-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_paired_cococn_en_fc.py
executable file
·443 lines (383 loc) · 19.1 KB
/
train_paired_cococn_en_fc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import pdb
import datetime
import yaml
import io
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pdb
import time
import os
from six.moves import cPickle
# import opts
import opts_en as opts
import models
from dataloader_up_mt import *
import eval_utils_en_fc as eval_utils
import misc.utils as utils
from misc.rewards_up import init_scorer, get_self_critical_reward
from models.weight_init import Model_init
import argparse
import json
try:
import tensorflow as tf
except ImportError:
print("Tensorflow not installed; No tensorboard logging.")
tf = None
def add_summary_value(writer, keys, value, iteration):
summary = tf.compat.v1.Summary(value=[tf.compat.v1.Summary.Value(tag=keys, simple_value=value)])
writer.add_summary(summary, iteration)
def train(opt):
if vars(opt).get('start_from_en', None) is not None:
opt.checkpoint_path_p = opt.start_from_en
opt.id_p = opt.checkpoint_path_p.split('/')[-1]
print('Point to folder: {}'.format(opt.checkpoint_path_p))
else:
opt.id_p = datetime.datetime.now().strftime('%Y%m%d_%H%M%S') + '_' + opt.caption_model
opt.checkpoint_path_p = os.path.join(opt.checkpoint_path_p, opt.id_p)
if not os.path.exists(opt.checkpoint_path_p): os.makedirs(opt.checkpoint_path_p)
print('Create folder: {}'.format(opt.checkpoint_path_p))
# # Deal with feature things before anything
# opt.use_att = utils.if_use_att(opt.caption_model)
# if opt.use_box: opt.att_feat_size = opt.att_feat_size + 5
# loader = DataLoader_UP(opt)
# opt.vocab_size = loader.vocab_size
# if opt.use_rela == 1:
# opt.rela_dict_size = loader.rela_dict_size
# opt.seq_length = loader.seq_length
# use_rela = getattr(opt, 'use_rela', 0)
try:
tb_summary_writer = tf and tf.compat.v1.summary.FileWriter(opt.checkpoint_path_p)
except:
print('Set tensorboard error!')
pdb.set_trace()
infos = {}
histories = {}
if opt.start_from_en is not None or opt.use_pretrained_setting==1:
# open old infos and check if models are compatible
# with open(os.path.join(opt.checkpoint_path_p, 'infos.pkl')) as f:
# infos = cPickle.load(f)
# saved_model_opt = infos['opt']
# need_be_same = ["caption_model", "rnn_type", "rnn_size", "num_layers"]
# for checkme in need_be_same:
# assert vars(saved_model_opt)[checkme] == vars(opt)[checkme], "Command line argument and saved model disagree on '%s' " % checkme
#
# # override and collect parameters
# if len(opt.input_fc_dir) == 0:
# opt.input_fc_dir = infos['opt'].input_fc_dir
# opt.input_att_dir = infos['opt'].input_att_dir
# opt.input_box_dir = infos['opt'].input_box_dir
# # opt.input_label_h5 = infos['opt'].input_label_h5
# if len(opt.input_json) == 0:
# opt.input_json = infos['opt'].input_json
# if opt.batch_size == 0:
# opt.batch_size = infos['opt'].batch_size
# if len(opt.id) == 0:
# opt.id = infos['opt'].id
# # opt.id = infos['opt'].id_p
#
# ignore = ['checkpoint_path', "use_gfc", "use_isg", "ssg_dict_path", "input_json", "input_label_h5", "id",
# "batch_size", "start_from", "language_eval", "use_rela", "input_ssg_dir", "ssg_dict_path",
# "input_rela_dir", "use_spectral_norm", "beam_size", 'gpu', 'caption_model','use_att','max_epochs']
# beam_size = opt.beam_size
#
# vocab = infos['vocab'] # ix -> word mapping
# opt.vocab = vocab
# opt.vocab_size = len(vocab)
# for k in vars(infos['opt']).keys():
# if k != 'model':
# if k not in ignore:
# if k in vars(opt):
# # assert vars(opt)[k] == vars(infos['opt'])[k], k + ' option not consistent'
# vars(opt).update({k: vars(infos['opt'])[k]})
# print (vars(opt)[k] == vars(infos['opt'])[k], k + ' option not consistent, will be copyed from pretrained model')
# else:
# vars(opt).update({k: vars(infos['opt'])[k]}) # copy over options from model
# opt.input_fc_dir = 'data/cocobu_fc'
# opt.p_flag = 0
# Load infos
# opt.infos_path=os.path.join(opt.checkpoint_path_p, 'infos.pkl')
opt.infos_path=os.path.join('data/fc/infos.pkl')
