-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutilities.py
202 lines (158 loc) · 7.09 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import csv
import os
import numpy as np
from bark import SAMPLE_RATE, generate_audio
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import simpleaudio as sa
from scipy.io.wavfile import write as write_wav
def remove_silence_from_audio(audio_file_path, output_file_path, silence_threshold=-40.0, min_silence_len=100):
#print(f"Removing silence {audio_file_path} -> {output_file_path}...")
audio = AudioSegment.from_wav(audio_file_path)
non_silent_ranges = detect_nonsilent(audio, min_silence_len, silence_threshold)
if len(non_silent_ranges) == 0:
print(f"No audio found in {audio_file_path}. Skipping.")
return
start_trim = non_silent_ranges[0][0]
end_trim = non_silent_ranges[-1][1]
trimmed_audio = audio[start_trim:end_trim]
trimmed_audio.export(output_file_path, format="wav")
def remove_silence_from_all_files(root_dir, output_dir):
for folder, _, files in os.walk(root_dir):
for file in files:
if file.endswith(".wav"):
input_path = os.path.join(folder, file)
output_folder = os.path.relpath(folder, root_dir)
os.makedirs(os.path.join(output_dir, output_folder), exist_ok=True)
output_path = os.path.join(output_dir, output_folder, file)
remove_silence_from_audio(input_path, output_path)
print(f"Processed {input_path} -> {output_path}")
def find_csvs(path):
"""
Looks through all subdirectories of a path and returns the paths to every csv file with forward slash
"""
csvs = []
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith(".csv"):
csvs.append(os.path.join(root, file).replace('\\', '/'))
return csvs
def get_dir(csvFile):
"""
Returns the path to the directory containing the csv file
"""
return os.path.dirname(csvFile)
def change_csv(csv_file):
"""
Change csv from comma separated to semicolon separated, ignores commas inside quotes
"""
print(csv_file)
input_data = []
with open(csv_file, 'r', newline='') as f_in:
reader = csv.reader(f_in, delimiter=',', quotechar='"')
for row in reader:
input_data.append(row)
with open(csv_file, 'w', newline='') as f_out:
writer = csv.writer(f_out, delimiter=';', quotechar='"', quoting=csv.QUOTE_MINIMAL)
writer.writerows(input_data)
def get_data(file_path, delimiter=';'):
"""
Returns the first and second columns of a CSV file as a list of tuples.
"""
data = []
with open(file_path, 'r', newline='') as csvfile:
csv_reader = csv.reader(csvfile, delimiter=delimiter)
# Get path of csv file
fileDir = os.path.dirname(file_path)
for row in csv_reader:
if len(row) >= 2:
data.append((fileDir + "/" + row[0], row[1]))
return data
def combineCsvs(get_data, csvs):
"""
Combine all csv data into one list of tuples, each tuple is (path, text)
"""
data = []
for c in csvs:
data += get_data(c)
return data
def insert_value_in_column(file_path, search_value, new_value, column_number, delimiter=';'):
data = []
# Read the CSV file and store the content in a list
with open(file_path, 'r', newline='') as csvfile:
csv_reader = csv.reader(csvfile, delimiter=delimiter)
for row in csv_reader:
data.append(row)
# Find the row based on the first column value and insert the new value in the specified column
for row in data:
if row[0] == search_value:
if len(row) < column_number:
row.extend([None] * (column_number - len(row))) # Extend the row to have at least column_number columns
row[column_number - 1] = new_value
# Write the updated data to the CSV file
with open(file_path, 'w', newline='') as csvfile:
csv_writer = csv.writer(csvfile, delimiter=delimiter)
csv_writer.writerows(data)
def get_value_from_column(file_path, search_value, column_number, delimiter=';'):
data = []
# Read the CSV file and store the content in a list
with open(file_path, 'r', newline='') as csvfile:
csv_reader = csv.reader(csvfile, delimiter=delimiter)
for row in csv_reader:
data.append(row)
# Find the row based on the first column value and return the value from the specified column
for row in data:
if row[0] == search_value:
if len(row) < column_number:
return None # The row doesn't have the specified column, return None
else:
return row[column_number - 1]
return None
def tuples_to_csv(tuples_list, file_name):
with open(file_name, 'w', newline='') as theFile:
csv_writer = csv.writer(theFile, delimiter=';')
for row in tuples_list:
csv_writer.writerow(row)
def get_all_files_to_edit_manually(all_data):
files_to_edit_manually = []
with open(all_data, 'r', newline='') as csvfile:
csv_reader = csv.reader(csvfile, delimiter=';')
for row in csv_reader:
if row[2] == 'e':
files_to_edit_manually.append(row[0])
return files_to_edit_manually
def generate_sound_file(d, phrase, voice_waveform_temp=0.7, speaker_voice="en_speaker_6"):
audio_array = generate_audio(
phrase, history_prompt=speaker_voice, waveform_temp=voice_waveform_temp)
audio_array_16bit = np.int16(audio_array * 32767)
write_wav(d, SAMPLE_RATE, audio_array_16bit)
remove_silence_from_audio(d, d)
wave_obj = sa.WaveObject.from_wave_file(d)
return wave_obj
# Check if all_data.csvfile exists, if it does compare length of data and all_data
def create_or_reuse_csv_with_all_data(data, all_data_path):
if os.path.isfile(all_data_path):
with open(all_data_path, 'r', newline='') as csvfile:
all_data_length = sum(1 for row in csv.reader(csvfile, delimiter=';'))
data_length = len(data)
if all_data_length != data_length:
print(
f"Length of data and all_data.csvfile are not equal, \n"
f"the length of all_data.csvfile is {all_data_length} and the length of data is {data_length}"
f"\nthis means that there is a mismatch between all the subtitles.csv files and the aggregated all_data.csvfile,"
f"\nyou need to manually check if the data is correct and then delete or edit the all_data.csvfile and run this script again"
)
exit()
else:
print("Length of data and all_data.csvfile are equal, skipping creation of all_data.csvfile")
else:
print("all_data.csvfile does not exist, creating it")
tuples_to_csv(data, all_data_path)
def play_sound_and_get_feedback_from_human(phrase, wave_obj):
play_obj = wave_obj.play()
play_obj.wait_done()
user_input = input(
f'The phrase is: \n\n "{phrase}"\n\nAre you happy with the sound? \n'
f'(y)es\n(n)o (Re-generate)\n(r)eplay\n(e)dit manually later): '
).lower()
return user_input