-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
483 lines (464 loc) · 24.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import sys
import os
import argparse
from random import shuffle
import numpy
import torch
import torch.optim as optim
import torch.nn.functional as F
import time
from utils import data_loader, ctb_data, german_data, arabic_data, ctb_data_wkp
from model.parser import Parser
from model.prpn import PRPN
from utils.data_loader import build_tree, get_brackets, build_tree_labelled, get_pred_labelled_bracketed
import torch.nn as nn
import pickle
import math
from os import listdir
from os.path import isfile, join, isdir
from utils.compute_f1 import compute_f1
# do pip install PYEVALB before running this.
from PYEVALB import scorer
from PYEVALB import parser
def ranking_loss(pred, gold, mask):
loss = 0.
for i in range(0, pred.shape[1]):
#masked = ((gold[:, i] - pred[:, i]) ** 2) * mask[:, i].float()
#loss = loss + masked.sum()
for j in range(i+1, pred.shape[1]): # assuming target_dist has same length at pred_dist
t_dist = gold[:,i] - gold[:,j]
p_dist = pred[:,i] - pred[:,j]
possible_loss = (t_dist - p_dist) ** 2
signed = torch.sign(t_dist) * p_dist
possible_loss = 1.0 * (1. - signed)
possible_loss = torch.clamp(possible_loss, 0.0, 1000.0)
possible_loss = possible_loss * mask[:,j].float()
loss += torch.mean(possible_loss)
return loss
def build_tree_prpn(depth, sen):
assert len(depth) == len(sen)
if len(depth) == 1:
parse_tree = sen[0]
else:
idx_max = numpy.argmax(depth)
parse_tree = []
if len(sen[:idx_max]) > 0:
tree0 = build_tree_prpn(depth[:idx_max], sen[:idx_max])
parse_tree.append(tree0)
tree1 = sen[idx_max]
if len(sen[idx_max + 1:]) > 0:
tree2 = build_tree_prpn(depth[idx_max + 1:], sen[idx_max + 1:])
tree1 = [tree1, tree2]
if parse_tree == []:
parse_tree = tree1
else:
parse_tree.append(tree1)
return parse_tree
def eval_fct(model, dataset, use_prpn, parse_with_gates, cuda=False, output_file=None):
model.eval()
prec_list = []
reca_list = []
f1_list = []
outf = []
label_map = dataset[-2]
label_targets = dataset[7]
#first reverse label map
rev_label_map = {}
accuracy_map = {}
do_labelled_f1 = False
net_acc = []
labelled_f1 = []
for x in label_map.keys():
accuracy_map[x] = []
rev_label_map[label_map[x]] = x
for i in range(len(dataset[0])):
#for i in range(1):
x = dataset[0][i]
y = dataset[1][i]
if cuda:
x = x.cuda()
y = y.cuda()
gold_brackets = dataset[3][i]
sent = dataset[4][i]
if use_prpn:
x = x.unsqueeze(1)
hidden = model.init_hidden(1)
_, hidden = model(x, hidden)
if parse_with_gates: # "normal" way of parsing with PRPN
gates = model.gates.squeeze(0).unsqueeze(1)
preds = gates[1:-1]
pred_tree = build_tree_prpn(list(preds.data), sent[1:-1])
else: # parse using supervised distances
do_labelled_f1 = True
preds = model.distances.transpose(1, 0)[2:-1].squeeze(0)
pred_tree = build_tree(list(preds.data), sent[1:-1])
pred_tree_labelled = build_tree_labelled(list(preds.data), sent[1:-1], list(model.label_out.transpose(0,1)[2:-1].squeeze(1).argmax(1)), rev_label_map)
predicted_nonleafs = list(model.label_out.transpose(0,1)[2:-1].squeeze(1).argmax(1))
predicted_leafs = list(model.leaf_label_out.squeeze(1).argmax(1))
#gold_leafs, gold_nonleafs, gold_dists,
l_f1 = compute_f1(dataset[4][i], dataset[10][i],predicted_leafs, predicted_nonleafs, list(preds.data), list(dataset[11][i]),list(dataset[9][i]),list(dataset[7][i]) ,list(dataset[1][i]),rev_label_map)
label_brackets = get_pred_labelled_bracketed(pred_tree_labelled)[0]
do_labelled_f1 = True
