-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmodules.py
469 lines (313 loc) · 15 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#!/usr/bin/env python
"""
@Author: Anshul Paigwar
@email: [email protected]
For more information on python-pcl check following links:
Git Hub repository:
https://github.com/strawlab/python-pcl
Check the examples and tests folder for sample coordinates
API documentation:
http://nlesc.github.io/python-pcl/
documentation is incomplete there are more available funtions
Udacity Nanodegree perception exercises for practice
https://github.com/udacity/RoboND-Perception-Exercises
check the documentation for pcl_helper.py
This code contains the pytorch implementation of pointwise convolution operator.
"""
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
import numpy as np
import math
from scipy.spatial.distance import cdist
from scipy.optimize import linear_sum_assignment
def get_box3d_corners(centers, headings, sizes):
""" TF layer. Input: (N,3), (N,), (N,3), Output: (N,8,3) """
B = centers.shape[0]
h = sizes[:,0] # (B,1)
w = sizes[:,1]
l = sizes[:,2]
x_corners = torch.stack([l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2], dim = 1).unsqueeze(2) # (B,8)
z_corners = torch.stack([h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2], dim =1).unsqueeze(2) # (B,8)
y_corners = torch.stack([w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2], dim=1).unsqueeze(2) # (B,8)
corners = torch.cat((x_corners,y_corners, z_corners),2) # (B,8,3)
# pdb.set_trace()
c = headings[:,0] #(B)
s = headings[:,1]
trans_params = torch.stack([c, -s, s, c],1) #(B,4)
rot_mat = torch.eye(3).view(1,-1).repeat(B,1).cuda()
rot_mat[:,[0,1,3,4]] = torch.squeeze(trans_params)
rot_mat = rot_mat.view(B,3,3)
# rotate the pointcloud
corners = torch.bmm(corners, rot_mat.transpose(1, 2))
# translate the pointcloud
corners = torch.add(corners, centers.unsqueeze(1))
return corners
def _out_size(self, input_size, kernel_size, stride = 1, padding = 0, pool = False, pool_kernel_size = 2):
out_size = (input_size - kernel_size + 2 * padding)/stride + 1
# flat_features = output_size * output_size * channel
if pool:
out_size = out_size/pool_kernel_size
return int(out_size)
def hungarian_matching(pred_loc, target_loc):
# pred_loc = pred_loc.data.cpu().numpy()
# target_loc = target_loc.data.cpu().numpy()
cost_matrix = cdist(target_loc, pred_loc)
row_ind, col_ind = linear_sum_assignment(cost_matrix)
return col_ind
class recurrent_attention_Loss(torch.nn.Module):
def __init__(self):
super(recurrent_attention_Loss,self).__init__()
def forward(self, output, labels, seq_len): #trans_params = (R00,R01,R10,R11,Tx,Ty,Tz)
lossMSE = nn.MSELoss()
lossHuber = nn.SmoothL1Loss()
lossCrossEntropy = nn.CrossEntropyLoss()
lossBinEntropy = nn.BCELoss()
batch_size = labels.shape[0]
score_seq, loc_seq, box_seq = output
score_seq = score_seq.permute(1,0) #(B,S,1)
loc_seq = loc_seq.permute(1,0,2) #(B,S,7)
box_seq = box_seq.permute(1,0,2) #(B,S,7)
total_loss = 0
for B in range(batch_size):
target = labels[B,:seq_len,8] #(3,1)
car_loc = torch.squeeze(target.nonzero())
num_car = car_loc.nelement()
if(num_car!=0):
