-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathencoder.py
228 lines (185 loc) · 9.87 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import torch
import torch.nn as nn
import rdkit.Chem as Chem
import torch.nn.functional as F
from hgraph.nnutils import *
from hgraph.mol_graph import MolGraph
from hgraph.rnn import GRU, LSTM
class MPNEncoder(nn.Module):
def __init__(self, rnn_type, input_size, node_fdim, hidden_size, depth, dropout):
super(MPNEncoder, self).__init__()
self.hidden_size = hidden_size
self.input_size = input_size
self.depth = depth
self.W_o = nn.Sequential(
nn.Linear(node_fdim + hidden_size, hidden_size),
nn.ReLU(),
nn.Dropout(dropout)
)
if rnn_type == 'GRU':
self.rnn = GRU(input_size, hidden_size, depth)
elif rnn_type == 'LSTM':
self.rnn = LSTM(input_size, hidden_size, depth)
else:
raise ValueError('unsupported rnn cell type ' + rnn_type)
def forward(self, fnode, fmess, agraph, bgraph):
h = self.rnn(fmess, bgraph)
h = self.rnn.get_hidden_state(h)
nei_message = index_select_ND(h, 0, agraph)
nei_message = nei_message.sum(dim=1)
node_hiddens = torch.cat([fnode, nei_message], dim=1)
node_hiddens = self.W_o(node_hiddens)
mask = torch.ones(node_hiddens.size(0), 1, device=fnode.device)
mask[0, 0] = 0 #first node is padding
return node_hiddens * mask, h #return only the hidden state (different from IncMPNEncoder in LSTM case)
class HierMPNEncoder(nn.Module):
def __init__(self, vocab, avocab, rnn_type, embed_size, hidden_size, depthT, depthG, dropout):
super(HierMPNEncoder, self).__init__()
self.vocab = vocab
self.hidden_size = hidden_size
self.dropout = dropout
self.atom_size = atom_size = avocab.size()
self.bond_size = bond_size = len(MolGraph.BOND_LIST) + MolGraph.MAX_POS
self.E_c = nn.Sequential(
nn.Embedding(vocab.size()[0], embed_size),
nn.Dropout(dropout)
)
self.E_i = nn.Sequential(
nn.Embedding(vocab.size()[1], embed_size),
nn.Dropout(dropout)
)
self.W_c = nn.Sequential(
nn.Linear(embed_size + hidden_size, hidden_size),
nn.ReLU(),
nn.Dropout(dropout)
)
self.W_i = nn.Sequential(
nn.Linear(embed_size + hidden_size, hidden_size),
nn.ReLU(),
nn.Dropout(dropout)
)
# self.E_a = torch.eye(atom_size)
# self.E_b = torch.eye(len(MolGraph.BOND_LIST))
# self.E_apos = torch.eye(MolGraph.MAX_POS)
# self.E_pos = torch.eye(MolGraph.MAX_POS)
self.E_a = torch.eye(atom_size).cuda()
self.E_b = torch.eye( len(MolGraph.BOND_LIST) ).cuda()
self.E_apos = torch.eye( MolGraph.MAX_POS ).cuda()
self.E_pos = torch.eye( MolGraph.MAX_POS ).cuda()
self.W_root = nn.Sequential(
nn.Linear(hidden_size * 2, hidden_size),
nn.Tanh() #root activation is tanh
)
self.tree_encoder = MPNEncoder(rnn_type, hidden_size + MolGraph.MAX_POS, hidden_size, hidden_size, depthT, dropout)
self.inter_encoder = MPNEncoder(rnn_type, hidden_size + MolGraph.MAX_POS, hidden_size, hidden_size, depthT, dropout)
self.graph_encoder = MPNEncoder(rnn_type, atom_size + bond_size, atom_size, hidden_size, depthG, dropout)
def tie_embedding(self, other):
self.E_c, self.E_i = other.E_c, other.E_i
self.E_a, self.E_b = other.E_a, other.E_b
def embed_inter(self, tree_tensors, hatom):
fnode, fmess, agraph, bgraph, cgraph, _ = tree_tensors
finput = self.E_i(fnode[:, 1])
hnode = index_select_ND(hatom, 0, cgraph).sum(dim=1)
hnode = self.W_i( torch.cat([finput, hnode], dim=-1) )
hmess = hnode.index_select(index=fmess[:, 0], dim=0)
pos_vecs = self.E_pos.index_select(0, fmess[:, 2])
hmess = torch.cat( [hmess, pos_vecs], dim=-1 )
return hnode, hmess, agraph, bgraph
def embed_tree(self, tree_tensors, hinter):
fnode, fmess, agraph, bgraph, cgraph, _ = tree_tensors
finput = self.E_c(fnode[:, 0])
hnode = self.W_c( torch.cat([finput, hinter], dim=-1) )
hmess = hnode.index_select(index=fmess[:, 0], dim=0)
pos_vecs = self.E_pos.index_select(0, fmess[:, 2])
hmess = torch.cat( [hmess, pos_vecs], dim=-1 )
return hnode, hmess, agraph, bgraph
def embed_graph(self, graph_tensors):
fnode, fmess, agraph, bgraph, _ = graph_tensors
hnode = self.E_a.index_select(index=fnode, dim=0)
fmess1 = hnode.index_select(index=fmess[:, 0], dim=0)
fmess2 = self.E_b.index_select(index=fmess[:, 2], dim=0)
fpos = self.E_apos.index_select(index=fmess[:, 3], dim=0)
hmess = torch.cat([fmess1, fmess2, fpos], dim=-1)
return hnode, hmess, agraph, bgraph
def embed_root(self, hmess, tree_tensors, roots):
roots = tree_tensors[2].new_tensor(roots)
