forked from CogComp/KAIROS-Event-Extraction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util_new.py
1206 lines (1078 loc) · 60.3 KB
/
util_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import spacy
import shutil
import ujson as json
import os
from tqdm import tqdm
from multiprocessing import Pool
import pandas
import torch
import argparse
from allennlp.predictors.predictor import Predictor
from transformers import BertTokenizer, BertModel
import allennlp_models.tagging
from gurobi import *
import numpy as np
from spacy.lemmatizer import Lemmatizer
import requests
from time import time
import json
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
# from spacy.lookups import Lookups
freq_limit_verb = 0.00006
freq_limit_nominal = 0.00001
stop_words_list = set(stopwords.words('english'))
exclude_words_list = set({ "according", "suggest", "suggests", "suggested", "suggesting", "tell", "tells", "telling", "told", "say", "says", "said", "saying", "based", "would", "including", "understand", "understands", "understood", "think", "thinks", "thinking", "thought"})
def filter_words(w, exclude_words=(), no_stop_words=True, tag_prefix="", selected_tags=[], stop_words=stop_words_list):
if w in exclude_words:
# print(w, " in ", "exclude_words_list")
return False
if no_stop_words and w in stop_words:
# print(w , " in ", stop_words)
return False
tagged = nltk.pos_tag([w])
if (tag_prefix and tagged[0][1][:len(tag_prefix)]==tag_prefix) or (tagged[0][1] in selected_tags):
return True
# else:
# print(w, " is ", tagged)
return True
def load_event_ontology(path):
# we need to load the event ontology
event_definitions = pandas.read_excel(path, sheet_name='events')
event_schema_to_roles = dict()
event_types = list()
role_types = list()
role_to_type = dict()
trigger_keywords = dict()
role_keywords = dict()
for index, row in event_definitions.iterrows():
event_name = row['Type'] + ':' + row['Subtype'] + ':' + row['Sub-subtype']
event_types.append(event_name)
trigger_keywords[event_name] = row['Keyword'].split('$$')
roles = list()
for i in range(6):
tmp_key = 'arg' + str(i + 1) + ' label'
tmp_keywords = 'arg' + str(i + 1) + ' keyword'
tmp_constraint_key = 'arg' + str(i + 1) + ' type constraints'
if isinstance(row[tmp_key], str):
roles.append(row[tmp_key])
role_types.append(row[tmp_key])
raw_entity_types = row[tmp_constraint_key].split(', ')
role_to_type[row[tmp_key]] = list()
for tmp_entity_type in raw_entity_types:
if tmp_entity_type[-1] == ' ':
role_to_type[row[tmp_key]].append(tmp_entity_type[:-1])
else:
role_to_type[row[tmp_key]].append(tmp_entity_type)
role_to_type[row[tmp_key]].append('NAN')
role_keywords[row[tmp_key]] = row[tmp_keywords].split('$$')
event_schema_to_roles[event_name] = roles
role_types = list(set(role_types))
return {'event_types': event_types, 'role_types': role_types, 'event_schema_to_roles': event_schema_to_roles,
'role_to_type': role_to_type, 'trigger_keywords': trigger_keywords, 'role_keywords': role_keywords}
class gurobi_opt:
def __init__(self, predicate_score, argument_scores, entity_types, selected_event_types, selected_role_types,
weight=10,
prediction_length=5):
self.num_predicate_labels = len(predicate_score)
self.num_argument_labels = len(argument_scores[0])
self.num_max = max(self.num_predicate_labels, self.num_argument_labels)
self.initial_predicate_score = predicate_score + [0] * (self.num_max - self.num_predicate_labels) # 1*num_max
# self.initial_predicate_score = list(softmax(np.asarray(predicate_score + [0] * (self.num_max - self.num_predicate_labels))))
self.initial_argument_scores = list()
for tmp_arg_pos in range(len(argument_scores)):
self.initial_argument_scores.append(
argument_scores[tmp_arg_pos] + [0] * (self.num_max - self.num_argument_labels)) # n*num_max
# self.initial_argument_scores.append(list(softmax(np.asarray(argument_scores[tmp_arg_pos] + [0] * (self.num_max - self.num_argument_labels)))))
self.prediction_length = prediction_length
self.selected_event_types = selected_event_types
self.selected_role_types = selected_role_types
self.entity_types = entity_types
self.weight = weight
def optimize_all(self):
predicate_prediction = list()
argument_predictions = list()
for _ in range(len(self.initial_argument_scores)):
argument_predictions.append(list())
# make prediction for predicates
for prediction_iteration in range(self.prediction_length):
# print('We need to update the scores')
tmp_predicate_score = list()
for e_type_id, tmp_score in enumerate(self.initial_predicate_score):
if e_type_id < self.num_predicate_labels and self.selected_event_types[
e_type_id] in predicate_prediction:
tmp_predicate_score.append(0)
else:
tmp_predicate_score.append(tmp_score)
input_scores = [np.asarray(tmp_predicate_score)]
