|
| 1 | +// Licensed to the Apache Software Foundation (ASF) under one |
| 2 | +// or more contributor license agreements. See the NOTICE file |
| 3 | +// distributed with this work for additional information |
| 4 | +// regarding copyright ownership. The ASF licenses this file |
| 5 | +// to you under the Apache License, Version 2.0 (the |
| 6 | +// "License"); you may not use this file except in compliance |
| 7 | +// with the License. You may obtain a copy of the License at |
| 8 | +// |
| 9 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +// |
| 11 | +// Unless required by applicable law or agreed to in writing, |
| 12 | +// software distributed under the License is distributed on an |
| 13 | +// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +// KIND, either express or implied. See the License for the |
| 15 | +// specific language governing permissions and limitations |
| 16 | +// under the License. |
| 17 | + |
| 18 | +use arrow::datatypes::DataType; |
| 19 | +use datafusion_common::{internal_err, Result, DataFusionError}; |
| 20 | +use datafusion_expr::{ColumnarValue, ScalarUDFImpl, Signature, Volatility}; |
| 21 | +use arrow::compute::kernels::zip::zip; |
| 22 | +use arrow::compute::is_not_null; |
| 23 | +use arrow::array::Array; |
| 24 | + |
| 25 | +#[derive(Debug)] |
| 26 | +pub(super) struct NVLFunc { |
| 27 | + signature: Signature, |
| 28 | + aliases: Vec<String>, |
| 29 | +} |
| 30 | + |
| 31 | +/// Currently supported types by the nvl/ifnull function. |
| 32 | +/// The order of these types correspond to the order on which coercion applies |
| 33 | +/// This should thus be from least informative to most informative |
| 34 | +static SUPPORTED_NVL_TYPES: &[DataType] = &[ |
| 35 | + DataType::Boolean, |
| 36 | + DataType::UInt8, |
| 37 | + DataType::UInt16, |
| 38 | + DataType::UInt32, |
| 39 | + DataType::UInt64, |
| 40 | + DataType::Int8, |
| 41 | + DataType::Int16, |
| 42 | + DataType::Int32, |
| 43 | + DataType::Int64, |
| 44 | + DataType::Float32, |
| 45 | + DataType::Float64, |
| 46 | + DataType::Utf8, |
| 47 | + DataType::LargeUtf8, |
| 48 | +]; |
| 49 | + |
| 50 | +impl NVLFunc { |
| 51 | + pub fn new() -> Self { |
| 52 | + Self { |
| 53 | + signature: |
| 54 | + Signature::uniform(2, SUPPORTED_NVL_TYPES.to_vec(), |
| 55 | + Volatility::Immutable, |
| 56 | + ), |
| 57 | + aliases: vec![String::from("ifnull")], |
| 58 | + } |
| 59 | + } |
| 60 | +} |
| 61 | + |
| 62 | +impl ScalarUDFImpl for NVLFunc { |
| 63 | + fn as_any(&self) -> &dyn std::any::Any { |
| 64 | + self |
| 65 | + } |
| 66 | + |
| 67 | + fn name(&self) -> &str { |
| 68 | + "nvl" |
| 69 | + } |
| 70 | + |
| 71 | + fn signature(&self) -> &Signature { |
| 72 | + &self.signature |
| 73 | + } |
| 74 | + |
| 75 | + fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> { |
| 76 | + // NVL has two args and they might get coerced, get a preview of this |
| 77 | + let coerced_types = datafusion_expr::type_coercion::functions::data_types(arg_types, &self.signature); |
| 78 | + coerced_types.map(|typs| typs[0].clone()) |
| 79 | + .map_err(|e| e.context("Failed to coerce arguments for NVL") |
| 80 | + ) |
| 81 | + } |
| 82 | + |
| 83 | + fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> { |
| 84 | + nvl_func(args) |
| 85 | + } |
| 86 | + |
| 87 | + fn aliases(&self) -> &[String] { |
| 88 | + &self.aliases |
| 89 | + } |
| 90 | +} |
| 91 | + |
