-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_app.py
39 lines (32 loc) · 1.29 KB
/
model_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import joblib
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import xgboost as xgb
import pandas as pd
import nltk
import re
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from flask import Flask, request
nltk.download('stopwords')
nltk.download('wordnet')
df = pd.read_csv('/home/anopsy/Code/hackher/data/all_comments.csv')
vectorizer = TfidfVectorizer()
vectorizer.fit_transform(df['Comment'])
loaded_model = joblib.load('/home/anopsy/Code/hackher/model/tunedXGB_model.joblib')
app = Flask(__name__)
@app.route('/predict', methods=['POST'])
def predict():
data = request.json
dtext = data['text']
dtext = re.sub('[^a-zA-Z]', ' ', dtext)
dtext = dtext.lower()
words = dtext.split()
words = [word for word in words if word not in set(stopwords.words('english'))]
vector_input = vectorizer.transform(words)
pred = loaded_model.predict_proba(vector_input)
anx, con, dep, mas = pred[0].tolist()
prediction = f"The probability of this experience to be related to Anxiety : {anx:.2f}, Depression : {dep:.2f}, Autistic Masking : {mas:.2f}, unrelated to any of the earlier mentioned disorders : {con:.2f}"
return {'prediction': prediction}
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)