for tmp_arg_pos in range(len(self.initial_argument_scores)):
tmp_argument_score = list()
for r_type_id, tmp_score in enumerate(self.initial_argument_scores[tmp_arg_pos]):
tmp_argument_score.append(tmp_score)
input_scores.append(np.asarray(tmp_argument_score))
input_scores_array = np.asarray(input_scores)
optimized_scores = self.optimize(input_scores_array)
for tmp_pos in range(len(optimized_scores)):
if tmp_pos == 0:
# predicate
for k in range(self.num_max):
if optimized_scores[tmp_pos][k] > 0:
if k > self.num_predicate_labels - 1:
predicate_prediction.append('None')
else:
predicate_prediction.append(self.selected_event_types[k])
break
else:
continue
# make prediction for arguments
for prediction_iteration in range(self.prediction_length):
# print('We need to update the scores')
tmp_predicate_score = list()
for e_type_id, tmp_score in enumerate(self.initial_predicate_score):
tmp_predicate_score.append(tmp_score)
input_scores = [np.asarray(tmp_predicate_score)]
for tmp_arg_pos in range(len(self.initial_argument_scores)):
tmp_argument_score = list()
for r_type_id, tmp_score in enumerate(self.initial_argument_scores[tmp_arg_pos]):
if r_type_id < self.num_argument_labels and self.selected_role_types[r_type_id] in \
argument_predictions[tmp_arg_pos]:
tmp_argument_score.append(0)
else:
tmp_argument_score.append(tmp_score)
input_scores.append(np.asarray(tmp_argument_score))
input_scores_array = np.asarray(input_scores)
optimized_scores = self.optimize(input_scores_array)
for tmp_pos in range(len(optimized_scores)):
if tmp_pos == 0:
# predicate
continue
else:
# arguments
for k in range(self.num_max):
if optimized_scores[tmp_pos][k] > 0:
# argument_predictions[tmp_pos - 1].append(self.selected_role_types[k])
if k > self.num_argument_labels - 1:
argument_predictions[tmp_pos - 1].append('None')
else:
argument_predictions[tmp_pos - 1].append(self.selected_role_types[k])
break
return predicate_prediction, argument_predictions
def optimize(self, input_scores):
self.model = Model('lp')
self.model.setParam('OutputFlag', False)
self.x = self.model.addVars(input_scores.shape[0], self.num_max, lb=0.0, ub=1.0, obj=input_scores,
vtype=GRB.INTEGER,
name="x")
# For each prediction, we can only predict one result
self.model.addConstrs((self.sum_prob(i) == 1.0 for i in range(input_scores.shape[0])), name='prob_constrs')
# For each event, we cannot assign multiple arguments to the same role
self.model.addConstrs((self.pred_prob(input_scores.shape[0] - 1, k) <= 1.0 for k in range(self.num_max)),
name='no_repeat_prediction')
# Add constraints from the definitions
for tmp_e_position, tmp_e_type in enumerate(self.selected_event_types):
for tmp_r_position, tmp_r_type in enumerate(self.selected_role_types):
if tmp_r_type not in event_schema_to_roles[tmp_e_type]:
self.model.addConstrs(
(self.x[0, tmp_e_position] + self.x[tmp_row + 1, tmp_r_position] <= 1.0 for tmp_row in
range(input_scores.shape[0] - 1)), name='event_definition')
#
# add constraints from the entity types
# for tmp_argument_pos in range(input_scores.shape[0] - 1):
# for tmp_r_position, tmp_r_type in enumerate(self.selected_role_types):
# if self.entity_types[tmp_argument_pos] not in role_to_type[tmp_r_type]:
# self.model.addConstr(self.x[tmp_argument_pos + 1, tmp_r_position] == 0.0)
#
# for tmp_e_position, tmp_e_type in enumerate(self.selected_event_types):
# possible_entitie_types = list()
# for tmp_r in event_schema_to_roles[tmp_e_type]:
# possible_entitie_types += role_to_type[tmp_r]
# for tmp_entity_type in self.entity_types:
# if tmp_entity_type not in possible_entitie_types:
# self.model.addConstr(self.x[0, tmp_e_position] == 0.0)
# break
self.model.update()
self.sum_score = 0.0
for i in range(input_scores.shape[0]):
if i == 0:
for k in range(self.num_max):
self.sum_score += self.x[i, k] * input_scores[i][k] * self.weight * (input_scores.shape[0] - 1)
# self.sum_score += self.x[i, k] * input_scores[i][k] * 99 * (input_scores.shape[0] - 1)
else:
for k in range(self.num_max):
self.sum_score += self.x[i, k] * input_scores[i][k]
self.model.setObjective(self.sum_score, GRB.MAXIMIZE) # maximize profit
self.model.optimize()
# print(input_scores)
results = list()
for i in range(input_scores.shape[0]):
tmp_scores = list()
for k in range(self.num_max):
tmp_scores.append(self.x[i, k].X)
results.append(tmp_scores)
# print(results)
return results
# self.model.printAttr('X')
def __call__(self):
for v in self.model.getVars():
print('%s %g' % (v.varName, v.x))
return self.model.getVars()
def sum_prob(self, i):
sum_prob = 0.0
for k in range(self.num_max):
sum_prob += self.x[i, k]
return sum_prob
def pred_prob(self, num_arguments, k):
sum_prob = 0.0
for arg_id in range(num_arguments):
sum_prob += self.x[arg_id + 1, k]
return sum_prob