fnode = tree_tensors[0].index_select(0, roots)
agraph = tree_tensors[2].index_select(0, roots)
nei_message = index_select_ND(hmess, 0, agraph)
nei_message = nei_message.sum(dim=1)
node_hiddens = torch.cat([fnode, nei_message], dim=1)
return self.W_root(node_hiddens)
def forward(self, tree_tensors, graph_tensors):
tensors = self.embed_graph(graph_tensors)
hatom,_ = self.graph_encoder(*tensors)
tensors = self.embed_inter(tree_tensors, hatom)
hinter,_ = self.inter_encoder(*tensors)
tensors = self.embed_tree(tree_tensors, hinter)
hnode,hmess = self.tree_encoder(*tensors)
hroot = self.embed_root(hmess, tensors, [st for st,le in tree_tensors[-1]])
return hroot, hnode, hinter, hatom
class IncMPNEncoder(MPNEncoder):
def __init__(self, rnn_type, input_size, node_fdim, hidden_size, depth, dropout):
super(IncMPNEncoder, self).__init__(rnn_type, input_size, node_fdim, hidden_size, depth, dropout)
def forward(self, tensors, h, num_nodes, subset):
fnode, fmess, agraph, bgraph = tensors
subnode, submess = subset
if len(submess) > 0:
h = self.rnn.sparse_forward(h, fmess, submess, bgraph)
nei_message = index_select_ND(self.rnn.get_hidden_state(h), 0, agraph)
nei_message = nei_message.sum(dim=1)
node_hiddens = torch.cat([fnode, nei_message], dim=1)
node_hiddens = self.W_o(node_hiddens)
node_buf = torch.zeros(num_nodes, self.hidden_size, device=fmess.device)
node_hiddens = index_scatter(node_hiddens, node_buf, subnode)
return node_hiddens, h
class IncHierMPNEncoder(HierMPNEncoder):
def __init__(self, vocab, avocab, rnn_type, embed_size, hidden_size, depthT, depthG, dropout):
super(IncHierMPNEncoder, self).__init__(vocab, avocab, rnn_type, embed_size, hidden_size, depthT, depthG, dropout)
self.tree_encoder = IncMPNEncoder(rnn_type, hidden_size + MolGraph.MAX_POS, hidden_size, hidden_size, depthT, dropout)
self.inter_encoder = IncMPNEncoder(rnn_type, hidden_size + MolGraph.MAX_POS, hidden_size, hidden_size, depthT, dropout)
self.graph_encoder = IncMPNEncoder(rnn_type, self.atom_size + self.bond_size, self.atom_size, hidden_size, depthG, dropout)
del self.W_root
def get_sub_tensor(self, tensors, subset):
subnode, submess = subset
fnode, fmess, agraph, bgraph = tensors[:4]
fnode, fmess = fnode.index_select(0, subnode), fmess.index_select(0, submess)
agraph, bgraph = agraph.index_select(0, subnode), bgraph.index_select(0, submess)
if len(tensors) == 6:
cgraph = tensors[4].index_select(0, subnode)
return fnode, fmess, agraph, bgraph, cgraph, tensors[-1]
else:
return fnode, fmess, agraph, bgraph, tensors[-1]
def embed_sub_tree(self, tree_tensors, hinput, subtree, is_inter_layer):
subnode, submess = subtree
num_nodes = tree_tensors[0].size(0)
fnode, fmess, agraph, bgraph, cgraph, _ = self.get_sub_tensor(tree_tensors, subtree)
if is_inter_layer:
finput = self.E_i(fnode[:, 1])
hinput = index_select_ND(hinput, 0, cgraph).sum(dim=1)
hnode = self.W_i( torch.cat([finput, hinput], dim=-1) )
else:
finput = self.E_c(fnode[:, 0])
hinput = hinput.index_select(0, subnode)
hnode = self.W_c( torch.cat([finput, hinput], dim=-1) )
if len(submess) == 0:
hmess = fmess
else:
node_buf = torch.zeros(num_nodes, self.hidden_size, device=fmess.device)
node_buf = index_scatter(hnode, node_buf, subnode)
hmess = node_buf.index_select(index=fmess[:, 0], dim=0)
pos_vecs = self.E_pos.index_select(0, fmess[:, 2])
hmess = torch.cat( [hmess, pos_vecs], dim=-1 )
return hnode, hmess, agraph, bgraph
def forward(self, tree_tensors, inter_tensors, graph_tensors, htree, hinter, hgraph, subtree, subgraph):
num_tree_nodes = tree_tensors[0].size(0)
num_graph_nodes = graph_tensors[0].size(0)
if len(subgraph[0]) + len(subgraph[1]) > 0:
sub_graph_tensors = self.get_sub_tensor(graph_tensors, subgraph)[:-1] #graph tensor is already embedded
hgraph.node, hgraph.mess = self.graph_encoder(sub_graph_tensors, hgraph.mess, num_graph_nodes, subgraph)
if len(subtree[0]) + len(subtree[1]) > 0:
sub_inter_tensors = self.embed_sub_tree(inter_tensors, hgraph.node, subtree, is_inter_layer=True)
hinter.node, hinter.mess = self.inter_encoder(sub_inter_tensors, hinter.mess, num_tree_nodes, subtree)
sub_tree_tensors = self.embed_sub_tree(tree_tensors, hinter.node, subtree, is_inter_layer=False)
htree.node, htree.mess = self.tree_encoder(sub_tree_tensors, htree.mess, num_tree_nodes, subtree)
return htree, hinter, hgraph