trans_params_hat = torch.zeros(seq_len,5).cuda()
rot = labels[B,car_loc, 3] # CHANGED removed negative sign
trans_params_hat[:num_car, 0] = torch.cos(rot)
trans_params_hat[:num_car, 1] = torch.sin(rot)
trans_params_hat[:num_car,2:5] = labels[B, car_loc, :3]
# trans_params_hat[:num_car,5:] = labels[B, car_loc, 5:8]
if(num_car!=seq_len):
zero_rot = torch.tensor(0).float()
trans_params_hat[num_car:, 0] = torch.cos(zero_rot)
trans_params_hat[num_car:, 1] = torch.sin(zero_rot)
trans_params_hat[num_car:,2:5] = torch.tensor([0,0,-4]).cuda()
# trans_params_hat[num_car:,5:] = torch.tensor([2,2.5,5]).cuda()
# if(num_car == 3):
# print("yes", B, trans_params_hat)
ind = hungarian_matching(loc_seq[B,:,2:5].detach().cpu(), labels[B,car_loc,:3].view(num_car,-1).detach().cpu())
ind = np.concatenate((ind,[i for i in range(seq_len) if i not in ind]))
# loc_seq_matched = loc_seq[B,ind].view(num_car,-1)
loc_seq_matched = loc_seq[B,ind]
score_seq_matched = score_seq[B, ind]
box_seq_matched = box_seq[B, ind, :5]
size_seq_matched = box_seq[B, ind, 5:]
# pos_ind = score_seq_matched > 0.5
# pos_ind = torch.squeeze(pos_ind.nonzero())
# num_pos_ind = pos_ind.nelement()
# pdb.set_trace()
trans_mat_1 = torch.eye(3).view(1,-1).repeat(seq_len,1).cuda()
trans_mat_1[:,0] = loc_seq_matched[:,0] # c
trans_mat_1[:,1] = -loc_seq_matched[:,1] # -s
trans_mat_1[:,3] = loc_seq_matched[:,1] # s
trans_mat_1[:,4] = loc_seq_matched[:,0] # c
trans_mat_1[:,2] = loc_seq_matched[:,2] #tx
trans_mat_1[:,5] = loc_seq_matched[:,3] #ty
trans_mat_1 = trans_mat_1.view(seq_len,3,3)
# trans_mat_1 = trans_mat_1.detach() # here we detach bcoz we aim to train two network seperately!
trans_mat_2 = torch.eye(3).view(1,-1).repeat(seq_len,1).cuda()
trans_mat_2[:,0] = box_seq_matched[:,0] # c
trans_mat_2[:,1] = -box_seq_matched[:,1] # -s
trans_mat_2[:,3] = box_seq_matched[:,1] # s
trans_mat_2[:,4] = box_seq_matched[:,0] # c
trans_mat_2[:,2] = box_seq_matched[:,2] #tx
trans_mat_2[:,5] = box_seq_matched[:,3] #ty
trans_mat_2 = trans_mat_2.view(seq_len,3,3)
resultant_trans = torch.bmm(trans_mat_1, trans_mat_2)
resultant_trans = resultant_trans.view(seq_len, 9)
final_trans_params = resultant_trans[:,[0,3,2,5]]
z = (loc_seq_matched[:,4] + box_seq_matched[:,4]).view(seq_len,-1)
final_trans_params = torch.cat((final_trans_params,z),1)
rotx = loc_seq_matched[:,0]**2 + loc_seq_matched[:,1]**2
reg_loss_1 = lossMSE(rotx, torch.tensor([1]).cuda().float())
rotx = final_trans_params[:,0]**2 + final_trans_params[:,1]**2
reg_loss_2 = lossMSE(rotx, torch.tensor([1]).cuda().float())
# reg_loss = reg_loss.mean()
loss_where = lossHuber(loc_seq_matched , trans_params_hat)
loss_what = lossBinEntropy(score_seq_matched, target)
loss_residual = lossHuber(final_trans_params[car_loc].view(num_car,-1) , trans_params_hat[car_loc].view(num_car,-1))
loss_size = lossHuber(size_seq_matched[car_loc].view(num_car,-1), labels[B,:num_car,5:8].view(num_car,-1))
total_seq_loss = loss_where + loss_what + 0.01*(reg_loss_1+ reg_loss_2) + 1.5*loss_residual + 0.5*loss_size
else:
loss_what = lossBinEntropy(score_seq[B], target)
total_seq_loss = loss_what
total_loss += total_seq_loss
return total_loss/batch_size
