forked from des-science/destest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdestest.yaml
68 lines (58 loc) · 2.99 KB
/
destest.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Tests
# Test settings
# number of bins for linear (non-2pt) splitting
linear_bins : 20
# columns over which to iterate linear splitting
# reuse cached intermediate results? This will make subsequent runs much faster.
load_cache : True
# output directory
output : .
# If False, testsuite will terminate if the output directory already exists.
output_exists : True
use_mpi : False
# Tests to run
# Calculate general statistics for all columns
#general_stats : ['R11', 'R12', 'R21', 'R22', 'covmat_0_0', 'covmat_0_1', 'covmat_1_1', 'e1', 'e2', 'flux_err_i', 'flux_err_r', 'flux_err_z', 'flux_i', 'flux_r', 'flux_z', 'mask_frac', 'psf_e1', 'psf_e2', 'psf_size', 'size', 'size_err', 'size_ratio', 'snr']
# Do linear mean value splits by 'x' column list
split_mean : ['e1','e2','snr','psf_e1','psf_e2','size','psf_size','size_ratio','mask_frac','flux_i']
split_x : ['e1','e2','snr','psf_e1','psf_e2','size','psf_size','size_ratio','mask_frac','flux_i']
split_by_w : False
# Calculte histograms
# hist_1d : ['R11', 'R12', 'R21', 'R22', 'covmat_0_0', 'covmat_0_1', 'covmat_1_1', 'e1', 'e2', 'flux_err_i', 'flux_err_r', 'flux_err_z', 'flux_i', 'flux_r', 'flux_z', 'mask_frac', 'psf_e1', 'psf_e2', 'psf_size', 'size', 'size_err', 'size_ratio', 'snr']
#hist_2d : ['R11', 'R12', 'R21', 'R22', 'covmat_0_0', 'covmat_0_1', 'covmat_1_1', 'e1', 'e2', 'flux_err_i', 'flux_err_r', 'flux_err_z', 'flux_i', 'flux_r', 'flux_z', 'mask_frac', 'psf_e1', 'psf_e2', 'psf_size', 'size', 'size_err', 'size_ratio', 'snr']
hist_bins : 500
plot_only : False
plot_log_x : [] #['covmat_0_0','covmat_0_1','covmat_1_0','covmat_1_1','snr','size','size_ratio','flux_i','flux_r','flux_z','flux_err_i','flux_err_r','flux_err_z','R11','R22','R12','R21']
# Data source
# calibration type
cal_type : 'mcal'
# Type of data source. Currently only works for 'hdf5'
source : 'hdf5'
# name of file
filename : '/global/cscratch1/sd/troxel/cats_des_y3/Y3_mastercat_v1_2_10_18.h5'
# For hdf5, group name
group : 'catalog/metacal'
# if metacalibrating, include array of five tables: unsehared, 1p, 1m, 2p, 2m
# else if classic calibration, include table name (still as a list of length one)
table : ['unsheared', 'sheared_1p', 'sheared_1m', 'sheared_2p', 'sheared_2m']
# shearing factor for metacal
dg : 0.01
# Selection
# optional direct path to select flags
select_path : 'index/select'
# columns with which to mask the catalog
select_cols : ['snr','snr','size_ratio','flags']
# expressions by which to mask (must match 1-1 the list of select_cols)
# select_exp : ['5<col','col<500','col>0.25','col==0']
select_exp : ['10<col','col<100','col>0.5','col==0']
# Catalog dicts
# len 2 array with column names for ellipticity
e : ['e1','e2'] # Must exist at least as an empty list
# len 2 array with column names for shear response (or m)
Rg : ['R11','R22']
# len 2 array with column names for c (additive correction)
# c : None
# column name for weight
# w : None
# Pretty name dicts
#