with open(opt.infos_path) as f:
infos = cPickle.load(f)
# override and collect parameters
if len(opt.input_fc_dir) == 0:
opt.input_fc_dir = infos['opt'].input_fc_dir
opt.input_att_dir = infos['opt'].input_att_dir
opt.input_box_dir = infos['opt'].input_box_dir
# opt.input_label_h5 = infos['opt'].input_label_h5
if len(opt.input_json) == 0:
opt.input_json = infos['opt'].input_json
if opt.batch_size == 0:
opt.batch_size = infos['opt'].batch_size
if len(opt.id) == 0:
opt.id = infos['opt'].id
# opt.id = infos['opt'].id_p
ignore = ['checkpoint_path', "use_gfc", "use_isg", "ssg_dict_path", "input_json", "input_label_h5", "id",
"batch_size", "start_from", "language_eval", "use_rela", "input_ssg_dir", "ssg_dict_path",
"input_rela_dir", "use_spectral_norm", "beam_size", 'gpu', 'caption_model','self_critical_after','save_checkpoint_every']
beam_size = opt.beam_size
for k in vars(infos['opt']).keys():
if k != 'model':
if k not in ignore:
if k in vars(opt):
if not vars(opt)[k] == vars(infos['opt'])[k]:
print (k + ' option not consistent, copyed from pretrained model')
vars(opt).update({k: vars(infos['opt'])[k]})
else:
vars(opt).update({k: vars(infos['opt'])[k]}) # copy over options from model
vocab = infos['vocab'] # ix -> word mapping
opt.vocab = vocab
opt.vocab_size = len(vocab)
opt.input_fc_dir = 'data/cocobu_fc'
if os.path.isfile(os.path.join(opt.checkpoint_path_p, 'histories.pkl')):
with open(os.path.join(opt.checkpoint_path_p, 'histories.pkl')) as f:
histories = cPickle.load(f)
# Create the Data Loader instance
loader = DataLoader_UP(opt)
if opt.use_rela == 1:
opt.rela_dict_size = loader.rela_dict_size
opt.seq_length = loader.seq_length
use_rela = getattr(opt, 'use_rela', 0)
# When eval using provided pretrained model, the vocab may be different from what you have in your cocotalk.json
# So make sure to use the vocab in infos file.
try: # if use pretrained model
loader.ix_to_word = infos['vocab']
except: # if train from scratch
infos = json.load(open(opt.input_json))
opt.ix_to_word = infos['ix_to_word']
opt.vocab_size = len(opt.ix_to_word)
# iteration = infos.get('iter', 0)
# epoch = infos.get('epoch', 0)
iteration = 0
epoch = 0
val_result_history = histories.get('val_result_history', {})
loss_history = histories.get('loss_history', {})
lr_history = histories.get('lr_history', {})
ss_prob_history = histories.get('ss_prob_history', {})
loader.iterators = infos.get('iterators', loader.iterators)
loader.split_ix = infos.get('split_ix', loader.split_ix)
if opt.load_best_score == 1:
best_val_score = infos.get('best_val_score', None)
# Setup the model
try:
opt.caption_model = opt.caption_model_zh
except:
opt.caption_model = opt.caption_model
model = models.setup(opt).cuda()
# dp_model = torch.nn.DataParallel(model)
# dp_model = torch.nn.DataParallel(model, [0,2,3])
dp_model = model
update_lr_flag = True
# Assure in training mode
dp_model.train()
parameters = model.named_children()
crit = utils.LanguageModelCriterion()
rl_crit = utils.RewardCriterion()
optimizer = utils.build_optimizer(filter(lambda p: p.requires_grad, model.parameters()), opt)
optimizer.zero_grad()
accumulate_iter = 0
train_loss = 0
reward = np.zeros([1, 1])
while True:
if update_lr_flag:
# Assign the learning rate
if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0:
frac = (epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every
decay_factor = opt.learning_rate_decay_rate ** frac
opt.current_lr = opt.learning_rate * decay_factor
else:
opt.current_lr = opt.learning_rate
utils.set_lr(optimizer, opt.current_lr)
# Assign the scheduled sampling prob
if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0:
frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every
opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob)
model.ss_prob = opt.ss_prob
# If start self critical training
if opt.self_critical_after != -1 and epoch >= opt.self_critical_after:
sc_flag = True
init_scorer(opt.cached_tokens)
else:
sc_flag = False
update_lr_flag = False
start = time.time()
# Load data from train split (0)
data = loader.get_batch(opt.train_split)
# print('Read data:', time.time() - start)
torch.cuda.synchronize()
start = time.time()
fc_feats = None
att_feats = None
att_masks = None
ssg_data = None
rela_data = None
if getattr(opt, 'use_ssg', 0) == 1:
if getattr(opt, 'use_isg', 0) == 1:
tmp = [data['fc_feats'], data['labels'], data['masks'], data['att_feats'], data['att_masks'],
data['isg_rela_matrix'], data['isg_rela_masks'], data['isg_obj'], data['isg_obj_masks'], data['isg_attr'], data['isg_attr_masks'],
data['ssg_rela_matrix'], data['ssg_rela_masks'], data['ssg_obj'], data['ssg_obj_masks'], data['ssg_attr'], data['ssg_attr_masks']]
tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp]
fc_feats, labels, masks, att_feats, att_masks, \
isg_rela_matrix, isg_rela_masks, isg_obj, isg_obj_masks, isg_attr, isg_attr_masks, \
ssg_rela_matrix, ssg_rela_masks, ssg_obj, ssg_obj_masks, ssg_attr, ssg_attr_masks = tmp
# image graph domain
isg_data = {}
isg_data['att_feats'] = att_feats
isg_data['att_masks'] = att_masks
isg_data['isg_rela_matrix'] = isg_rela_matrix
isg_data['isg_rela_masks'] = isg_rela_masks
isg_data['isg_obj'] = isg_obj
isg_data['isg_obj_masks'] = isg_obj_masks
isg_data['isg_attr'] = isg_attr
isg_data['isg_attr_masks'] = isg_attr_masks
# text graph domain
ssg_data = {}
ssg_data['ssg_rela_matrix'] = ssg_rela_matrix
ssg_data['ssg_rela_masks'] = ssg_rela_masks
ssg_data['ssg_obj'] = ssg_obj
ssg_data['ssg_obj_masks'] = ssg_obj_masks
ssg_data['ssg_attr'] = ssg_attr
ssg_data['ssg_attr_masks'] = ssg_attr_masks
else:
tmp = [data['fc_feats'], data['ssg_rela_matrix'], data['ssg_rela_masks'], data['ssg_obj'], data['ssg_obj_masks'],
data['ssg_attr'], data['ssg_attr_masks'], data['labels'], data['masks']]
tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp]
fc_feats, ssg_rela_matrix, ssg_rela_masks, ssg_obj, ssg_obj_masks, ssg_attr, ssg_attr_masks, labels, masks = tmp
ssg_data = {}
ssg_data['ssg_rela_matrix'] = ssg_rela_matrix
ssg_data['ssg_rela_masks'] = ssg_rela_masks
ssg_data['ssg_obj'] = ssg_obj
ssg_data['ssg_obj_masks'] = ssg_obj_masks
ssg_data['ssg_attr'] = ssg_attr
isg_data = None
ssg_data['ssg_attr_masks'] = ssg_attr_masks
else:
tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks']]
tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp]
fc_feats, att_feats, labels, masks, att_masks = tmp
if not sc_flag:
# loss = crit(dp_model(fc_feats, labels, isg_data, ssg_data), labels[:, 1:], masks[:, 1:])
loss = crit(dp_model(fc_feats, att_feats, labels, att_masks), labels[:, 1:], masks[:, 1:])
else:
gen_result, sample_logprobs = dp_model(fc_feats, isg_data, ssg_data, opt={'sample_max': 0}, mode='sample')
reward = get_self_critical_reward(dp_model, fc_feats, isg_data, ssg_data, data, gen_result, opt)
loss = rl_crit(sample_logprobs, gen_result.data, torch.from_numpy(reward).float().cuda())
accumulate_iter = accumulate_iter + 1
loss = loss / opt.accumulate_number
loss.backward()
if accumulate_iter % opt.accumulate_number == 0:
utils.clip_gradient(optimizer, opt.grad_clip)
optimizer.step()
optimizer.zero_grad()
iteration += 1
accumulate_iter = 0
train_loss = loss.item() * opt.accumulate_number
end = time.time()
if not sc_flag:
print("{}/{}/{}|train_loss={:.3f}|time/batch={:.3f}" \
.format(opt.id_p, iteration, epoch, train_loss, end - start))
else:
print("{}/{}/{}|avg_reward={:.3f}|time/batch={:.3f}" \
.format(opt.id_p, iteration, epoch, np.mean(reward[:, 0]), end - start))
torch.cuda.synchronize()
