-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgan_wasserstein.py
336 lines (257 loc) · 15.1 KB
/
gan_wasserstein.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import tensorflow as tf
from keras.datasets import cifar10, mnist
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
class DCGAN:
"""
A 4-layer generator - 4-layer discriminator Deep Convolutional Generative Adversarial Network
Huperparameters and optimizers are defaulted to those describe in the paper:
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL
GENERATIVE ADVERSARIAL NETWORKS
by
Alec Radford & Luke Metz
indico Research
Boston, MA {alec,luke}@indico.io
Soumith Chintala
Facebook AI Research New York, NY [email protected]
"""
def __init__(self, x_train, gen_dims=100):
"""
Initializes the Deep Convolutional Gan
Ags:
x_train (np.array): the set we want to sample generated images from
gen_dims (int): dimension of the noise for the generated images
"""
self.training_set = x_train
self.samples = [] # empty array to hold the samples
self.losses = [] # empty array to hold the losses
self.gen_dims = gen_dims
self.weights = []
def __generator(self, input_layer, kernel_size=5, reuse=False, lrelu_slope=0.2, kernel_initializer=tf.contrib.layers.xavier_initializer(), training=True):
"""
Builds the generator CNN
Args:
input_layer (Tensor): The input layer to the network - gaussian noise placeholder
kernel_initializer: weight initializer for the CNN layers
kernel_size (int): size of the perceptive field
reuse (bool): reuse parameter to reuse the variables
lrelu_slope (np.float16): slope for the leaky relu activation function
training (bool): batch normalization training
Returns:
out (Tensor): generated image
"""
# use the xavier initializer for the weights
w_init = kernel_initializer
# use the variable scope to fetch the vars later
with tf.variable_scope('generator', reuse=reuse):
# reshape the noise into a volume
input_dense = tf.layers.dense(inputs=input_layer, units=2*2*256)
input_volume = tf.reshape(tensor=input_dense, shape=(-1, 2, 2, 256))
h1 = tf.layers.batch_normalization(inputs=input_volume, training=training) # batch norm
h1 = tf.maximum(h1 * lrelu_slope, h1) # leaky relu
# 2x2x256
# deconv - upsample
h2 = tf.layers.conv2d_transpose(filters=128, strides=2, kernel_size=kernel_size, padding='same', inputs=h1, activation=None, kernel_initializer=w_init)
h2 = tf.layers.batch_normalization(inputs=h2, training=training)
h2 = tf.maximum(h2 * lrelu_slope, h2) # leaky relu
# 4x4x128
# deconv - upsample
h3 = tf.layers.conv2d_transpose(filters=64, strides=2, kernel_size=kernel_size, padding='same', inputs=h2, activation=None, kernel_initializer=w_init)
h3 = tf.layers.batch_normalization(inputs=h3, training=training)
h3 = tf.maximum(h3 * lrelu_slope, h3)
# 8x8x64
# deconv - upsample
h4 = tf.layers.conv2d_transpose(filters=32, strides=2, kernel_size=kernel_size, padding='same', inputs=h3, activation=None, kernel_initializer=w_init)
h4 = tf.layers.batch_normalization(inputs=h4, training=training)
h4 = tf.maximum(h4 * lrelu_slope, h4)
# 16x16x32
# deconv - upsample
logits = tf.layers.conv2d_transpose(filters=3, strides=2, kernel_size=kernel_size, padding='same', inputs=h4, activation=None, kernel_initializer=w_init)
# 32x32x3
# output image
out = tf.tanh(x=logits)
return out
def __discriminator(self, input_layer, reuse=False, lrelu_slope=0.2, kernel_initializer=tf.contrib.layers.xavier_initializer(), kernel_size=5):
"""
Builds the discriminator CNN
Args:
input_layer (Tensor): The input layer to the network - image from the training set
kernel_initializer: weight initializer for the CNN layers
kernel_size (int): size of the perceptive field
reuse (bool): reuse parameter to reuse the variables
lrelu_slope (np.float16): slope for the leaky relu activation function
Returns:
out (Tensor): probability that the image is generated
logits (Tensor): logits of the discriminator
"""
# use the xavier initializer for the weights
w_init = kernel_initializer
with tf.variable_scope('discriminator', reuse=reuse):
# conv - 32x32x3 -> 16x16x364 -- we don't use the batch norm on the first layer of discriminator
h1 = tf.layers.conv2d(inputs=input_layer, filters=32, strides=2, kernel_size=kernel_size, padding='same', kernel_initializer=w_init)
h1 = tf.maximum(h1 * lrelu_slope, h1)
# conv - 16x16x64 -> 8x8x128
h2 = tf.layers.conv2d(inputs=h1, filters=64, strides=2, kernel_size=kernel_size, padding='same', kernel_initializer=w_init)
h2 = tf.layers.batch_normalization(inputs=h2, training=True)
h2 = tf.maximum(h2 * lrelu_slope, h2)
# conv - 8x8x128 -> 4x4x256
h3 = tf.layers.conv2d(inputs=h2, filters=128, strides=2, kernel_size=kernel_size, padding='same', kernel_initializer=w_init)
h3 = tf.layers.batch_normalization(inputs=h3, training=True)
h3 = tf.maximum(h3 * lrelu_slope, h3)
# conv - 4x4x256 -> 2x2x512
h4 = tf.layers.conv2d(inputs=h3, filters=256, strides=2, kernel_size=kernel_size, padding='same', kernel_initializer=w_init)
h4 = tf.layers.batch_normalization(inputs=h4, training=True)
h4 = tf.maximum(h4 * lrelu_slope, h4)
# flatten the array
flatten = tf.reshape(tensor=h4, shape=(-1, 2*2*256))
# logits
logits = tf.layers.dense(inputs=flatten, units=1, activation=None, kernel_initializer=w_init)
# output
out = tf.sigmoid(x=logits)
return out, logits
def __inputs(self):
"""
Creates the imput tensors for the generator and the discriminator
Returns:
gen_input (Tensor): input placeholder for the generator
real_input (Tensor): input placeholder for the discriminator
"""
# define the input placeholders
gen_input = tf.placeholder(shape=(None, self.gen_dims), dtype=tf.float32)
real_input = tf.placeholder(shape=(None, 32, 32, 3), dtype=tf.float32)
return gen_input, real_input
def __setup_losses_and_optimizers(self, lr=0.0005, beta1=0.5, beta2=0.999):
"""
Builds the computational graph for the network
Args:
lr (float): learning rate for the optimizer
beta1 (float): beta1 parameter for the ADAM optimizer
beta2 (float): beta2 parameter for ADAM
Returns:
discriminator_optimizer: optimizer op for the discriminator
generator_optimizer: optimizer op for the generator
disc_loss: discriminator loss
gen_loss: generator loss
gen_input: pass through generator input - noise
real_input: pass through real image input
"""
# - - - BUILD THE GRAPH - - -
# reset the default graph
tf.reset_default_graph()
# define the input placeholders
gen_input, real_input = self.__inputs()
# build the generator
gen_images = self.__generator(input_layer=gen_input,
kernel_size=5,
reuse=False,
lrelu_slope=0.2,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
training=True)
# build the discriminator for the real images
disc_output_real_image, disc_logits_real_image = self.__discriminator(input_layer=real_input,
reuse=False,
lrelu_slope=0.2,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
kernel_size=5)
# build the discriminator for fake images
# reuse the variables that we have from the real images
disc_output_gen_image, disc_logits_gen_image = self.__discriminator(input_layer=gen_images,
reuse=True,
lrelu_slope=0.2,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
kernel_size=5)
# - - - LOSSES - - -
# generator loss
gen_loss = tf.reduce_mean(tf.losses.sigmoid_cross_entropy(logits=disc_logits_gen_image, multi_class_labels=tf.ones_like(disc_logits_gen_image)))
# discriminator loss
disc_loss_real_images = tf.reduce_mean(tf.losses.sigmoid_cross_entropy(logits=disc_logits_real_image, multi_class_labels=tf.ones_like(disc_logits_real_image)))
disc_loss_gen_images = tf.reduce_mean(tf.losses.sigmoid_cross_entropy(logits=disc_logits_gen_image, multi_class_labels=tf.zeros_like(disc_logits_gen_image)))