else:
preds = model(x.unsqueeze(0), torch.ones_like(x.unsqueeze(0)), cuda).transpose(0, 1)
pred_tree = build_tree(list(preds.data[0]), sent[1:-1])
pred_tree_labelled = build_tree_labelled(list(preds.data[0]), sent[1:-1], list(model.label_out.transpose(0,1)[0].argmax(1)), rev_label_map)
predicted_nonleafs = list(model.label_out.transpose(0,1)[0].argmax(1))
predicted_leafs = list(model.leaf_label_out.squeeze(1).argmax(1))
#gold_leafs, gold_nonleafs, gold_dists,
l_f1 = compute_f1(dataset[4][i], dataset[10][i],predicted_leafs, predicted_nonleafs, list(preds.data[0]), list(dataset[11][i]),list(dataset[9][i]),list(dataset[7][i]) ,list(dataset[1][i]),rev_label_map)
label_brackets = get_pred_labelled_bracketed(pred_tree_labelled)[0]
do_labelled_f1 = True
predicted_labels = model.label_out[0].argmax(1)[2:-1]
#net_acc.append(torch.sum(predicted_labels ==label_targets[i]).cpu().data.item()/float(len(predicted_labels)))
pred_brackets = get_brackets(pred_tree)[0]
overlap = pred_brackets.intersection(gold_brackets)
prec = float(len(overlap)) / (len(pred_brackets) + 1e-8)
reca = float(len(overlap)) / (len(gold_brackets) + 1e-8)
if len(gold_brackets) == 0:
reca = 1.
if len(pred_brackets) == 0:
prec = 1.
f1 = 2 * prec * reca / (prec + reca + 1e-8)
prec_list.append(prec)
reca_list.append(reca)
f1_list.append(f1)
if do_labelled_f1:
labelled_f1.append(l_f1)
outf.append({'f1': f1, 'example': sent, 'pred_tree': pred_tree, 'preds': preds, 'parse_with_gates': parse_with_gates, 'gold': gold_brackets})
if output_file:
f = open(output_file, "wb")
pickle.dump(outf, f)
# Sentence-level F1.
if do_labelled_f1:
print("Labelled F1", numpy.mean(labelled_f1))
# print("Label Acc", numpy.mean(net_acc))
return numpy.mean(f1_list)
def batchify(dataset, batch_size, use_prpn, cuda = False, padding_idx=0, training_method = "unsupervised", training_ratio = 0.5):
#batching options = interleave, supervised, unsupervised
batches = []
i = 0
while i + batch_size <= len(dataset[0]):
x = dataset[0][i:i+batch_size]
yg = dataset[5][i:i+batch_size] # [5] for gates
yd = dataset[1][i:i+batch_size] # distances
skip_sup = dataset[6][i:i+batch_size] # distances
ll = dataset[7][i:i+batch_size]
leafl = dataset[9][i:i+batch_size]
max_len = 0
for ex in x:
if ex.shape[0] > max_len:
max_len = ex.shape[0]
current_x = []
current_yg = []
current_yd = []
current_mask_x = []
current_mask_yd = []
current_mask_yg = []
current_mask_mg = []
current_mask_md = []
current_ll = []
current_leafl = []
skip_no = 0
for ex_x, ex_yg, ex_yd, ex_ll, ex_leaf in zip(x, yg, yd, ll, leafl):
mask_x = torch.ones_like(ex_x)
mask_yg = torch.ones_like(ex_yg, dtype=torch.long)
mask_yd = torch.ones_like(ex_yd, dtype=torch.long)
repl_x = ex_x
while ex_x.shape[0] < max_len:
ex_x = torch.cat((ex_x, torch.LongTensor([padding_idx])))
ex_yg = torch.cat((ex_yg, torch.FloatTensor([padding_idx])))
ex_yd = torch.cat((ex_yd, torch.FloatTensor([padding_idx])))
ex_ll = torch.cat((ex_ll, torch.LongTensor([padding_idx])))
ex_leaf = torch.cat((ex_leaf, torch.LongTensor([padding_idx])))
mask_x = torch.cat((mask_x, torch.LongTensor([padding_idx])))
mask_yd = torch.cat((mask_yd, torch.LongTensor([padding_idx])))
mask_yg = torch.cat((mask_yg, torch.LongTensor([padding_idx])))
# 1 - > -1 is valid
mask_mg = torch.cat((torch.zeros(1), torch.ones(len(repl_x[1:-1])), torch.zeros(max_len-len(repl_x[1:-1])-1)))
# 2 -> -1
mask_md = torch.cat((torch.zeros(2), torch.ones(len(repl_x[1:-1])-1), torch.zeros(max_len-len(repl_x[1:-1])-1)))
for_supervision_limitg = torch.clamp(ex_yg, 0.0, 1.0).long()