def get_represetation(sentence, target_positions, tokenizer, model, device, representation_type='all'):
start_position = target_positions[0]
end_position = target_positions[1]
tokens = list()
masks = list()
# new_tokens = tokenizer.encode('<s>', add_special_tokens=False)
new_tokens = tokenizer.encode('[CLS]', add_special_tokens=False)
tokens += new_tokens
masks += [1] * len(new_tokens)
token_start_position = 0
token_end_position = -1
for i, w in enumerate(sentence):
if i == start_position:
token_start_position = len(tokens)
if i == end_position:
token_end_position = len(tokens)
if start_position <= i < end_position:
if representation_type == 'all':
new_tokens = tokenizer.encode(w, add_special_tokens=False)
else:
new_tokens = tokenizer.encode(tokenizer.mask_token, add_special_tokens=False)
tokens += new_tokens
masks += [0] * len(new_tokens)
else:
new_tokens = tokenizer.encode(w, add_special_tokens=False)
tokens += new_tokens
masks += [1] * len(new_tokens)
# new_tokens = tokenizer.encode('</s>', add_special_tokens=False)
new_tokens = tokenizer.encode('[SEP]', add_special_tokens=False)
tokens += new_tokens
masks += [1] * len(new_tokens)
if len(tokens) > 512:
return 'Too long'
tensorized_token = torch.tensor([tokens]).to(device)
tensorized_mask = torch.tensor([masks]).to(device)
if representation_type == 'all':
resulted_embedding = torch.mean(model(tensorized_token)[0][:, token_start_position:token_end_position, :],
dim=1)
else:
resulted_embedding = torch.mean(
model(tensorized_token, attention_mask=tensorized_mask)[0][:, token_start_position:token_end_position, :],
dim=1)
return torch.tensor(resulted_embedding.tolist()).view(1, -1).to(device)
def make_prediction_new(sentence_emb, all_label_embs_list, all_event_types, etype_radius):
sentence_embedding_pile = sentence_emb.repeat(len(all_label_embs_list), 1)
all_label_embs = torch.cat(all_label_embs_list, dim=0)
similarities = cos(sentence_embedding_pile, all_label_embs).view(1, -1)
sorted_similarities, argument_indexes = torch.sort(similarities, dim=1, descending=True)
# print(all_event_types[argument_indexes.tolist()[0][0]])
sorted_event_types = list()
for local_p in argument_indexes.tolist()[0]:
sorted_event_types.append(all_event_types[local_p])
# if sorted_event_types[0] in event_types and (1 - sorted_similarities.tolist()[0][0]) <= etype_radius[
# sorted_event_types[0]]:
if sorted_event_types[0] in event_types:
# print((1-sorted_similarities.tolist()[0][0]))
return True, sorted_event_types
else:
return False, sorted_event_types
def get_similarity_score(sentence_emb, label_embs):
sentence_emb = sentence_emb.view(1, -1) # n*1024
mean_embedding = torch.mean(torch.cat(label_embs, dim=0), dim=0).view(1, -1) # n*1024
similarities = cos(sentence_emb, mean_embedding).view(1, -1) # 1*n
return similarities.tolist()[0][0] # [1,1]
def map_tokens_to_chars(tokens, sentence, previous_token):
token_span = []
pointer = 0
for token in tokens:
while True:
if token[0] == sentence[pointer]:
start = pointer
end = start + len(token) - 1
pointer = end + 1
break
else:
pointer += 1
token_span.append([start + previous_token, end + previous_token])
return token_span
def map_tokens_to_tokens(tokens, target_tokens):
token_span = []
next_pointer = 0
for token in tokens:
pointer = next_pointer
while True:
if token == target_tokens[pointer]:
token_span.append(pointer)
next_pointer = pointer + 1
break
else:
pointer += 1
if pointer >= len(target_tokens):
token_span.append(-1)
break
return token_span
class CogcompKairosEventExtractor:
def __init__(self, device):
self.device = device
self.tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
self.model = BertModel.from_pretrained('bert-large-uncased').to(device)
self.model.eval()
with open('data/selected_e_types.json', 'r') as f:
all_event_types = json.load(f)
with open('data/selected_r_types.json', 'r') as f:
all_role_types = json.load(f)
self.all_trigger_keywords = list()
for tmp_key_word in trigger_keywords:
self.all_trigger_keywords += trigger_keywords[tmp_key_word]
all_trigger_keywords = list(set(self.all_trigger_keywords))
selected_all_event_types = list()
with open('all_types/event.ontology.new.txt', 'r',
encoding='utf-8') as f:
for line in f:
words = line[:-1].split('\t')
tmp_event_type = words[1] + ':' + words[2]
tmp_keywords = words[1].split(' ')
if tmp_event_type not in all_event_types:
continue
no_overlap = True
for tmp_k in tmp_keywords:
if tmp_k in all_trigger_keywords:
no_overlap = False
break
if no_overlap:
selected_all_event_types.append(tmp_event_type)
self.all_event_types = event_types + selected_all_event_types
all_role_types = list(set(role_types + all_role_types))
self.etype_to_distinct_embeddings = dict()
self.rtype_to_distinct_embeddings = dict()
self.etype_embeddings = list()
self.rtype_embeddings = list()