disc_loss = disc_loss_real_images + disc_loss_gen_images
# get the variables for the generator and discriminator
generator_variables = [var for var in tf.trainable_variables() if var.name.startswith('generator')]
discriminator_variables = [var for var in tf.trainable_variables() if var.name.startswith('discriminator')]
# setup the optimizers
# comtrol for the global sample mean and variance
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
generator_optimizer = tf.train.AdamOptimizer(learning_rate=lr, beta1=beta1, beta2=beta2).minimize(gen_loss, var_list=generator_variables)
discriminator_optimizer = tf.train.AdamOptimizer(learning_rate=lr, beta1=beta1, beta2=beta2).minimize(disc_loss, var_list=discriminator_variables)
return discriminator_optimizer, generator_optimizer, disc_loss, gen_loss, gen_input, real_input
def train(self, batch_size=128, epochs=100):
"""
Trains the DCGAN
Args:
batch_size (int): size of a batch
epochs (int): number of epochs to train for
"""
d_opt, g_opt, d_loss, g_loss, gen_input, real_input = self.__setup_losses_and_optimizers()
# - - - TRAIN - - -
# run the session
with tf.Session() as sess:
# initialize the variables
sess.run(tf.global_variables_initializer())
# train the network
for epoch in tqdm(range(epochs)):
for step, batch in enumerate(self.__next_batch(self.training_set, batch_size)):
# generate the noise
noise = np.random.uniform(low=-1, high=1, size=(batch_size, self.gen_dims))
# feed the noise through the generator
_ = sess.run(g_opt, feed_dict={gen_input: noise, real_input: batch})
# feed the channel and the noise to the discriminator
_ = sess.run(d_opt, feed_dict={gen_input: noise, real_input: batch})
# get the generator and discriminator losses
gen_loss, disc_loss = sess.run([g_loss, d_loss], feed_dict={gen_input: noise, real_input: batch})
# append all the losses on every iteration
self.losses.append((gen_loss, disc_loss))
# every second epoch
if epoch % 2 == 0:
# sample more noise
sample_noise = np.random.uniform(low=-1, high=1, size=(72, self.gen_dims))
# generate images
gen_samples = sess.run(self.__generator(gen_input, reuse=True, training=False), feed_dict={gen_input: sample_noise})
# append the images to the samples
self.samples.append(gen_samples)
# view samples from the last epoch
_ = self.view_samples(-1, self.samples, 6, 12, figsize=(10,5))
plt.show()
def __next_batch(self, data, batch_size=128):
"""
Generates the batches of data
Args:
batch_size (int): size of the batch
Returns:
batch based on the batch_size
"""
# get the number of partitions
number_of_partitions = data.shape[0]//batch_size
# shuffle the examples
np.random.shuffle(self.training_set)
# partition the examples
for batch in np.array_split(self.training_set[:number_of_partitions*batch_size], number_of_partitions):
yield batch * 2 - 1 # scale to -1 to 1
def view_samples(self, epoch, samples, nrows, ncols, figsize=(5, 5)):
"""
Shows generated samples
The function is taken from Udacity's DL nanodegree course
Args:
epoch (int): the epochs to fetch the samples from
nrows (int): number of rows in the grid
ncols (int): number of columns in the grid
figsize (int, int): figure size
Returns:
fig (matplotlib.figure.Figure): figure object
axes (matplotlib.axes._subplots.AxesSubplot): ax objects
"""
# ge the figure and the axes
fig, axes = plt.subplots(figsize=figsize, nrows=nrows, ncols=ncols, sharey=True, sharex=True)
# draw the samples
for ax, img in zip(axes.flatten(), samples[epoch]):
ax.axis('off')
img = ((img - img.min())*255 / (img.max() - img.min())).astype(np.uint8)
ax.set_adjustable('box-forced')
im = ax.imshow(img, aspect='equal')
plt.subplots_adjust(wspace=0, hspace=0)
return fig, axes
if '__name__' == '__main__':
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = np.concatenate((x_train, x_test), axis = 0)/255