| 92 | +fn nvl_func(args: &[ColumnarValue]) -> Result<ColumnarValue> { |
| 93 | + if args.len() != 2 { |
| 94 | + return internal_err!( |
| 95 | + "{:?} args were supplied but NVL/IFNULL takes exactly two args", |
| 96 | + args.len() |
| 97 | + ); |
| 98 | + } |
| 99 | + let (lhs_array, rhs_array) = match (&args[0], &args[1]) { |
| 100 | + (ColumnarValue::Array(lhs), ColumnarValue::Scalar(rhs)) => { |
| 101 | + (lhs.clone(), rhs.to_array_of_size(lhs.len())?) |
| 102 | + } |
| 103 | + (ColumnarValue::Array(lhs), ColumnarValue::Array(rhs)) => { |
| 104 | + (lhs.clone(), rhs.clone()) |
| 105 | + } |
| 106 | + (ColumnarValue::Scalar(lhs), ColumnarValue::Array(rhs)) => { |
| 107 | + (lhs.to_array_of_size(rhs.len())?, rhs.clone()) |
| 108 | + } |
| 109 | + (ColumnarValue::Scalar(lhs), ColumnarValue::Scalar(rhs)) => { |
| 110 | + let mut current_value = lhs; |
| 111 | + if lhs.is_null() { |
| 112 | + current_value = rhs; |
| 113 | + } |
| 114 | + return Ok(ColumnarValue::Scalar(current_value.clone())); |
| 115 | + } |
| 116 | + }; |
| 117 | + let to_apply = is_not_null(&lhs_array)?; |
| 118 | + let value = zip(&to_apply, &lhs_array, &rhs_array)?; |
| 119 | + Ok(ColumnarValue::Array(value)) |
| 120 | +} |
| 121 | + |
| 122 | +#[cfg(test)] |
| 123 | +mod tests { |
| 124 | + use std::sync::Arc; |
| 125 | + |
| 126 | + use arrow::array::*; |
| 127 | + |
| 128 | + use super::*; |
| 129 | + use datafusion_common::{Result, ScalarValue}; |
| 130 | + |
| 131 | + #[test] |
| 132 | + fn nvl_int32() -> Result<()> { |
| 133 | + let a = Int32Array::from(vec![ |
| 134 | + Some(1), |
| 135 | + Some(2), |
| 136 | + None, |
| 137 | + None, |
| 138 | + Some(3), |
| 139 | + None, |
| 140 | + None, |
| 141 | + Some(4), |
| 142 | + Some(5), |
| 143 | + ]); |
| 144 | + let a = ColumnarValue::Array(Arc::new(a)); |
| 145 | + |
| 146 | + let lit_array = ColumnarValue::Scalar(ScalarValue::Int32(Some(6i32))); |
| 147 | + |
| 148 | + let result = nvl_func(&[a, lit_array])?; |
| 149 | + let result = result.into_array(0).expect("Failed to convert to array"); |
| 150 | + |
| 151 | + let expected = Arc::new(Int32Array::from(vec![ |
| 152 | + Some(1), |
| 153 | + Some(2), |
| 154 | + Some(6), |
| 155 | + Some(6), |
| 156 | + Some(3), |
| 157 | + Some(6), |
| 158 | + Some(6), |
| 159 | + Some(4), |
| 160 | + Some(5), |
| 161 | + ])) as ArrayRef; |
| 162 | + assert_eq!(expected.as_ref(), result.as_ref()); |
| 163 | + Ok(()) |
| 164 | + } |
| 165 | + |
| 166 | + #[test] |
| 167 | + // Ensure that arrays with no nulls can also invoke nvl() correctly |
| 168 | + fn nvl_int32_nonulls() -> Result<()> { |
| 169 | + let a = Int32Array::from(vec![1, 3, 10, 7, 8, 1, 2, 4, 5]); |
| 170 | + let a = ColumnarValue::Array(Arc::new(a)); |
| 171 | + |
| 172 | + let lit_array = ColumnarValue::Scalar(ScalarValue::Int32(Some(20i32))); |
| 173 | + |
| 174 | + let result = nvl_func(&[a, lit_array])?; |
| 175 | + let result = result.into_array(0).expect("Failed to convert to array"); |
| 176 | + |
| 177 | + let expected = Arc::new(Int32Array::from(vec![ |
| 178 | + Some(1), |
| 179 | + Some(3), |
| 180 | + Some(10), |
| 181 | + Some(7), |
| 182 | + Some(8), |
| 183 | + Some(1), |
| 184 | + Some(2), |
| 185 | + Some(4), |
| 186 | + Some(5), |
| 187 | + ])) as ArrayRef; |
| 188 | + assert_eq!(expected.as_ref(), result.as_ref()); |
| 189 | + Ok(()) |
| 190 | + } |
| 191 | + |
| 192 | + #[test] |