with open('data/etype_to_distinct_embeddings.json', 'r') as f:
raw_etype_to_distinct_embeddings = json.load(f)
for tmp_e_type in self.all_event_types:
self.etype_to_distinct_embeddings[tmp_e_type] = list()
for tmp_embedding in raw_etype_to_distinct_embeddings[tmp_e_type]:
self.etype_to_distinct_embeddings[tmp_e_type].append(
torch.tensor(tmp_embedding).view(1, -1).to(device))
self.etype_embeddings.append(
torch.mean(torch.cat(self.etype_to_distinct_embeddings[tmp_e_type], dim=0), dim=0).view(1, -1))
with open('data/rtype_to_distinct_embeddings.json', 'r') as f:
raw_rtype_to_distinct_embeddings = json.load(f)
for tmp_r_type in all_role_types:
self.rtype_to_distinct_embeddings[tmp_r_type] = list()
for tmp_embedding in raw_rtype_to_distinct_embeddings[tmp_r_type]:
self.rtype_to_distinct_embeddings[tmp_r_type].append(
torch.tensor(tmp_embedding).view(1, -1).to(device))
self.rtype_embeddings.append(
torch.mean(torch.cat(self.rtype_to_distinct_embeddings[tmp_r_type], dim=0), dim=0).view(1, -1))
self.etype_radius = dict()
for tmp_e_type in event_types:
mean_embedding = torch.mean(torch.cat(self.etype_to_distinct_embeddings[tmp_e_type], dim=0), dim=0).view(1,
-1)
positive_embeddings = self.etype_to_distinct_embeddings[tmp_e_type]
negative_embeddings = list()
for tmp_other_e_type in self.all_event_types:
if tmp_other_e_type != tmp_e_type:
negative_embeddings += self.etype_to_distinct_embeddings[tmp_other_e_type]
positive_distance = torch.tensor(1.).to(device) - cos(torch.cat(positive_embeddings, dim=0),
mean_embedding.repeat(len(positive_embeddings),
1)).view(1,
-1)
positive_distance = positive_distance.tolist()[0]
negative_distance = torch.tensor(1.).to(device) - cos(torch.cat(negative_embeddings, dim=0),
mean_embedding.repeat(len(negative_embeddings),
1)).view(1,
-1)
negative_distance = negative_distance.tolist()[0]
best_radius = 0
best_F1 = 0
best_p = 0
best_r = 0
for tmp_radius in range(100):
tmp_radius = tmp_radius / 100
correct_count = 0
predict_count = 0
for tmp_positive_distance in positive_distance:
if tmp_positive_distance <= tmp_radius:
correct_count += 1
predict_count += 1
for tmp_negative_distance in negative_distance:
if tmp_negative_distance <= tmp_radius:
predict_count += 1
if correct_count == 0:
continue
tmp_p = correct_count / predict_count
tmp_r = correct_count / len(positive_distance)
tmp_F1 = (2 * tmp_p * tmp_r) / (tmp_p + tmp_r)
if tmp_F1 > best_F1:
best_F1 = tmp_F1
best_p = tmp_p
best_r = tmp_r
best_radius = tmp_radius
self.etype_radius[tmp_e_type] = best_radius
def extract(self, input_sentence):
SRL_parsing_results = Verbal_SRL_parsing(input_sentence)
# print(SRL_parsing_results)
NER_parsing_results = NER_parsing(input_sentence)
# print(NER_parsing_results)
tmp_lemmas = list()
words = sp(input_sentence)
for w in words:
tmp_lemmas.append(w.lemma_)
predictions = list()
identified_trigger_positions = list()
detected_ners = dict()
start_position = -1
for tmp_position, tag in enumerate(NER_parsing_results['tags']):
if 'U-' == tag[:2]:
detected_ners[(tmp_position, tmp_position + 1)] = tag.split('-')[1].lower()
if start_position >= 0:
if tag[:2] not in ['I-', 'L-']:
detected_ners[(start_position, tmp_position)] = tag.split('-')[1].lower()
start_position = -1
else:
if 'B-' == tag[:2]:
start_position = start_position
if start_position >= 0:
detected_ners[(start_position, len(NER_parsing_results['tags']))] = \
NER_parsing_results['tags'][-1].split('-')[
1].lower()
trigger_to_arguments = dict()
# print(SRL_parsing_results)
for tmp_v in SRL_parsing_results['verbs']:
if 'B-V' not in tmp_v['tags']:
continue
identified_trigger_positions.append((tmp_v['tags'].index('B-V'), tmp_v['tags'].index('B-V') + 1))
tmp_identified_argument_positions = list()
start_position = -1
for tmp_position, tmp_tag in enumerate(tmp_v['tags']):
if start_position >= 0:
if 'I-ARG' not in tmp_tag:
tmp_identified_argument_positions.append((start_position, tmp_position))
if 'B-ARG' in tmp_tag:
start_position = tmp_position
else:
start_position = -1
else:
if tmp_tag in ['B-ARG0', 'B-ARG1', 'B-ARG2']:
start_position = tmp_position
if start_position >= 0:
tmp_identified_argument_positions.append((start_position, len(tmp_v['tags'])))
argument_positions = list()
for tmp_entity in detected_ners:
for tmp_a in tmp_identified_argument_positions:
if tmp_entity[1] >= tmp_a[0] and tmp_entity[0] <= tmp_a[1]:
argument_positions.append(tmp_entity)
break
trigger_to_arguments[
(tmp_v['tags'].index('B-V'), tmp_v['tags'].index('B-V') + 1)] = tmp_identified_argument_positions
for tmp_location, tmp_lemma in enumerate(tmp_lemmas):
if (tmp_location, tmp_location + 1) not in identified_trigger_positions:
if tmp_lemma in self.all_trigger_keywords:
identified_trigger_positions.append((tmp_location, tmp_location + 1))
