-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadl_train.py
257 lines (188 loc) · 11.2 KB
/
adl_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import numpy as np
import torch
import torch.nn as nn
import random
import argparse
import os
from copy import deepcopy
from scipy import interpolate
from sklearn.cluster import KMeans, MiniBatchKMeans
from dataloaders.dataloadert import build_dataloader
from modeling.netm1 import SemiADNet
from tqdm import tqdm
from utils import aucPerformance, run_k_means, get_loss_weights, seed_everything
from loss import FocalLoss
import warnings
warnings.filterwarnings('ignore')
class SoftDeviationLoss(nn.Module):
def __init__(self):
super().__init__()
def get_losses(self, y_pred):
confidence_margin = 10.
ref = torch.normal(mean=0., std=torch.full([5000], 1.)).cuda()
dev = (y_pred - torch.mean(ref)) / torch.std(ref)
inlier_loss = torch.abs(dev)
outlier_loss = torch.abs((confidence_margin - dev).clamp_(min=0.))
return inlier_loss, outlier_loss
def forward(self, y_pred, prob):
inlier_loss, outlier_loss = self.get_losses(y_pred)
total_loss= (1-prob.detach())*inlier_loss+ (prob.detach())*outlier_loss
return total_loss
############################################################################## ###############
class Trainer(object):
def __init__(self, args):
self.args = args
# Define Dataloader
kwargs = {'num_workers': args.workers}
self.train_loader, self.test_loader = build_dataloader(args, **kwargs)
self.model = SemiADNet(args)
#Code for instance re-weighting
self.total_iter= len(self.train_loader) *self.args.epochs
#burn-in (initial training with uniform weight)
self.burnin= int(self.total_iter *0.06)
self.curr_iter=0
self.burnin_interp_fn = interpolate.interp1d([self.burnin, self.burnin *3, self.total_iter],
[self.args.lambda_hyp * 10, self.args.lambda_hyp, self.args.lambda_hyp])
self.criterion= SoftDeviationLoss()
self.criterion2= nn.BCELoss(reduce=False)
self.criterion3= FocalLoss()
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.0002, weight_decay=1e-5)
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=10, gamma=0.1)
if args.cuda:
self.model = self.model.cuda()
self.criterion = self.criterion.cuda()
self.criterion2=self.criterion2.cuda()
self.criterion3=self.criterion3.cuda()
def train(self, epoch):
train_loss = 0.0
train_segment_loss=0.0
train_abnormal_loss=0.0
train_ce_loss=0.0
self.model.train()
tbar = tqdm(self.train_loader)
if epoch >=0:
self.correct_label=False
for i, sample in enumerate(tbar):
image, anomaly_mask, target = sample['image'], sample['mask'], sample['label']
if self.args.cuda:
image, anomaly_mask, target = image.cuda(), anomaly_mask.cuda(), target.cuda()
out_mask, outputs, prob = self.model(image)
out_mask_sm = torch.softmax(out_mask, dim=1)
segment_loss = self.criterion3(out_mask_sm, anomaly_mask)
#########approximation of lambda_hyp based on iteration###############
if self.burnin > 0 and self.curr_iter > self.burnin:
lambda_hyp = self.burnin_interp_fn(self.curr_iter)
losses=self.criterion(outputs, prob.detach().float()).view(-1, 1)
cluster_labels=run_k_means(outputs).cuda()
combined_labels= (cluster_labels + target).cpu()
nor_index =np.argwhere(combined_labels>= 1).flatten()
combined_labels[nor_index]=1
combined_labels=combined_labels.cuda()
if np.random.rand() >=0.4:
CE_losses= self.criterion2(prob.squeeze(), combined_labels.float())
else:
CE_losses= self.criterion2(prob.squeeze(), target.float())
else:
lambda_hyp = self.args.lambda_hyp
losses=self.criterion(outputs, target.unsqueeze(1).float()).view(-1, 1)
CE_losses= self.criterion2(prob.squeeze(), target.float())
batch_size=CE_losses.size()[0]
loss_weights1= torch.from_numpy(get_loss_weights(CE_losses.detach().cpu().numpy(), self.args.div_type, self.args.alpha,
self.args.lambda_hyp, self.args.w_type, self.curr_iter,
self.burnin))
loss_weights2= torch.from_numpy(get_loss_weights(losses.detach().cpu().numpy(), self.args.div_type, self.args.alpha,
self.args.lambda_hyp, self.args.w_type, self.curr_iter,
self.burnin))
if self.args.cuda:
loss_weights1=loss_weights1.cuda()
loss_weights2=loss_weights2.cuda()
CE_loss=torch.mean(CE_losses*loss_weights1)
loss=torch.mean(losses*loss_weights2)
self.optimizer.zero_grad()
total_loss= loss + CE_loss + segment_loss
total_loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer.step()
self.curr_iter+=1
train_segment_loss += segment_loss.item()
train_abnormal_loss += loss.item()
train_loss +=loss.item()
train_ce_loss += CE_loss.item()
tbar.set_description('Epoch:%d, Train loss: %.5f Train segment loss: %.5f Train loss ce: %.5f' % (epoch, train_loss / (i + 1), train_segment_loss / (i + 1), train_ce_loss / (i + 1)))
