-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparams.py
143 lines (126 loc) · 3.95 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
Module containing all the initial parameters, as well as Theta class.
"""
from collections import namedtuple
# Where m: P(Q=k), a: transition prob, e: emission prob
Theta = namedtuple('Theta', ['m', 'a', 'e'])
INITIAL_MU_PARAMS = Theta(
# Marginal Probabilities
{
1: 0.603154,
2: 0.357419,
3: 0.0388879,
4: 0.000539295
},
# Transition Probabilities
{
1: {1: 0.999916, 2: 0.0000760902, 3: 8.27877e-6, 4: 1.14809e-7},
2: {1: 0.000128404, 2: 0.999786, 3: 0.0000848889, 4: 1.17723e-6},
3: {1: 0.000128404, 2: 0.000780214, 3: 0.999068, 4: 0.0000235507},
4: {1: 0.000128404, 2: 0.000780214, 3: 0.00169821, 4: 0.997393},
},
# Emission Probabilities
{
1: {'I': 0.999608, 'D': 0.000391695},
2: {'I': 0.998334, 'D': 0.00166636},
3: {'I': 0.995844, 'D': 0.00415567},
4: {'I': 0.991548, 'D': 0.008452},
}
)
INITIAL_2MU_PARAMS = Theta(
# Marginal Probabilities
{
1: 0.603154,
2: 0.357419,
3: 0.0388879,
4: 0.000539295
},
# Transition Probabilities
{
1: {1: 0.999916, 2: 0.0000760902, 3: 8.27877e-6, 4: 1.14809e-7},
2: {1: 0.000128404, 2: 0.999786, 3: 0.0000848889, 4: 1.17723e-6},
3: {1: 0.000128404, 2: 0.000780214, 3: 0.999068, 4: 0.0000235507},
4: {1: 0.000128404, 2: 0.000780214, 3: 0.00169821, 4: 0.997393},
},
# Emission Probabilities
{
1: {'I': 0.999217, 'D': 0.000782947},
2: {'I': 0.996674, 'D': 0.00332648},
3: {'I': 0.991725, 'D': 0.00827535},
4: {'I': 0.983241, 'D': 0.0167592},
}
)
INITIAL_5MU_PARAMS = Theta(
# Marginal Probabilities
{
1: 0.603154,
2: 0.357419,
3: 0.0388879,
4: 0.000539295
},
# Transition Probabilities
{
1: {1: 0.999916, 2: 0.0000760902, 3: 8.27877e-6, 4: 1.14809e-7},
2: {1: 0.000128404, 2: 0.999786, 3: 0.0000848889, 4: 1.17723e-6},
3: {1: 0.000128404, 2: 0.000780214, 3: 0.999068, 4: 0.0000235507},
4: {1: 0.000128404, 2: 0.000780214, 3: 0.00169821, 4: 0.997393},
},
# Emission Probabilities
{
1: {'I': 0.998046, 'D': 0.00195405},
2: {'I': 0.99173, 'D': 0.00826963},
3: {'I': 0.979578, 'D': 0.0204217},
4: {'I': 0.959163, 'D': 0.040837},
}
)
# Example for testing
INITIAL_4MU_PARAMS = Theta(
# Marginal Probabilities
{
1: 0.603154,
2: 0.357419,
3: 0.0388879,
4: 0.000539295
},
# Transition Probabilities
{
1: {1: 0.999916, 2: 0.0000760902, 3: 8.27877e-6, 4: 1.14809e-7},
2: {1: 0.000128404, 2: 0.999786, 3: 0.0000848889, 4: 1.17723e-6},
3: {1: 0.000128404, 2: 0.000780214, 3: 0.999068, 4: 0.0000235507},
4: {1: 0.000128404, 2: 0.000780214, 3: 0.00169821, 4: 0.997393},
},
# Emission Probabilities
{
1: {'I': 0.999608, 'D': 0.000391695},
2: {'I': 0.998334, 'D': 0.00166636},
3: {'I': 0.995844, 'D': 0.00415567},
4: {'I': 0.991548, 'D': 0.008452},
}
)
def parse_params(file_name):
with open(file_name) as f:
lines = [line.strip() for line in f.readlines()]
lines = [line for line in lines \
if len(line) != 0 and line[0] != '#']
# Parse marginal probabilities
m = {}
for i in range(4):
state, prob = lines.pop(0).split()
m[int(state)] = float(prob)
# Parse transitional probabilities
t = {}
for i in range(1, 5):
a, b, c, d = lines.pop(0).split()
t[i] = {}
t[i][1] = float(a)
t[i][2] = float(b)
t[i][3] = float(c)
t[i][4] = float(d)
# Parse emission probabilities
e = {}
for i in range(1,5):
k, I, D = lines.pop(0).split()
e[int(k)] = {}
e[int(k)]['I'] = float(I)
e[int(k)]['D'] = float(D)
return Theta(m, t, e)