-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspeech_recognition.py
108 lines (88 loc) · 3.47 KB
/
speech_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import re
import whisper
import string
from pyphonetics import Metaphone
from fuzzywuzzy import fuzz
from num2words import num2words
def perform_voice_recognition(file_path, model):
"""
Performs voice recognition on a given file path and returns the text
It will automatically detect the language
"""
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(file_path)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)
return result.text
def perform_voice_recognition_with_specific_language(file_path, model):
"""
Performs voice recognition on a given file path and returns the text
It uses the model with the specific language
"""
#audio = whisper.load_audio(file_path)
#audio = whisper.pad_or_trim(audio)
#mel = whisper.log_mel_spectrogram(audio).to(model.device)
transcription = model.transcribe(file_path)
return transcription["text"]
def get_similarity_score(text: str, expected_result: str, phonetics=True) -> int:
"""
Returns a number between 0 and 100, where 100 is a perfect match
"""
if text is None or expected_result is None:
return 0
try:
metaphone = Metaphone()
text = remove_trailing_special_chars(text) or ""
expected_result = remove_trailing_special_chars(expected_result) or ""
text = convert_number_to_words(text) or ""
expected_result = convert_number_to_words(expected_result) or ""
text = remove_special_chars(text) or ""
expected_result = remove_special_chars(expected_result) or ""
if phonetics:
text = metaphone.phonetics(text) or ""
expected_result = metaphone.phonetics(expected_result) or ""
# Compare with metaphone phonetics
match = fuzz.ratio(text, expected_result)
except Exception as e:
print(f"An error occurred: {e}")
match = 0
return match
def convert_number_to_words(s: str) -> str:
"""
Converts numbers in a string to words, e.g. "1" becomes "one"
"""
def is_number(word: str) -> bool:
return re.match(r'^-?\d+(\.\d+)?$', word)
def split_leading_zero(word: str) -> str:
if word.startswith('0') and len(word) > 1:
return '0 ' + word[1:]
return word
words = s.split()
converted_words = []
for word in words:
word = split_leading_zero(word)
if is_number(word):
word = num2words(float(word))
converted_words.append(word)
return ' '.join(converted_words)
def remove_special_chars(text: str) -> str:
"""
Removes special characters and punctuation from the input string.
"""
return re.sub(r"[^\w\s]", "", text)
def remove_trailing_special_chars(input_str):
# Define the allowed characters (alnum: alphanumeric characters)
allowed_chars = set(string.ascii_letters +
string.digits + string.whitespace)
# Find the last allowed character index
last_allowed_char_index = len(input_str)
for index, char in enumerate(reversed(input_str)):
if char in allowed_chars:
last_allowed_char_index = len(input_str) - index
break
# Slice the input string up to the last allowed character index
return input_str[:last_allowed_char_index]