trigger_to_arguments[(tmp_location, tmp_location + 1)] = list(detected_ners.keys())
identified_trigger_positions = list(set(identified_trigger_positions))
selected_trigger_positions = list()
# print('identified trigger positions', identified_trigger_positions)
for tmp_position in identified_trigger_positions:
if tmp_lemmas[tmp_position[0]] in self.all_trigger_keywords:
selected_trigger_positions.append(tmp_position)
continue
tmp_embedding = get_represetation(SRL_parsing_results['words'], (tmp_position[0], tmp_position[1]),
self.tokenizer,
self.model,
self.device)
decision, sorted_types = make_prediction_new(tmp_embedding, self.etype_embeddings, self.all_event_types,
self.etype_radius)
if decision:
selected_trigger_positions.append(tmp_position)
# print('selected trigger positions', selected_trigger_positions)
for tmp_trigger_position in selected_trigger_positions:
tmp_embedding = get_represetation(SRL_parsing_results['words'],
(tmp_trigger_position[0], tmp_trigger_position[1]),
self.tokenizer, self.model,
self.device)
predicate_score = list()
for tmp_etype in event_types:
predicate_score.append(
get_similarity_score(tmp_embedding, self.etype_to_distinct_embeddings[tmp_etype]))
argument_scores = list()
entity_types = list()
for tmp_argument_position in trigger_to_arguments[tmp_trigger_position]:
sent_emb = get_represetation(NER_parsing_results['words'], (tmp_argument_position[0],
tmp_argument_position[1]),
self.tokenizer, self.model, self.device, representation_type='mask')
tmp_scores = list()
for tmp_r_type in role_types:
tmp_scores.append(get_similarity_score(sent_emb, self.rtype_to_distinct_embeddings[tmp_r_type]))
argument_scores.append(tmp_scores)
if tmp_argument_position in detected_ners:
entity_types.append(detected_ners[tmp_argument_position])
else:
entity_types.append('NAN')
if len(argument_scores) > 0:
tmp_optimizer = gurobi_opt(predicate_score, argument_scores, entity_types, event_types,
role_types, weight=10)
optimized_predicates, optimized_arguments = tmp_optimizer.optimize_all()
trigger_type_prediction = optimized_predicates[0]
# if trigger_type_prediction == 'None':
# print(optimized_predicates)
argument_type_predictions = list()
for tmp_types in optimized_arguments:
argument_type_predictions.append(tmp_types[0])
else:
scores = list()
for tmp_score in predicate_score:
scores.append(torch.tensor(tmp_score).view(1, -1).to(self.device))
sorted_similarities, argument_indexes = torch.sort(torch.cat(scores, dim=1), dim=1, descending=True)
sorted_etypes = list()
for tmp_position in argument_indexes.tolist()[0]:
sorted_etypes.append(event_types[tmp_position])
trigger_type_prediction = sorted_etypes[0]
# if trigger_type_prediction == 'None':
# print(sorted_etypes)
argument_type_predictions = list()
for tmp_pos, tmp_argument_position in enumerate(trigger_to_arguments[tmp_trigger_position]):
scores = list()
for tmp_score in argument_scores[tmp_pos]:
scores.append(torch.tensor(tmp_score).view(1, -1).to(self.device))
sorted_similarities, argument_indexes = torch.sort(torch.cat(scores, dim=1), dim=1, descending=True)
sorted_rtypes = list()
for tmp_position in argument_indexes.tolist()[0]:
sorted_rtypes.append(role_types[tmp_position])
argument_type_predictions.append(sorted_rtypes[0])
if trigger_type_prediction != 'None':
tmp_event = dict()
tmp_event['trigger'] = {'position': tmp_trigger_position, 'type': trigger_type_prediction}
tmp_event['arguments'] = list()
for i, tmp_argument_position in enumerate(trigger_to_arguments[tmp_trigger_position]):
tmp_event['arguments'].append(
{'position': tmp_argument_position, 'role': argument_type_predictions[i]})
tmp_event['sentence'] = input_sentence
tmp_event['tokens'] = NER_parsing_results['words']
predictions.append(tmp_event)
return predictions
def Get_CogComp_SRL_and_NER_results(input_sentence):
# start_time = time()
# Variables we need to fill
tokens = list()
identified_trigger_positions = list()
detected_mentions = dict()
trigger_to_arguments = dict()
# We first work on Ruohao's entity detection system
# print('Extracting the mentions.')
headers = {'Content-type': 'application/json'}
NER_response = requests.post('http://dickens.seas.upenn.edu:4022/ner/',
json={"task": "kairos_ner", "text": input_sentence}, headers=headers)
if NER_response.status_code != 200:
return tokens, detected_mentions, identified_trigger_positions, trigger_to_arguments
NER_result = json.loads(NER_response.text)
tokens = NER_result['tokens']
NER_selected_view = dict()
for tmp_view in NER_result['views']:
if tmp_view['viewName'] == 'NER_CONLL':
NER_selected_view = tmp_view
for tmp_detected_mention in NER_selected_view['viewData'][0]['constituents']:
detected_mentions[(tmp_detected_mention['start'], tmp_detected_mention['end'])] = tmp_detected_mention['label']