mask_yg = for_supervision_limitg * mask_yg # setting mask_y to zero for examples without supervision
for_supervision_limitd = torch.clamp(ex_yd, 0.0, 1.0).long()
mask_yd = for_supervision_limitd * mask_yd # setting mask_y to zero for examples without supervision
current_x.append(ex_x.unsqueeze(0))
current_yg.append(ex_yg.unsqueeze(0))
current_yd.append(ex_yd.unsqueeze(0))
current_mask_x.append(mask_x.unsqueeze(0))
current_mask_yd.append(mask_yd.unsqueeze(0))
current_mask_yg.append(mask_yg.unsqueeze(0))
current_mask_mg.append(mask_mg.unsqueeze(0))
current_mask_md.append(mask_md.unsqueeze(0))
current_ll.append(ex_ll.unsqueeze(0))
current_leafl.append(ex_leaf.unsqueeze(0))
supervision_type = ["unsupervised"]
if training_method == 'interleave':
if max(skip_sup) == False: #null supervision on this:
supervision_type = ["unsupervised"]
else:
supervision_type = ["supervised", "unsupervised"]
elif training_method == 'supervised':
supervision_type = ["supervised"]
elif training_method == 'semisupervised':
supervision_type = ["semisupervised"]
for is_batch_supervised in supervision_type:
if cuda:
batches.append((torch.cat(current_x).cuda(), torch.cat(current_yd).cuda(), torch.cat(current_yg).cuda(),
torch.cat(current_mask_x).cuda(), torch.cat(current_mask_yd).cuda(),
torch.cat(current_mask_yg).cuda() ,torch.cat(current_mask_mg).cuda(), torch.cat(current_mask_md).cuda(),
is_batch_supervised, torch.cat(current_ll).cuda(), torch.cat(current_leafl).cuda()))
else:
batches.append((torch.cat(current_x), torch.cat(current_yd), torch.cat(current_yg),
torch.cat(current_mask_x), torch.cat(current_mask_yd), torch.cat(current_mask_yg),
torch.cat(current_mask_mg), torch.cat(current_mask_md),
is_batch_supervised, torch.cat(current_ll), torch.cat(current_leafl)))
i += batch_size
if training_ratio == 1.0 and training_method == 'interleave':
training_method = "supervised"
elif training_ratio == 0.0 and training_method == 'interleave':
training_method = "unsupervised"
if training_method == "interleave": # interleave batches based on [-1]
supervised_batches = []
unsupervised_batches = []
for batch in batches:
if batch[-3] == "supervised":
supervised_batches.append(batch)
else:
unsupervised_batches.append(batch)
batches = []
supi = 0
unsupi = 0
lens = len(supervised_batches)
lenu = len(unsupervised_batches)
no_super = lens
print("Init batches: no of supervised: "+str(lens)+", no of UNS: "+str(lenu))
if lens < lenu:
no_super = math.ceil(max(lenu*(training_ratio/(1-training_ratio)), lens))
is_super = numpy.zeros(no_super + lenu)
is_super[0: no_super] = 1
print("Applying ratio: no of supervised: "+str(no_super)+", no of unsupervised: " +str(lenu))
else:
no_unsuper = math.ceil(max(lens * (1-training_ratio)/training_ratio, lenu))
is_super = numpy.ones(no_unsuper + lens)
is_super[0: no_unsuper] = 0
print("Applying ratio: no of supervised: "+str(lens)+", no of unsupervised: " +str(no_unsuper))
shuffle(is_super)
for i in range(len(is_super)):
if is_super[i] == 1:
batches.append(supervised_batches[supi])
supi = (supi + 1)%len(supervised_batches)
else:
batches.append(unsupervised_batches[unsupi])
unsupi = (unsupi + 1)%len(unsupervised_batches)
return batches
def LM_criterion(input, targets, targets_mask, ntokens):
targets_mask = targets_mask.contiguous().view(-1)
targets = targets.contiguous().view(-1)
input = input.view(-1, ntokens)
input = F.log_softmax(input, dim=-1)
loss = torch.gather(input, 1, targets[:, None]).view(-1)
loss = (-loss * targets_mask.float()).sum() / targets_mask.sum()
