-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDogVsCat_fineTune.py
84 lines (70 loc) · 2.47 KB
/
DogVsCat_fineTune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import time
from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential
from keras.layers import Dropout, Flatten, Dense
# path to the model weights files.
top_model_weights_path = '../Data/keras/bottleneck_fc_model.h5'
# dimensions of our images.
img_width, img_height = 150, 150
train_data_dir = '../Data/dogscats/train'
validation_data_dir = '../Data/dogscats/validation'
nb_train_samples = 20000
nb_validation_samples = 5000
epochs = 50
batch_size = 50
# build the VGG16 network
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape = (img_width,img_height,3))
print('Base Model loaded.')
for layer in base_model.layers[:15]:
layer.trainable = False
for layer in base_model.layers:
print(layer, layer.trainable)
# Create the model
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(1, activation='sigmoid'))
top_model.load_weights(top_model_weights_path)
# Combine base and top
model = Sequential()
model.add(base_model)
model.add(top_model)
#Check the trainable layers
for layer in model.layers:
print(layer, layer.trainable)
# compile the model with a SGD/momentum optimizer
# and a very slow learning rate.
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
metrics=['accuracy'])
# prepare data augmentation configuration
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
# fine-tune the model
start_time = time.time()
history = model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples//batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples//batch_size)
print("--- %s seconds ---" % (time.time() - start_time))
fineTune_model_weights_path = '../Data/keras/fineTune_model.h5'
model.save_weights(fineTune_model_weights_path)