-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
49 lines (32 loc) · 1.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import cv2
import numpy as np
face_classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
def face_extractor(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray, 1.3, 5)
if faces is ():
return None
for (x, y, w, h) in faces:
cropped_faces = img[y:y+h, x:x+w]
return cropped_faces
cap = cv2.VideoCapture(0)
count = 0
while True:
ret, frame = cap.read()
if face_extractor(frame) is not None:
count += 1
face = cv2.resize(face_extractor(frame),(300,300))
#face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
file_name ='C:/Users/abhin/Desktop/abhinav/projects/Facial Recognition Based Attendance System/user data/user'+ str(count)+ '.jpg'
cv2.imwrite(file_name, face)
cv2.putText(face, str(count), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 255), 2)
cv2.imshow('face cropper', face)
else:
#print("Face not found")
pass
if cv2.waitKey(1) == 27 or count == 50:
break
cap.release()
cv2.destroyAllWindows()
print(' SAMPlES COlLECTED ')
import login