return loss
def train_fct(train_data, valid_data, vocab, use_prpn, cuda=False, nemb=100, nhid=300, epochs=300, batch_size=3,
alpha=0., train_beta=1.0, parse_with_gates=True, save_to=None, load_from=None, eval_on='dev',
use_orig_prpn=False, training_method='unsupervised', training_ratio=0.5, label_weight = 100.0):
if save_to:
if '/' in save_to:
os.makedirs('/'.join(save_to.split('/')[:-1]), exist_ok=True)
if use_prpn:
info = 'Using PRPN, ' + str(train_beta) + ' of gates and ' + str(1 - train_beta) + ' of distances.'
if alpha == 0.:
info += 'unsupervised.'
if parse_with_gates:
info += '\nUsing gate values for parsing.'
else:
info += '\nUsing distances for parsing.'
print(info)
model = PRPN(len(vocab), nemb, nhid, 2, 15, 5, 0.1, 0.2, 0.2, 0.0, False, False, 0, use_orig_prpn=use_orig_prpn, nlabels= len(train_data[-2]))
else:
print('Using supervised parser.')
model = Parser(nemb, nhid, len(vocab), nlabels=len(train_data[-2]))
if load_from:
print('Loading pretrained model from ' + load_from + '.')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#model_dict = model.state_dict()
#pre_d = torch.load(load_from).state_dict()
#checkpoint = torch.load(load_from)
#model.load_state_dict(pre_d)
model = torch.load(load_from, map_location=device)
optimizer = optim.Adam(model.parameters())
if batch_size > len(train_data[0]):
print('Reducing batch size to ' + str(len(train_data[0])) + ' due to train set size.')
batch_size = len(train_data[0])
train = batchify(train_data, batch_size, use_prpn, cuda = cuda, training_method = training_method, training_ratio=training_ratio)
print('Number of training batches: ' + str(len(train)))
if cuda:
model.cuda()
max_f1 = -1
for epoch in range(epochs):
model.train()
count = 0
epoch_start_time = time.time()
av_loss = 0.
shuffle(train)
nlabels = len(train_data[-2])
for (x, yd, yg, mask_x, mask_yd, mask_yg, mask_mg, mask_md, training_method, label_l, leaf_l) in train:
optimizer.zero_grad()
if use_prpn:
if training_method == "unsupervised":
alpha = 0.0
elif training_method == "supervised":
alpha = 1.0
hidden = model.init_hidden(batch_size)
output, _ = model(x.transpose(1, 0), hidden)
if cuda:
zeros = torch.zeros((mask_x.shape[0],)).unsqueeze(0).cuda().long()
else:
zeros = torch.zeros((mask_x.shape[0],)).unsqueeze(0).long()
gates = model.gates * mask_mg
gates = gates.transpose(0,1)[1:-1].transpose(0,1)
loss1g = ranking_loss(gates, yg, mask_yg)
# multi-task training on distances
distances = model.distances * mask_md
distances = distances.transpose(0,1)[2:-1].transpose(0,1)
loss1d = ranking_loss(distances, yd, mask_yd)
label_out = model.label_out.contiguous().view(-1, nlabels)
leaf_label_out = model.leaf_label_out.transpose(0,1).contiguous().view(-1, nlabels)
label_l = torch.cat([torch.zeros(batch_size,2).cuda().long(),label_l, torch.zeros(batch_size,1).cuda().long()], 1)
leaf_l = torch.cat([torch.zeros(batch_size,1).cuda().long(),leaf_l, torch.zeros(batch_size,1).cuda().long()], 1)
leaf_loss = nn.CrossEntropyLoss(ignore_index=0)(leaf_label_out, leaf_l.contiguous().view(-1))
loss_labels = nn.CrossEntropyLoss(ignore_index=0)(label_out, label_l.contiguous().view(-1))
#loss_labels = leaf_loss
loss1 = loss1g * train_beta + loss1d * (1 - train_beta)
loss2 = LM_criterion(output, torch.cat([x.transpose(1, 0)[1:], zeros], dim=0),
torch.cat([mask_x.transpose(1, 0)[1:], zeros], dim=0), len(vocab))
loss = alpha * loss1 + (1 - alpha) * loss2
if training_method!="unsupervised":
loss += label_weight * loss_labels
else:
#straight to the tree.