# We then work on Celine's SRL system.
# print('Extracting the events.')
# SRL_response = requests.get('http://dickens.seas.upenn.edu:4039/annotate', data=input_sentence)
# SRL_response = requests.post('http://leguin.seas.upenn.edu:4039/annotate',
# json={'sentence': input_sentence})
SRL_response = requests.post('http://leguin.seas.upenn.edu:4039/annotate',
json={"task": "verb_srl_temporal", "sentence": input_sentence}, headers=headers)
if SRL_response.status_code != 200:
return tokens, detected_mentions, identified_trigger_positions, trigger_to_arguments
SRL_results = json.loads(SRL_response.text)
SRL_result = SRL_results["text_annotation"]
# SRL_result2 = json.loads(SRL_response2.text)
# print("\nSRL_result2: ", SRL_result2)
SRL_tokens = SRL_result['tokens']
SRL_sentences = SRL_result['sentences']
verb_srl_temporal = SRL_results['verb_srl_temporal']
# print('Match tokens.')
token_mapping = map_tokens_to_tokens(SRL_tokens, tokens)
# print(SRL_tokens)
# print(tokens)
# print(token_mapping)
# print('Finish matching.')
verb_SRL_view = dict()
nominal_SRL_view = dict()
for tmp_view in SRL_result['views']:
if tmp_view['viewName'] == 'SRL_ONTONOTES':
verb_SRL_view = tmp_view
elif tmp_view['viewName'] == 'SRL_NOM_ALL':
nominal_SRL_view = tmp_view
# we first deal with the verb SRL.
for tmp_mention in verb_SRL_view['viewData'][0]['constituents']:
if 'properties' in tmp_mention:
# this a trigger
start_position = token_mapping[tmp_mention['start']]
if tmp_mention['end'] < len(token_mapping):
end_position = token_mapping[tmp_mention['end']]
else:
end_position = len(tokens)
# print('We identified an event')
# print(start_position)
# print(end_position)
if start_position >= 0 and end_position >= 0:
identified_trigger_positions.append((start_position, end_position))
if (start_position, end_position) not in trigger_to_arguments:
trigger_to_arguments[(start_position, end_position)] = list()
for tmp_relation in verb_SRL_view['viewData'][0]['relations']:
if tmp_relation['relationName'] in ['ARG0', 'ARG1', 'ARG2']:
candidate_trigger = verb_SRL_view['viewData'][0]['constituents'][tmp_relation['srcConstituent']]
candidate_argument = verb_SRL_view['viewData'][0]['constituents'][tmp_relation['targetConstituent']]
trigger_start = token_mapping[candidate_trigger['start']]
if candidate_trigger['end'] < len(token_mapping):
trigger_end = token_mapping[candidate_trigger['end']]
else:
trigger_end = len(tokens)
argument_start = token_mapping[candidate_argument['start']]
if candidate_argument['end'] < len(token_mapping):
argument_end = token_mapping[candidate_argument['end']]
else:
argument_end = len(tokens)
# print(argument_start)
# print(argument_end)
if trigger_start >= 0 and trigger_end >= 0 and argument_start >= 0 and argument_end >= 0:
# print('detected mentions:', detected_mentions)
for tmp_mention in detected_mentions:
if tmp_mention[0] >= argument_start and tmp_mention[1] <= argument_end:
trigger_to_arguments[(trigger_start, trigger_end)].append(tmp_mention)
# we then deal with the nominal SRL.
for tmp_mention in nominal_SRL_view['viewData'][0]['constituents']:
if 'properties' in tmp_mention:
# this a trigger
start_position = token_mapping[tmp_mention['start']]
if tmp_mention['end'] < len(token_mapping):
end_position = token_mapping[tmp_mention['end']]
else:
end_position = len(tokens)
if start_position >= 0 and end_position >= 0:
identified_trigger_positions.append((start_position, end_position))
if (start_position, end_position) not in trigger_to_arguments:
trigger_to_arguments[(start_position, end_position)] = list()
for tmp_relation in nominal_SRL_view['viewData'][0]['relations']:
if tmp_relation['relationName'] in ['ARG0', 'ARG1', 'ARG2']:
candidate_trigger = nominal_SRL_view['viewData'][0]['constituents'][tmp_relation['srcConstituent']]
candidate_argument = nominal_SRL_view['viewData'][0]['constituents'][tmp_relation['targetConstituent']]
trigger_start = token_mapping[candidate_trigger['start']]
if candidate_trigger['end'] < len(token_mapping):
trigger_end = token_mapping[candidate_trigger['end']]
else:
trigger_end = len(tokens)
argument_start = token_mapping[candidate_argument['start']]
if candidate_argument['end'] < len(token_mapping):
argument_end = token_mapping[candidate_argument['end']]
else:
argument_end = len(tokens)
if trigger_start > 0 and trigger_end > 0 and argument_start > 0 and argument_end > 0:
for tmp_mention in detected_mentions:
if tmp_mention[1] <= argument_end and tmp_mention[0] >= argument_start:
trigger_to_arguments[(trigger_start, trigger_end)].append(tmp_mention)
for tmp_trigger in trigger_to_arguments:
trigger_to_arguments[tmp_trigger] = list(set(trigger_to_arguments[tmp_trigger]))
# end_time = time()
# print("***Processing Time (SRL & NER ) :", end_time - start_time)
# print('tokens:', tokens)
# print('detected mentions:', detected_mentions)
# print('identified_trigger_positions:', identified_trigger_positions)
# print('trigger_to_arguments:', trigger_to_arguments)
return tokens, detected_mentions, identified_trigger_positions, trigger_to_arguments, verb_SRL_view, nominal_SRL_view, SRL_sentences, verb_srl_temporal
class CogcompKairosEventExtractorTest:
def __init__(self, device, model):
self.device = device
if model == 'bert':
self.tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
self.model = BertModel.from_pretrained('bert-large-uncased').to(device)
elif model == 'mbert':
self.tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
self.model = BertModel.from_pretrained('bert-base-multilingual-uncased').to(device)
self.model.eval()
with open('data/selected_e_types.json', 'r') as f:
all_event_types = json.load(f)
with open('data/selected_r_types.json', 'r') as f:
all_role_types = json.load(f)
self.all_trigger_keywords = list()
for tmp_key_word in trigger_keywords:
self.all_trigger_keywords += trigger_keywords[tmp_key_word]
all_trigger_keywords = list(set(self.all_trigger_keywords))
selected_all_event_types = list()
with open('all_types/event.ontology.new.txt', 'r',
encoding='utf-8') as f:
for line in f:
words = line[:-1].split('\t')
tmp_event_type = words[1] + ':' + words[2]
tmp_keywords = words[1].split(' ')
if tmp_event_type not in all_event_types:
continue
no_overlap = True
for tmp_k in tmp_keywords:
if tmp_k in all_trigger_keywords:
no_overlap = False
break
if no_overlap:
selected_all_event_types.append(tmp_event_type)
self.all_event_types = event_types + selected_all_event_types
all_role_types = list(set(role_types + all_role_types))
self.etype_to_distinct_embeddings = dict()
self.rtype_to_distinct_embeddings = dict()
self.etype_embeddings = list()
self.rtype_embeddings = list()
with open('data/etype_to_distinct_embeddings.json', 'r') as f:
raw_etype_to_distinct_embeddings = json.load(f)
for tmp_e_type in self.all_event_types:
self.etype_to_distinct_embeddings[tmp_e_type] = list()
for tmp_embedding in raw_etype_to_distinct_embeddings[tmp_e_type]:
# print(len(tmp_embedding))
self.etype_to_distinct_embeddings[tmp_e_type].append(
torch.tensor(tmp_embedding).view(1, -1).to(device))
self.etype_embeddings.append(
torch.mean(torch.cat(self.etype_to_distinct_embeddings[tmp_e_type], dim=0), dim=0).view(1, -1))
with open('data/rtype_to_distinct_embeddings.json', 'r') as f:
raw_rtype_to_distinct_embeddings = json.load(f)
for tmp_r_type in all_role_types:
self.rtype_to_distinct_embeddings[tmp_r_type] = list()
for tmp_embedding in raw_rtype_to_distinct_embeddings[tmp_r_type]:
self.rtype_to_distinct_embeddings[tmp_r_type].append(
torch.tensor(tmp_embedding).view(1, -1).to(device))
self.rtype_embeddings.append(
torch.mean(torch.cat(self.rtype_to_distinct_embeddings[tmp_r_type], dim=0), dim=0).view(1, -1))
self.etype_radius = dict()
for tmp_e_type in event_types:
mean_embedding = torch.mean(torch.cat(self.etype_to_distinct_embeddings[tmp_e_type], dim=0), dim=0).view(1,
-1)
positive_embeddings = self.etype_to_distinct_embeddings[tmp_e_type]
negative_embeddings = list()
for tmp_other_e_type in self.all_event_types:
if tmp_other_e_type != tmp_e_type:
negative_embeddings += self.etype_to_distinct_embeddings[tmp_other_e_type]
positive_distance = torch.tensor(1.).to(device) - cos(torch.cat(positive_embeddings, dim=0),
mean_embedding.repeat(len(positive_embeddings),
1)).view(1,
-1)
positive_distance = positive_distance.tolist()[0]
negative_distance = torch.tensor(1.).to(device) - cos(torch.cat(negative_embeddings, dim=0),
mean_embedding.repeat(len(negative_embeddings),
1)).view(1,
-1)
negative_distance = negative_distance.tolist()[0]
best_radius = 0
best_F1 = 0
best_p = 0
best_r = 0
for tmp_radius in range(100):
tmp_radius = tmp_radius / 100
correct_count = 0
predict_count = 0
for tmp_positive_distance in positive_distance:
if tmp_positive_distance <= tmp_radius:
correct_count += 1
predict_count += 1
for tmp_negative_distance in negative_distance:
if tmp_negative_distance <= tmp_radius:
predict_count += 1
if correct_count == 0:
continue
tmp_p = correct_count / predict_count
tmp_r = correct_count / len(positive_distance)
tmp_F1 = (2 * tmp_p * tmp_r) / (tmp_p + tmp_r)
if tmp_F1 > best_F1:
best_F1 = tmp_F1
best_p = tmp_p
best_r = tmp_r
best_radius = tmp_radius
self.etype_radius[tmp_e_type] = best_radius
def extract(self, input_sentence, include_all_verbs=False, include_all_nouns=False, demo_version=False):