class point_context_network(nn.Module):
def __init__(self, num_points = 4096,out_size = 1024):
super(point_context_network, self).__init__()
self.num_points = num_points
self.conv1 = torch.nn.Conv1d(3, 64, 1)
self.conv2 = torch.nn.Conv1d(64, 128, 1)
self.conv3 = torch.nn.Conv1d(128, 1024, 1)
self.mp1 = torch.nn.MaxPool1d(num_points
self.relu = nn.ReLU()
self.bn1 = nn.BatchNorm1d(64)
self.bn2 = nn.BatchNorm1d(128)
self.bn3 = nn.BatchNorm1d(1024)
self.bn4 = nn.BatchNorm1d(512)
self.bn5 = nn.BatchNorm1d(256)
def forward(self, x):
batchsize = x.size()[0]
x = F.relu(self.conv1(x))
x = F.relu(self.bn2(self.conv2(x)))
x = F.relu(self.bn3(self.conv3(x)))
x = self.mp1(x)
x = x.view(-1, 1024)
return x
class img_context_network(nn.Module):
def __init__(self, input_size = 100, hidden_size = 512): #TODO: repair this
super(img_context_network, self).__init__()
self.conv_drop = nn.Dropout2d()
self.conv1 = nn.Conv2d(1, 16, kernel_size=5) #img_size = 96
self.conv1_bn = nn.BatchNorm2d(16)
self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4, padding = 0) #img_size = 24
img_size = _out_size(self, input_size, kernel_size = 5, padding = 0, pool = True, pool_kernel_size = 4)
self.conv2 = nn.Conv2d(16, 16, padding = 1, kernel_size=3) #img_size = 24
self.conv2_bn = nn.BatchNorm2d(16)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding = 0) #img_size = 12
img_size = _out_size(self, img_size, padding = 1, kernel_size=3, pool = True, pool_kernel_size = 2 )
self.conv3 = nn.Conv2d(16, 32, padding = 1, kernel_size=3) #img_size = 12
self.conv3_bn = nn.BatchNorm2d(32)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, padding = 0) #img_size = 6
img_size = _out_size(self, img_size, kernel_size=3, padding = 1, pool = True, pool_kernel_size = 2)
D_in = img_size * img_size * 32
self.fc1 = nn.Linear(int(D_in), hidden_size)
def forward(self, phi):
# Batch Normalise every layer ??
phi = F.relu(self.pool1(self.conv1_bn(self.conv1(phi))))
phi = F.relu(self.pool2(self.conv2_bn(self.conv2(phi))))
phi = F.relu(self.pool3(self.conv3_bn(self.conv3(phi))))
# Flatten up the image
phi = phi.view(phi.shape[0], -1)
# feed phi and l to respective fc layers
phi_out = F.relu(self.fc1(phi))
# phi_out = F.normalize(phi_out, p=2, dim=1)
return phi_out
class location_network(nn.Module):
def __init__(self, input_size = 512, hidden_size = 256, out_size = 5):
super(location_network, self).__init__()
# self.std = std
self.fc1 = nn.Linear(input_size, 128)
self.bn1 = nn.BatchNorm1d(128, track_running_stats=False)
# self.fc2 = nn.Linear(hidden_size,128)
self.fc3 = nn.Linear(128,out_size)
self.dropout1 = nn.Dropout(p = 0.2)
# self.dropout2 = nn.Dropout(p = 0.5)
def forward(self, ht):
# ht = self.dropout1(F.relu(self.bn1(self.fc1(ht))))
ht = F.relu(self.bn1(self.fc1(ht)))
# ht = F.relu(self.fc1(ht))
# ht = self.dropout2(F.relu(self.fc2(ht)))
trans_params = self.fc3(ht)
return trans_params #(cos,sin,Tx,Ty,Tz) #,H,W,L )
class STN3d_crop(nn.Module):
def __init__(self, x = 3, y = 5, z = 3, num_points = 512):
super(STN3d_crop, self).__init__()
self.xmin = -x/2.0
self.xmax = x/2.0
self.ymin = -y/2.0
self.ymax = y/2.0
self.zmin = -z/2.0