self.scheduler.step()
def eval(self):
self.model.eval()
tbar = tqdm(self.test_loader, desc='\r')
test_loss = 0.0
total_target = np.array([])
total_pred = list()
total_pred_from_mask=list()
anomaly_score_prediction = []
for i, sample in enumerate(tbar):
image, target = sample['image'], sample['label']
if self.args.cuda:
image, target = image.cuda(), target.cuda()
with torch.no_grad():
out_mask, outputs, prob = self.model(image.float())
out_mask_sm = torch.softmax(out_mask, dim=1)
losses=self.criterion(outputs, prob.detach().float()).view(-1, 1)
loss=torch.mean(losses)
out_mask_averaged = torch.nn.functional.avg_pool2d(out_mask_sm[: ,1: ,: ,:], 21, stride=1,
padding=21 // 2).cpu().detach()
out_mask_averaged = out_mask_averaged.view(int(out_mask_averaged.size(0)), -1)
topk = max(int(out_mask_averaged.size(1) * 0.1), 1)
image_score = torch.mean(out_mask_averaged, dim=1).view(-1,1)
test_loss += loss.item()
tbar.set_description('Test loss: %.3f' % (test_loss / (i + 1)))
total_target = np.append(total_target, target.cpu().numpy())
data = outputs.data.cpu().numpy()
total_pred = np.append(total_pred, data)
total_pred_from_mask=np.append(total_pred_from_mask, image_score.numpy())
roc, pr = aucPerformance(total_pred, total_target)
with open(self.args.report_name + ".txt", 'a') as f:
f.write("Class: %s, alpha: %.4f, lambda:%.4f, Contamination: %.4f, AUC-ROC: %.4f, AUC-PR: %.4f \n" % (self.args.classname, self.args.alpha, self.args.lambda_hyp, self.args.cont, roc, pr))
return roc, pr
def save_weights(self, filename):
model_wt_name = self.args.dataset +'_' +self.args.classname + '_' + str(self.args.cont) +'_'+ filename
torch.save(self.model.state_dict(), os.path.join(args.experiment_dir, model_wt_name))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=48, help="batch size")
parser.add_argument("--steps_per_epoch", type=int, default=20, help="the number of batches per epoch")
parser.add_argument("--epochs", type=int, default=50, help="the number of epochs")
parser.add_argument("--ramdn_seed", type=int, default=42, help="the random seed number")
parser.add_argument('--workers', type=int, default=4, metavar='N', help='dataloader threads')
parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--weight_name', type=str, default='model.pkl', help="the name of model weight")
parser.add_argument('--dataset_root', type=str, default='./data/mvtec_anomaly_detection', help="dataset root")
parser.add_argument('--dataset', type=str, default='mvtec', help="dataset name")
parser.add_argument('--anomaly_source_path', type=str, default='./data/dtd/images', help="dataset anomaly source")
parser.add_argument('--experiment_dir', type=str, default='./experiment', help="experiment dir root")
parser.add_argument('--classname', type=str, default='carpet', help="the subclass of the datasets")
parser.add_argument('--img_size', type=int, default=256, help="the image size of input")
parser.add_argument('--backbone', type=str, default='resnet18', help="the backbone network")
#parser.add_argument('--criterion', type=str, default='deviation-focal', help="the loss function")
parser.add_argument("--topk", type=float, default=0.1, help="the k percentage of instances in the topk module")
parser.add_argument("--cont", type=float, default=0.05, help="the percentage of contamination")
parser.add_argument('--alpha', type=float, default=0.1, help='alpha-parameter for alpha divergence')
parser.add_argument('--div_type',type=str, default='alpha', help='divergence type: alpha divergence')
parser.add_argument('--lambda_hyp',type=float, default=0.1, help='hyperparameter controlling the radius on the divergence')
parser.add_argument('--w_type', type=str, default='normalized', help='weight normalization: normalized/unnormalized')
parser.add_argument('--report_name', type=str, default='result_report_mvtec_bal', help="name of the file where report will be stored")
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
seed_everything(args.ramdn_seed)
trainer = Trainer(args)
if not os.path.exists(args.experiment_dir):
os.makedirs(args.experiment_dir)
argsDict = args.__dict__
with open(args.experiment_dir + '/setting.txt', 'w') as f:
f.writelines('------------------ start ------------------' + '\n')
for eachArg, value in argsDict.items():
f.writelines(eachArg + ' : ' + str(value) + '\n')
f.writelines('------------------- end -------------------')
print("class:", args.classname)
for epoch in range(0, trainer.args.epochs):
trainer.train(epoch)
trainer.eval()
trainer.save_weights(args.weight_name)