-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpirl_loss.py
84 lines (60 loc) · 3.18 KB
/
pirl_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import numpy as np
def get_img_pair_probs(vi_batch, vi_t_batch, mn_arr, temp_parameter):
"""
Returns the probability that feature representation for image I and I_t belong to same distribution.
:param vi_batch: Feature representation for batch of images I
:param vi_t_batch: Feature representation for batch containing transformed versions of I.
:param mn_arr: Memory bank of feature representations for negative images for current batch
:param temp_parameter: The temperature parameter
"""
# Define constant eps to ensure training is not impacted if norm of any image rep is zero
eps = 1e-6
# L2 normalize vi, vi_t and memory bank representations
vi_norm_arr = torch.norm(vi_batch, dim=1, keepdim=True)
vi_t_norm_arr = torch.norm(vi_t_batch, dim=1, keepdim=True)
mn_norm_arr = torch.norm(mn_arr, dim=1, keepdim=True)
vi_batch = vi_batch / (vi_norm_arr + eps)
vi_t_batch = vi_t_batch/ (vi_t_norm_arr + eps)
mn_arr = mn_arr / (mn_norm_arr + eps)
# Find cosine similarities
sim_vi_vi_t_arr = (vi_batch @ vi_t_batch.t()).diagonal()
sim_vi_t_mn_mat = (vi_t_batch @ mn_arr.t())
# Fine exponentiation of similarity arrays
exp_sim_vi_vi_t_arr = torch.exp(sim_vi_vi_t_arr / temp_parameter)
exp_sim_vi_t_mn_mat = torch.exp(sim_vi_t_mn_mat / temp_parameter)
# Sum exponential similarities of I_t with different images from memory bank of negatives
sum_exp_sim_vi_t_mn_arr = torch.sum(exp_sim_vi_t_mn_mat, 1)
# Find batch probabilities arr
batch_prob_arr = exp_sim_vi_vi_t_arr / (exp_sim_vi_vi_t_arr + sum_exp_sim_vi_t_mn_arr + eps)
return batch_prob_arr
def loss_pirl(img_pair_probs_arr, img_mem_rep_probs_arr):
"""
Returns the average of [-log(prob(img_pair_probs_arr)) - log(prob(img_mem_rep_probs_arr))]
:param img_pair_probs_arr: Prob vector of batch of images I and I_t to belong to same data distribution.
:param img_mem_rep_probs_arr: Prob vector of batch of I and mem_bank_rep of I to belong to same data distribution
"""
# Get 1st term of loss
neg_log_img_pair_probs = -1 * torch.log(img_pair_probs_arr)
loss_i_i_t = torch.sum(neg_log_img_pair_probs) / neg_log_img_pair_probs.size()[0]
# Get 2nd term of loss
neg_log_img_mem_rep_probs_arr = -1 * torch.log(img_mem_rep_probs_arr)
loss_i_mem_i = torch.sum(neg_log_img_mem_rep_probs_arr) / neg_log_img_mem_rep_probs_arr.size()[0]
loss = (loss_i_i_t + loss_i_mem_i) / 2
return loss
if __name__ == '__main__':
# Test get_img_pair_probs function
vi_batch = torch.randn(256, 128)
vi_t_batch = torch.randn(256, 128)
mn_arr = torch.randn(6400, 128)
mem_rep_of_batch_imgs = torch.randn(256, 128)
temp_parameter = 1.5
# Prob vector between I and I_t
img_pair_probs_arr = get_img_pair_probs(vi_batch, vi_t_batch, mn_arr, temp_parameter)
print (img_pair_probs_arr.shape)
# Prob vector between I and mem bank representation of I
img_mem_rep_probs_arr = get_img_pair_probs(vi_batch, mem_rep_of_batch_imgs, mn_arr, temp_parameter)
print (img_mem_rep_probs_arr.shape)
# Final loss
loss_val = loss_pirl(img_pair_probs_arr, img_mem_rep_probs_arr)
print (loss_val)