| 193 | + fn nvl_boolean() -> Result<()> { |
| 194 | + let a = BooleanArray::from(vec![Some(true), Some(false), None]); |
| 195 | + let a = ColumnarValue::Array(Arc::new(a)); |
| 196 | + |
| 197 | + let lit_array = ColumnarValue::Scalar(ScalarValue::Boolean(Some(false))); |
| 198 | + |
| 199 | + let result = nvl_func(&[a, lit_array])?; |
| 200 | + let result = result.into_array(0).expect("Failed to convert to array"); |
| 201 | + |
| 202 | + let expected = |
| 203 | + Arc::new(BooleanArray::from(vec![Some(true), Some(false), Some(false)])) as ArrayRef; |
| 204 | + |
| 205 | + assert_eq!(expected.as_ref(), result.as_ref()); |
| 206 | + Ok(()) |
| 207 | + } |
| 208 | + |
| 209 | + #[test] |
| 210 | + fn nvl_string() -> Result<()> { |
| 211 | + let a = StringArray::from(vec![Some("foo"), Some("bar"), None, Some("baz")]); |
| 212 | + let a = ColumnarValue::Array(Arc::new(a)); |
| 213 | + |
| 214 | + let lit_array = ColumnarValue::Scalar(ScalarValue::from("bax")); |
| 215 | + |
| 216 | + let result = nvl_func(&[a, lit_array])?; |
| 217 | + let result = result.into_array(0).expect("Failed to convert to array"); |
| 218 | + |
| 219 | + let expected = Arc::new(StringArray::from(vec![ |
| 220 | + Some("foo"), |
| 221 | + Some("bar"), |
| 222 | + Some("bax"), |
| 223 | + Some("baz"), |
| 224 | + ])) as ArrayRef; |
| 225 | + |
| 226 | + assert_eq!(expected.as_ref(), result.as_ref()); |
| 227 | + Ok(()) |
| 228 | + } |
| 229 | + |
| 230 | + #[test] |
| 231 | + fn nvl_literal_first() -> Result<()> { |
| 232 | + let a = Int32Array::from(vec![Some(1), Some(2), None, None, Some(3), Some(4)]); |
| 233 | + let a = ColumnarValue::Array(Arc::new(a)); |
| 234 | + |
| 235 | + let lit_array = ColumnarValue::Scalar(ScalarValue::Int32(Some(2i32))); |
| 236 | + |
| 237 | + let result = nvl_func(&[lit_array, a])?; |
| 238 | + let result = result.into_array(0).expect("Failed to convert to array"); |
| 239 | + |
| 240 | + let expected = Arc::new(Int32Array::from(vec![ |
| 241 | + Some(2), |
| 242 | + Some(2), |
| 243 | + Some(2), |
| 244 | + Some(2), |
| 245 | + Some(2), |
| 246 | + Some(2), |
| 247 | + ])) as ArrayRef; |
| 248 | + assert_eq!(expected.as_ref(), result.as_ref()); |
| 249 | + Ok(()) |
| 250 | + } |
| 251 | + |
| 252 | + #[test] |
| 253 | + fn nvl_scalar() -> Result<()> { |
| 254 | + let a_null = ColumnarValue::Scalar(ScalarValue::Int32(None)); |
| 255 | + let b_null = ColumnarValue::Scalar(ScalarValue::Int32(Some(2i32))); |
| 256 | + |
| 257 | + let result_null = nvl_func(&[a_null, b_null])?; |
| 258 | + let result_null = result_null.into_array(1).expect("Failed to convert to array"); |
| 259 | + |
| 260 | + let expected_null = Arc::new(Int32Array::from(vec![Some(2i32)])) as ArrayRef; |
| 261 | + |
| 262 | + assert_eq!(expected_null.as_ref(), result_null.as_ref()); |
| 263 | + |
| 264 | + let a_nnull = ColumnarValue::Scalar(ScalarValue::Int32(Some(2i32))); |
| 265 | + let b_nnull = ColumnarValue::Scalar(ScalarValue::Int32(Some(1i32))); |
| 266 | + |
| 267 | + let result_nnull = nvl_func(&[a_nnull, b_nnull])?; |
| 268 | + let result_nnull = result_nnull |
| 269 | + .into_array(1) |
| 270 | + .expect("Failed to convert to array"); |
| 271 | + |
| 272 | + let expected_nnull = Arc::new(Int32Array::from(vec![Some(2i32)])) as ArrayRef; |
| 273 | + assert_eq!(expected_nnull.as_ref(), result_nnull.as_ref()); |
| 274 | + |
| 275 | + Ok(()) |
| 276 | + } |
| 277 | +} |
0 commit comments