-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
39 lines (26 loc) · 1.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = tf.keras.utils.normalize(x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test, axis=1)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
model.add(tf.keras.layers.Dense(units=128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(units=128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(units=10, activation=tf.nn.softmax))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=4)
loss, accuracy = model.evaluate(x_test, y_test)
print("accuracy: ",accuracy)
print("loss: ",loss)
model.save('digits.model')
for x in range(1,11):
img = cv.imread(f'{x}.png')[:,:,0]
img = np.invert(np.array([img]))
prediction = model.predict(img)
print(f'The result is : {np.argmax(prediction)}')
plt.imshow(img[0], cmap=plt.cm.binary)
plt.show()