool2d(2, 2, padding=0) + self.pooling3 = layer.MaxPool2d(2, 2, padding=0) + self.avg_pooling1 = layer.AvgPool2d(3, 2, padding=0) + self.relu1 = layer.ReLU() + self.relu2 = layer.ReLU() + self.relu3 = layer.ReLU() + self.relu4 = layer.ReLU() + self.relu5 = layer.ReLU() + self.relu6 = layer.ReLU() + self.relu7 = layer.ReLU() + self.flatten = layer.Flatten() + self.dropout1 = layer.Dropout() + self.dropout2 = layer.Dropout() + self.softmax_cross_entropy = layer.SoftMaxCrossEntropy() + + def forward(self, x): + y = self.conv1(x) + y = self.relu1(y) + y = self.pooling1(y) + y = self.conv2(y) + y = self.relu2(y) + y = self.pooling2(y) + y = self.conv3(y) + y = self.relu3(y) + y = self.conv4(y) + y = self.relu4(y) + y = self.conv5(y) + y = self.relu5(y) + y = self.pooling3(y) + y = self.avg_pooling1(y) + y = self.flatten(y) + y = self.dropout1(y) + y = self.linear1(y) + y = self.relu6(y) + y = self.dropout2(y) + y = self.linear2(y) + y = self.relu7(y) + y = self.linear3(y) + return y + + def train_one_batch(self, x, y, dist_option, spars): + out = self.forward(x) + loss = self.softmax_cross_entropy(out, y) + + if dist_option == 'plain': + self.optimizer(loss) + elif dist_option == 'half': + self.optimizer.backward_and_update_half(loss) + elif dist_option == 'partialUpdate': + self.optimizer.backward_and_partial_update(loss) + elif dist_option == 'sparseTopK': + self.optimizer.backward_and_sparse_update(loss, + topK=True, + spars=spars) + elif dist_option == 'sparseThreshold': + self.optimizer.backward_and_sparse_update(loss, + topK=False, + spars=spars) + return out, loss + + def set_optimizer(self, optimizer): + self.optimizer = optimizer + + +def create_model(pretrained=False, **kwargs): + """Constructs a AlexNet model. + Args: + pretrained (bool): If True, returns a pre-trained model. + + Returns: + The created AlexNet model. + + """ + model = AlexNet(**kwargs) + + return model + + +__all__ = ['AlexNet', 'create_model'] \ No newline at end of file