# Update the iteration and epoch
if data['bounds']['wrapped']:
epoch += 1
update_lr_flag = True
# Write the training loss summary
if (iteration % opt.losses_log_every == 0) and (iteration != 0):
add_summary_value(tb_summary_writer, 'train_loss', train_loss, iteration)
add_summary_value(tb_summary_writer, 'learning_rate', opt.current_lr, iteration)
add_summary_value(tb_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration)
if sc_flag:
add_summary_value(tb_summary_writer, 'avg_reward', np.mean(reward[:, 0]), iteration)
loss_history[iteration] = train_loss if not sc_flag else np.mean(reward[:, 0])
lr_history[iteration] = opt.current_lr
ss_prob_history[iteration] = model.ss_prob
# make evaluation on validation set, and save model
if (iteration % opt.save_checkpoint_every == 0) and (iteration != 0):
# if (iteration % 100 == 0) and (iteration != 0):
# eval model
if use_rela:
eval_kwargs = {'split': 'val',
'dataset': opt.input_json,
'use_real': 1}
else:
eval_kwargs = {'split': 'val',
'dataset': opt.input_json}
eval_kwargs.update(vars(opt))
val_loss, predictions, lang_stats = eval_utils.eval_split_fc(dp_model, crit, loader, eval_kwargs)
# Write validation result into summary
add_summary_value(tb_summary_writer, 'validation loss', val_loss, iteration)
if lang_stats is not None:
for k, v in lang_stats.items():
add_summary_value(tb_summary_writer, k, v, iteration)
val_result_history[iteration] = {'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions}
# Save model if is improving on validation result
if opt.language_eval == 1:
current_score = lang_stats['CIDEr']
else:
current_score = - val_loss
best_flag = False
if True: # if true
save_id = iteration / opt.save_checkpoint_every
if best_val_score is None or current_score > best_val_score:
best_val_score = current_score
best_flag = True
checkpoint_path_p = os.path.join(opt.checkpoint_path_p, 'model.pth')
torch.save(model.state_dict(), checkpoint_path_p)
print("model saved to {}".format(checkpoint_path_p))
optimizer_path = os.path.join(opt.checkpoint_path_p, 'optimizer.pth')
torch.save(optimizer.state_dict(), optimizer_path)
# Dump miscalleous informations
infos['iter'] = iteration
infos['epoch'] = epoch
infos['iterators'] = loader.iterators
infos['split_ix'] = loader.split_ix
infos['best_val_score'] = best_val_score
infos['opt'] = opt
infos['vocab'] = loader.get_vocab()
histories['val_result_history'] = val_result_history
histories['loss_history'] = loss_history
histories['lr_history'] = lr_history
histories['ss_prob_history'] = ss_prob_history
with open(os.path.join(opt.checkpoint_path_p, 'infos.pkl'), 'wb') as f:
cPickle.dump(infos, f)
with open(os.path.join(opt.checkpoint_path_p, 'histories.pkl'), 'wb') as f:
cPickle.dump(histories, f)
if best_flag:
checkpoint_path_p = os.path.join(opt.checkpoint_path_p, 'model-best.pth')
torch.save(model.state_dict(), checkpoint_path_p)
print("model saved to {}".format(checkpoint_path_p))
with open(os.path.join(opt.checkpoint_path_p, 'infos-best.pkl'), 'wb') as f:
cPickle.dump(infos, f)
# Stop if reaching max epochs
if epoch >= opt.max_epochs and opt.max_epochs != -1:
break
opt = opts.parse_opt()
# opt.input_json='data/COCOCN_en_addtraindata.json'
# opt.input_label_h5='data/COCOCN_en_addtraindata_label.h5'
# opt.input_json='data/COCOCN_en.json'
# opt.input_label_h5='data/COCOCN_en_label.h5'
# opt.gpu=0
# opt.caption_model='newfc'
# opt.use_ssg=0
# opt.use_isg=0
# opt.p_flag=1
# opt.start_from_en='unpaired_image_caption_revise/save/20201101_115812_newfc/'
# opt.checkpoint_path_p='unpaired_image_caption_revise/save/20201101_115812_newfc/'
# opt.rnn_size=1000
# opt.self_critical_after=1000000000
# opt.batch_size=50
# opt.save_checkpoint_every=1000
# opt.seq_per_img=5
# opt.train_split='train'
# opt.use_pretrained_setting=0
# opt.num_images=1000
os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.gpu)
train(opt)