self.zmax = z/2.0
self.N = num_points
def forward(self, points_tensor, trans_params): #points_tensor.shape = (B,4096,3) loc.shape = (B,3)
B = points_tensor.shape[0]
N = points_tensor.shape[1]
loc = trans_params[:,2:]
c = trans_params[:,0]
s = trans_params[:,1]
# We transposed the rotation matrix bcoz we want to transform point cloud here
rot_mat = torch.eye(3).view(1,-1).repeat(B,1).cuda()
rot_mat[:,0] = c
rot_mat[:,1] = s
rot_mat[:,3] = -s
rot_mat[:,4] = c
rot_mat = rot_mat.view(B,3,3)
# translate the pointcloud
transformed_points = torch.sub(points_tensor, loc.unsqueeze(1))
# rotate the pointcloud
transformed_points = torch.bmm(transformed_points, rot_mat.transpose(1, 2)) # transpose here is bcoz of property (AB) = B.T * A.T
# print(points_tensor)
# Check the points in the bounding box
min_t = torch.tensor([self.xmin, self.ymin, self.zmin]).cuda()
max_t = torch.tensor([self.xmax, self.ymax, self.zmax]).cuda()
# pdb.set_trace()
t = torch.sum(min_t < transformed_points, 2) + torch.sum(transformed_points < max_t, 2)
# print(transformed_points < max_t)
t = t==6
batch_crop = []
for i in range(B):
ind = torch.squeeze(t[i].nonzero())
points_count = ind.nelement() # what for zero case??
if(points_count > 1):
prob = torch.randperm(len(ind))
if(len(ind) > self.N):
idx = prob[:self.N]
crop = transformed_points[i, ind[idx]]
# print(len(crop))
else:
r = int(self.N/len(ind))
ind = ind.repeat(r+1)
crop = transformed_points[i, ind[:self.N]]
# print(len(crop))
else:
crop = torch.ones(self.N,3).cuda()
batch_crop.append(crop)
batch_crop = torch.stack(batch_crop)
return batch_crop
class PointNetfeat(nn.Module):
def __init__(self, c_in = 3, num_points = 512, global_feat = True):
super(PointNetfeat, self).__init__()
self.conv1 = torch.nn.Conv1d(c_in, 64, 1)
self.conv2 = torch.nn.Conv1d(64, 128, 1)
self.conv3 = torch.nn.Conv1d(128, 1024, 1)
self.bn1 = nn.BatchNorm1d(64)
self.bn2 = nn.BatchNorm1d(128)
self.bn3 = nn.BatchNorm1d(1024)
self.mp1 = torch.nn.MaxPool1d(num_points)
self.num_points = num_points
self.global_feat = global_feat
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
pointfeat = x
x = F.relu(self.bn2(self.conv2(x)))
x = self.bn3(self.conv3(x))
x = self.mp1(x)
x = x.view(-1, 1024)
if self.global_feat:
return x
else:
x = x.view(-1, 1024, 1).repeat(1, 1, self.num_points)
return torch.cat([x, pointfeat], 1)
class RegBoundingBox(nn.Module):
def __init__(self,c_in = 1024, k = 8):
super(RegBoundingBox, self).__init__()
self.fc1 = nn.Linear(c_in, 256)
# self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, k)
self.relu = nn.ReLU()
def forward(self, x):
x = F.relu(self.fc1(x))
# x = F.relu(self.fc2(x))
x = self.fc3(x)
return x #(cos,sin,Tx,Ty,Tz,H,W,L)
class SimpleClassifier(nn.Module):
def __init__(self,c_in = 512, k = 1):
super(SimpleClassifier, self).__init__()
# self.fc1 = nn.Linear(c_in, 512)
self.fc2 = nn.Linear(c_in, 128)
self.fc3 = nn.Linear(128, k)
self.relu = nn.ReLU()
self.dropout1 = nn.Dropout(p = 0.2)
self.dropout2 = nn.Dropout(p = 0.5)
def forward(self, x):
# x = self.dropout1(F.relu(self.fc1(x)))
x = self.dropout1(F.relu(self.fc2(x)))
x = self.fc3(x)
return torch.squeeze(torch.sigmoid(x))