From e5777daa41c8dbee5c4173451f7308572006b373 Mon Sep 17 00:00:00 2001 From: Zhu Lei Date: Sun, 15 Sep 2024 10:28:28 +0800 Subject: [PATCH] Update the implementations of MSOptimizer and MSSGD --- examples/cnn_ms/train_ms_model.py | 274 ++++++++++++++++++++++++++++++ 1 file changed, 274 insertions(+) create mode 100644 examples/cnn_ms/train_ms_model.py diff --git a/examples/cnn_ms/train_ms_model.py b/examples/cnn_ms/train_ms_model.py new file mode 100644 index 000000000..d306a458c --- /dev/null +++ b/examples/cnn_ms/train_ms_model.py @@ -0,0 +1,274 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# + +from singa import singa_wrap as singa +from singa import device +from singa import tensor +from singa import opt +from singa import autograd +from singa.opt import Optimizer +from singa.opt import DecayScheduler +from singa.opt import Constant +import numpy as np +import time +import argparse +from PIL import Image + +np_dtype = {"float16": np.float16, "float32": np.float32} + +singa_dtype = {"float16": tensor.float16, "float32": tensor.float32} + +### MSOptimizer +class MSOptimizer(Optimizer): + def __call__(self, loss): + pn_p_g_list = self.call_with_returns(loss) + self.step() + return pn_p_g_list + + def call_with_returns(self, loss): + # print ("call_with_returns loss.data: \n", loss.data) + pn_p_g_list = [] + for p, g in autograd.backward(loss): + if p.name is None: + p.name = id(p) + self.apply(p.name, p, g) + # print ("call with returns") + # print ("p.name: \n", p.name) + # print ("p.data: \n", p.data) + # print ("g.data: \n", g.data) + pn_p_g_list.append([p.name, p, g]) # need iterables + return pn_p_g_list + +class MSSGD(MSOptimizer): + """Implements stochastic gradient descent (optionally with momentum). + Nesterov momentum is based on the formula from `On the importance of initialization and momentum in deep learning`__. + Args: + lr(float): learning rate + momentum(float, optional): momentum factor(default: 0) + weight_decay(float, optional): weight decay(L2 penalty)(default: 0) + dampening(float, optional): dampening for momentum(default: 0) + nesterov(bool, optional): enables Nesterov momentum(default: False) + Typical usage example: + >> > from singa import opt + >> > optimizer = opt.SGD(lr=0.1, momentum=0.9) + >> > optimizer.update() + __ http: // www.cs.toronto.edu / %7Ehinton / absps / momentum.pdf + .. note:: + The implementation of SGD with Momentum / Nesterov subtly differs from + Sutskever et. al. and implementations in some other frameworks. + Considering the specific case of Momentum, the update can be written as + .. math:: + v = \rho * v + g \\ + p = p - lr * v + where p, g, v and: math: `\rho` denote the parameters, gradient, + velocity, and momentum respectively. + This is in contrast to Sutskever et. al. and + other frameworks which employ an update of the form + .. math:: + v = \rho * v + lr * g \\ + p = p - v + The Nesterov version is analogously modified. + """ + + def __init__(self, + lr=0.1, + momentum=0, + dampening=0, + weight_decay=0, + nesterov=False, + dtype=tensor.float32): + super(MSSGD, self).__init__(lr, dtype) + + # init momentum + if type(momentum) == float or type(momentum) == int: + if momentum < 0.0: + raise ValueError("Invalid momentum value: {}".format(momentum)) + self.momentum = Constant(momentum) + elif isinstance(momentum, DecayScheduler): + self.momentum = momentum + momentum = momentum.init_value + else: + raise TypeError("Wrong momentum type") + self.mom_value = self.momentum(self.step_counter).as_type(self.dtype) + + # init dampening + if type(dampening) == float or type(dampening) == int: + self.dampening = Constant(dampening) + elif isinstance(dampening, DecayScheduler): + self.dampening = dampening + dampening = dampening.init_value + else: + raise TypeError("Wrong dampening type") + self.dam_value = self.dampening(self.step_counter).as_type(self.dtype) + + # init weight_decay + if type(weight_decay) == float or type(weight_decay) == int: + if weight_decay < 0.0: + raise ValueError( + "Invalid weight_decay value: {}".format(weight_decay)) + self.weight_decay = Constant(weight_decay) + elif isinstance(weight_decay, DecayScheduler): + self.weight_decay = weight_decay + else: + raise TypeError("Wrong weight_decay type") + self.decay_value = self.weight_decay(self.step_counter).as_type( + self.dtype) + + # init other params + self.nesterov = nesterov + self.moments = dict() + + # check value + if nesterov and (momentum <= 0 or dampening != 0): + raise ValueError( + "Nesterov momentum requires a momentum and zero dampening") + + def apply(self, param_name, param_value, param_grad): + """Performs a single optimization step. + Args: + param_name(String): the name of the param + param_value(Tensor): param values to be update in-place + grad(Tensor): param gradients; the values may be updated + in this function; cannot use it anymore + """ + assert param_value.shape == param_grad.shape, ("shape mismatch", + param_value.shape, + param_grad.shape) + self.device_check(param_value, self.step_counter, self.lr_value, + self.mom_value, self.dam_value, self.decay_value) + + # derive dtype from input + assert param_value.dtype == self.dtype + + # TODO add branch operator + # if self.decay_value != 0: + if self.weight_decay.init_value != 0: + singa.Axpy(self.decay_value.data, param_value.data, param_grad.data) + + if self.momentum.init_value != 0: + if param_name not in self.moments: + flag = param_value.device.graph_enabled() + param_value.device.EnableGraph(False) + self.moments[param_name] = tensor.zeros_like(param_value) + param_value.device.EnableGraph(flag) + + buf = self.moments[param_name] + buf *= self.mom_value + alpha = 1.0 - self.dam_value + singa.Axpy(alpha.data, param_grad.data, buf.data) + + if self.nesterov: + singa.Axpy(self.mom_value.data, buf.data, param_grad.data) + else: + param_grad = buf + + minus_lr = 0.0 - self.lr_value + singa.Axpy(minus_lr.data, param_grad.data, param_value.data) + + def step(self): + # increment step counter, lr and moment + super().step() + mom_value = self.momentum(self.step_counter).as_type(self.dtype) + dam_value = self.dampening(self.step_counter).as_type(self.dtype) + decay_value = self.weight_decay(self.step_counter).as_type(self.dtype) + self.mom_value.copy_from(mom_value) + self.dam_value.copy_from(dam_value) + self.decay_value.copy_from(decay_value) + + def get_states(self): + states = super().get_states() + if self.mom_value > 0: + states[ + 'moments'] = self.moments # a dict for 1st order moments tensors + return states + + def set_states(self, states): + super().set_states(states) + if 'moments' in states: + self.moments = states['moments'] + self.mom_value = self.momentum(self.step_counter) + + +if __name__ == '__main__': + # Use argparse to get command config: max_epoch, model, data, etc., for single gpu training + parser = argparse.ArgumentParser( + description='Training using the autograd and graph.') + parser.add_argument( + 'model', + choices=['cnn', 'resnet', 'xceptionnet', 'mlp', 'msmlp', 'alexnet'], + default='cnn') + parser.add_argument('data', + choices=['mnist', 'cifar10', 'cifar100'], + default='mnist') + parser.add_argument('-p', + choices=['float32', 'float16'], + default='float32', + dest='precision') + parser.add_argument('-m', + '--max-epoch', + default=3, + type=int, + help='maximum epochs', + dest='max_epoch') + parser.add_argument('-b', + '--batch-size', + default=64, + type=int, + help='batch size', + dest='batch_size') + parser.add_argument('-l', + '--learning-rate', + default=0.005, + type=float, + help='initial learning rate', + dest='lr') + # Determine which gpu to use + parser.add_argument('-i', + '--device-id', + default=0, + type=int, + help='which GPU to use', + dest='device_id') + parser.add_argument('-g', + '--disable-graph', + default='True', + action='store_false', + help='disable graph', + dest='graph') + parser.add_argument('-v', + '--log-verbosity', + default=0, + type=int, + help='logging verbosity', + dest='verbosity') + + args = parser.parse_args() + + mssgd = MSSGD(lr=args.lr, momentum=0.9, weight_decay=1e-5, dtype=singa_dtype[args.precision]) + run(0, + 1, + args.device_id, + args.max_epoch, + args.batch_size, + args.model, + args.data, + mssgd, + args.graph, + args.verbosity, + precision=args.precision) \ No newline at end of file