preds = model(x, mask_x, cuda)
label_out = model.label_out.transpose(0,1).contiguous().view(-1, nlabels)
leaf_label_out = model.leaf_label_out[1:-1].transpose(0,1).contiguous().view(-1, nlabels)
leaf_loss = nn.CrossEntropyLoss(ignore_index=0)(leaf_label_out, leaf_l.contiguous().view(-1))
loss_labels = nn.CrossEntropyLoss(ignore_index=0)(label_out, label_l.contiguous().view(-1))
loss_labels += leaf_loss
loss = ranking_loss(preds.transpose(0, 1), yd, mask_yd)
loss += label_weight * loss_labels
av_loss += loss
loss.backward()
torch.nn.utils.clip_grad_norm(model.parameters(), 1.)
optimizer.step()
if count % 100 == 0:
print("Epoch: "+str(epoch)+" -- batch: "+str(count))
count+=1
av_loss /= len(train)
print("Training time for epoch in sec: ", round((time.time()-epoch_start_time), 4))
print('End of epoch ' + str(epoch) + '. Evaluation on ' + eval_on + '.')
if eval_on == 'train':
f1 = eval_fct(model, train_data, use_prpn, parse_with_gates, cuda)
elif eval_on == 'test':
f1 = eval_fct(model, test_data, use_prpn, parse_with_gates, cuda)
else:
f1 = eval_fct(model, valid_data, use_prpn, parse_with_gates, cuda)
if save_to:
print('Storing current model...')
torch.save(model, save_to)
if f1 > max_f1:
max_f1 = f1
if save_to:
print('Storing new best model...')
torch.save(model, save_to + '.best')
print('Loss: ' + str(av_loss.data))
print('F1: ' + str(round(f1, 6)) + ' (best: ' + str(round(max_f1, 6)) + ')')
return None
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Parsing and grammar induction')
parser.add_argument('--data', type=str, default='data/', help='location of the data corpus')
parser.add_argument('--save', type=str, default=None, help='path where model will be stored')
parser.add_argument('--load', type=str, default=None, help='path to load a model from')
parser.add_argument('--PRPN', action='store_true',
help='use PRPN; otherwise, use the parser')
parser.add_argument('--shen', action='store_true',
help='use parsing network from Shen et al.')
parser.add_argument('--eval_on', type=str, default='dev', help='[train|dev|test]')
parser.add_argument('--beta', type=float, default=1.0,
help='0: train distances, 1: train gates')
parser.add_argument('--parse_with_distances', action='store_true',
help='use distances to build the parse tree for eval (instead of gate values)')
parser.add_argument('--alpha', type=float, default=0.,
help='weight of the SUPERVISED loss for PRPN; 0. means UNSUPERVISED (default)')
parser.add_argument('--batch', type=int, default=16, help='batch size')
parser.add_argument('--epochs', type=int, default=100, help='num of epochs')
parser.add_argument('--supervision_limit', type=int, default=-1, help='amount examples with supervision')
parser.add_argument('--eval_only', action='store_true', help='flag for eval without training')
parser.add_argument('--vocabulary', type=str, default=None, help='vocab pickled file path')
parser.add_argument('--dump_vocabulary', action='store_true', help='flag for dumping vocab.')
