-
Notifications
You must be signed in to change notification settings - Fork 0
/
recognize.py
80 lines (53 loc) · 2.26 KB
/
recognize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import cv2
import numpy as np
from os import listdir
from os.path import isfile, join
data_path = 'C:/Users/abhin\Desktop/abhinav/projects/Facial Recognition Based Attendance System/user data/'
onlyfiles = [f for f in listdir(data_path) if isfile(join(data_path,f))]
training_data, labels = [], []
for i, files in enumerate(onlyfiles):
image_path = data_path + onlyfiles[i]
images = cv2.imread(image_path,cv2.IMREAD_GRAYSCALE)
training_data.append(np.asarray(images, dtype=np.uint8))
labels.append(i)
labels = np.asarray(labels, dtype=np.int32)
model = cv2.face.LBPHFaceRecognizer_create()
model.train(np.asarray(training_data), np.asarray(labels))
print("model training complete")
face_classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
def face_detector(img, size=0.5):
gray= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray,1.3,5)
if faces is ():
return img, []
for(x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
roi = img[y:y+h, x:x+w]
roi = cv2.resize(roi, (200, 200))
return img, roi
cap= cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
image, face = face_detector(frame)
try:
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
result = model.predict(face)
if result[1] < 500:
confidence = int(100*(1-(result[1])/300))
display_string = str(confidence) + '% FACE MATCHED '
cv2.putText(image, display_string, (100,120),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,0),2)
if confidence > 75:
cv2.putText(image, 'ATTENDANCE MARKED', (0, 450), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow('Face Cropper',image)
else:
cv2.putText(image, 'FACE NOT MATCHED', (0, 450), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow('Face Cropper', image)
except:
cv2.putText(image, 'FACE NOT FOUND IN DATABASE', (0, 450), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow('Face Cropper', image)
pass
if cv2.waitKey(1) == 27:
break
cap.release()
cv2.destroyAllWindows()
import login