forked from NVIDIA/GenerativeAIExamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
43 lines (39 loc) · 1.55 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from api_request import APIRequest
import os
# set up the base_url and api_key first
os.environ['API_CATALOG_KEY'] = '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'
os.environ['NIM_INFER_URL'] ="https://integrate.api.nvidia.com/v1"
# load your dataset and parse the test set
input_texts = [
"What is the capital of France?",
"What is 2 + 2?",
]
output_texts =[]
model_to_evaluates = [
"meta/llama3-70b-instruct"
]
inference_api = APIRequest("./config.yaml")
for model in model_to_evaluates:
output_texts.append({"model":model,"outputs":[]})
model_outputs = output_texts[-1]["outputs"]
for text in input_texts:
output_generator = inference_api.send_request(model,[[text,None]])
output_text = ""
for next_token in output_generator:
output_text += next_token
model_outputs.append(output_text)
print(output_texts)