parser.add_argument('--train_from_pickle',type=str,default= None, help='loading training data from pickled file.')
parser.add_argument('--training_method', type=str, default='unsupervised', help='unsupervised/supervised/interleave/semisupervised')
parser.add_argument('--training_ratio', type=float, default=0.5,
help='1: all batches SUP, 0: all UNSUP')
parser.add_argument('--bagging', action='store_true', help='if using pickled random forest data.')
parser.add_argument('--treebank', type= str, default='ptb', help='ptb/ctb')
parser.add_argument('--semisupervised', action='store_true', help='do both supervi and unsupervi/useful for supervision limit types')
parser.add_argument('--force_binarize', action='store_true', help='force for binary comparison for F1 calc')
parser.add_argument('--nhid', type= int, default = 300, help='hidden dims')
parser.add_argument('--nemb', type= int, default = 100, help= 'emb dimension')
parser.add_argument('--nlookback', type= int, default = 1, help= 'lookback for PRPN')
parser.add_argument('--label_weight', type= float, default = 100.0, help= 'label weight ')
args = parser.parse_args()
if args.treebank == "ctb":
print("Using chinese treebank")
data_loader = ctb_data
elif args.treebank == "ctb_wkp":
print("Using chinese treebank")
data_loader = ctb_data_wkp
elif args.treebank == "negra":
print("Using german (negra) corpus")
data_loader = german_data
elif args.treebank == "arabic":
print("Using arabic treebank")
data_loader = arabic_data
else:
print("Using english treebank")
is_cuda = False
gpu_device = 0
print("Label Wt: "+str(args.label_weight))
if args.bagging:
print("bagging...")
if not torch.cuda.is_available():
print("You are not using CUDA.")
else:
is_cuda = True
torch.cuda.set_device(gpu_device)
print("You are using CUDA.")
print("training method: " + str(args.training_method))
if args.eval_only:
assert args.load != None
print("Supervision limit: " + str(args.supervision_limit))
print('Loading pretrained model from ' + args.load + '.')
outfile = args.load + '_output_' + str(time.time())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.load(args.load, map_location=device)
train_data, valid_data, test_data = data_loader.main(args.data, supervised_model=(not args.PRPN or args.alpha == 1.), supervision_limit=args.supervision_limit, bagging=args.bagging,semisupervised = args.semisupervised, force_binarize = args.force_binarize)
if args.eval_on == 'train':
f1 = eval_fct(model, train_data, args.PRPN, (not args.parse_with_distances), is_cuda, outfile)
elif args.eval_on == 'test':
f1 = eval_fct(model, test_data, args.PRPN, (not args.parse_with_distances), is_cuda, outfile)
else:
f1 = eval_fct(model, valid_data, args.PRPN, (not args.parse_with_distances), is_cuda, outfile)
print("F1: " + str(f1))
exit()
if args.vocabulary:
vocab = pickle.load(open(args.vocabulary, "rb"))
train_data, valid_data, test_data = data_loader.main(args.data, vocabulary = vocab, supervision_limit=args.supervision_limit, supervised_model=(not args.PRPN or args.alpha == 1.), pickled_file_path =args.train_from_pickle, bagging=args.bagging,semisupervised = args.semisupervised, force_binarize = args.force_binarize)
else:
train_data, valid_data, test_data = data_loader.main(args.data, supervision_limit=args.supervision_limit, supervised_model=(not args.PRPN or args.alpha == 1.), pickled_file_path =args.train_from_pickle, bagging=args.bagging ,semisupervised = args.semisupervised, force_binarize = args.force_binarize)
if args.dump_vocabulary:
pickle.dump(valid_data[-1], open("dict_ctb.pkl","wb"))
print("Saving Vocab to file.")
train_fct(train_data, valid_data, valid_data[-1], args.PRPN, is_cuda, alpha=args.alpha,
train_beta = args.beta, parse_with_gates=(not args.parse_with_distances),
save_to=args.save, load_from=args.load, eval_on=args.eval_on, batch_size=args.batch, epochs=args.epochs,
use_orig_prpn=args.shen, training_method=args.training_method, training_ratio=args.training_ratio, nhid=args.nhid, nemb=args.nemb, label_weight = float(args.label_weight))