tokens, detected_mentions, identified_trigger_positions, trigger_to_arguments, verb_SRL_view, nominal_SRL_view, SRL_sentences, verb_srl_temporal = Get_CogComp_SRL_and_NER_results(
input_sentence)
print("\n---TOKENS:")
for i in range(len(tokens)):
print(i, " : ", tokens[i], end=" , ")
print("\n")
print('---identified trigger positions : ', identified_trigger_positions)
print("---Identified Triggers: \n")
for i in range(len(identified_trigger_positions)):
print(i, " : ", tokens[identified_trigger_positions[i][0]], end=" , ")
print("\n")
print('detected mentions:', detected_mentions)
print('trigger_to_arguments:', trigger_to_arguments)
# start_time = time()
selected_trigger_positions = list()
# start_time_onto = time()
for tmp_position in identified_trigger_positions:
tmp_embedding = get_represetation(tokens, (tmp_position[0], tmp_position[1]),
self.tokenizer,
self.model,
self.device)
decision, sorted_types = make_prediction_new(tmp_embedding, self.etype_embeddings, self.all_event_types,
self.etype_radius)
# print(sorted_types[:5])
if decision:
selected_trigger_positions.append(tmp_position)
# print("***Processing Time (Onto) : ", time() - start_time_onto)
print('selected trigger positions : ', selected_trigger_positions)
print("\n---Selected Triggers: \n")
for i in range(len(selected_trigger_positions)):
print(i, " : ", tokens[selected_trigger_positions[i][0]], end=" , ")
print("\n")
if include_all_verbs:
selected_trigger_positions_set = set([(x,y) for (x,y) in selected_trigger_positions])
# print("selected_trigger_positions_set: ", selected_trigger_positions_set)
for data in verb_SRL_view['viewData']:
for constituent in data['constituents']:
if constituent['label'] == 'Predicate':
tmp_pos = (constituent['start'] , constituent['end'])
if tmp_pos not in selected_trigger_positions_set:
if filter_words(tokens[tmp_pos[0]], exclude_words=exclude_words_list, tag_prefix="V", stop_words=stop_words_list):
#### test begin
if (tokens[tmp_pos[0]] in word_fequency) and word_fequency[tokens[tmp_pos[0]]] <= freq_limit_verb:
#### test end
selected_trigger_positions.append(tmp_pos)
print('selected trigger positions(all verbs included): ', selected_trigger_positions)
print("\n---Selected Triggers((all verbs included)):")
for i in range(len(selected_trigger_positions)):
print(i, " : ", tokens[selected_trigger_positions[i][0]], end=" , ")
print("\n")
if include_all_nouns:
selected_trigger_positions_set = set([(x,y) for (x,y) in selected_trigger_positions])
# print("selected_trigger_positions_set: ", selected_trigger_positions_set)
for data in nominal_SRL_view['viewData']:
for constituent in data['constituents']:
if constituent['label'] == 'Predicate':
tmp_pos = (constituent['start'] , constituent['end'])
if tmp_pos not in selected_trigger_positions_set:
if filter_words(tokens[tmp_pos[0]], exclude_words=exclude_words_list, tag_prefix="V", stop_words=stop_words_list):
#### test begin
if (tokens[tmp_pos[0]] in word_fequency) and word_fequency[tokens[tmp_pos[0]]] <= freq_limit_nominal:
#### test end
selected_trigger_positions.append(tmp_pos)
print('selected trigger positions(all nouns included): ', selected_trigger_positions)
print("\n---Selected Triggers((all verbs included)):")
for i in range(len(selected_trigger_positions)):
print(i, " : ", tokens[selected_trigger_positions[i][0]], end=" , ")
print("\n")
# start_time_type = time()
predictions = list()
for tmp_trigger_position in selected_trigger_positions:
# tmp_embedding = get_represetation(tokens,
# (tmp_trigger_position[0], tmp_trigger_position[1]),
# self.tokenizer, self.model,
# self.device)
# predicate_score = list()
# for tmp_etype in event_types:
# predicate_score.append(
# get_similarity_score(tmp_embedding, self.etype_to_distinct_embeddings[tmp_etype]))
# argument_scores = list()
# entity_types = list()
# for tmp_argument_position in trigger_to_arguments[tmp_trigger_position]:
# sent_emb = get_represetation(tokens, (tmp_argument_position[0],
# tmp_argument_position[1]),
# self.tokenizer, self.model, self.device, representation_type='mask')
# tmp_scores = list()
# for tmp_r_type in role_types:
# tmp_scores.append(get_similarity_score(sent_emb, self.rtype_to_distinct_embeddings[tmp_r_type]))
# argument_scores.append(tmp_scores)
# if tmp_argument_position in detected_mentions:
# entity_types.append(detected_mentions[tmp_argument_position].lower())
# else:
# entity_types.append('NAN')
# if len(argument_scores) > 0:
# tmp_optimizer = gurobi_opt(predicate_score, argument_scores, entity_types, event_types,
# role_types, weight=10)
# optimized_predicates, optimized_arguments = tmp_optimizer.optimize_all()