forked from mlpack/mlpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrange_search_impl.hpp
751 lines (655 loc) · 21.6 KB
/
range_search_impl.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
/**
* @file range_search_impl.hpp
* @author Ryan Curtin
*
* Implementation of the RangeSearch class.
*
* mlpack is free software; you may redistribute it and/or modify it under the
* terms of the 3-clause BSD license. You should have received a copy of the
* 3-clause BSD license along with mlpack. If not, see
* http://www.opensource.org/licenses/BSD-3-Clause for more information.
*/
#ifndef MLPACK_METHODS_RANGE_SEARCH_RANGE_SEARCH_IMPL_HPP
#define MLPACK_METHODS_RANGE_SEARCH_RANGE_SEARCH_IMPL_HPP
// Just in case it hasn't been included.
#include "range_search.hpp"
// The rules for traversal.
#include "range_search_rules.hpp"
namespace mlpack {
namespace range {
template<typename TreeType>
TreeType* BuildTree(
typename TreeType::Mat& dataset,
std::vector<size_t>& oldFromNew,
typename std::enable_if_t<
tree::TreeTraits<TreeType>::RearrangesDataset, TreeType
>* = 0)
{
return new TreeType(dataset, oldFromNew);
}
//! Call the tree constructor that does not do mapping.
template<typename TreeType>
TreeType* BuildTree(
const typename TreeType::Mat& dataset,
const std::vector<size_t>& /* oldFromNew */,
const typename std::enable_if_t<
!tree::TreeTraits<TreeType>::RearrangesDataset, TreeType
>* = 0)
{
return new TreeType(dataset);
}
template<typename TreeType>
TreeType* BuildTree(
typename TreeType::Mat&& dataset,
std::vector<size_t>& oldFromNew,
const typename std::enable_if_t<
tree::TreeTraits<TreeType>::RearrangesDataset, TreeType
>* = 0)
{
return new TreeType(std::move(dataset), oldFromNew);
}
template<typename TreeType>
TreeType* BuildTree(
typename TreeType::Mat&& dataset,
const std::vector<size_t>& /* oldFromNew */,
const typename std::enable_if_t<
!tree::TreeTraits<TreeType>::RearrangesDataset, TreeType
>* = 0)
{
return new TreeType(std::move(dataset));
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
RangeSearch<MetricType, MatType, TreeType>::RangeSearch(
const MatType& referenceSetIn,
const bool naive,
const bool singleMode,
const MetricType metric) :
referenceTree(naive ? NULL : BuildTree<Tree>(
const_cast<MatType&>(referenceSetIn), oldFromNewReferences)),
referenceSet(naive ? &referenceSetIn : &referenceTree->Dataset()),
treeOwner(!naive), // If in naive mode, we are not building any trees.
setOwner(false),
naive(naive),
singleMode(!naive && singleMode), // Naive overrides single mode.
metric(metric),
baseCases(0),
scores(0)
{
// Nothing to do.
}
// Move constructor.
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
RangeSearch<MetricType, MatType, TreeType>::RangeSearch(
MatType&& referenceSet,
const bool naive,
const bool singleMode,
const MetricType metric) :
referenceTree(naive ? NULL : BuildTree<Tree>(std::move(referenceSet),
oldFromNewReferences)),
referenceSet(naive ? new MatType(std::move(referenceSet)) :
&referenceTree->Dataset()),
treeOwner(!naive),
setOwner(naive),
naive(naive),
singleMode(!naive && singleMode),
metric(metric),
baseCases(0),
scores(0)
{
// Nothing to do.
}
//Deprecated.
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
RangeSearch<MetricType, MatType, TreeType>::RangeSearch(
Tree* referenceTree,
const bool singleMode,
const MetricType metric) :
referenceTree(referenceTree),
referenceSet(&referenceTree->Dataset()),
treeOwner(false),
setOwner(false),
naive(false),
singleMode(singleMode),
metric(metric),
baseCases(0),
scores(0)
{
// Nothing else to initialize.
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
RangeSearch<MetricType, MatType, TreeType>::RangeSearch(
const Tree& referenceTree,
const bool singleMode,
const MetricType metric) :
referenceTree(new Tree(referenceTree)),
referenceSet(this->referenceTree->Dataset()),
treeOwner(false),
setOwner(false),
naive(false),
singleMode(singleMode),
metric(metric),
baseCases(0),
scores(0)
{
// Nothing else to initialize.
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
RangeSearch<MetricType, MatType, TreeType>::RangeSearch(
const Tree&& referenceTree,
const bool singleMode,
const MetricType metric) :
referenceTree(new Tree(std::move(referenceTree))),
referenceSet(&this->referenceTree->Dataset()),
treeOwner(false),
setOwner(false),
naive(false),
singleMode(singleMode),
metric(metric),
baseCases(0),
scores(0)
{
// Nothing else to initialize.
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
RangeSearch<MetricType, MatType, TreeType>::RangeSearch(
const bool naive,
const bool singleMode,
const MetricType metric) :
referenceTree(NULL),
referenceSet(new MatType()), // Empty matrix.
treeOwner(false),
setOwner(true),
naive(naive),
singleMode(singleMode),
metric(metric),
baseCases(0),
scores(0)
{
// Build the tree on the empty dataset, if necessary.
if (!naive)
{
referenceTree = BuildTree<Tree>(const_cast<MatType&>(*referenceSet),
oldFromNewReferences);
treeOwner = true;
}
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
RangeSearch<MetricType, MatType, TreeType>::~RangeSearch()
{
if (treeOwner && referenceTree)
delete referenceTree;
if (setOwner && referenceSet)
delete referenceSet;
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
void RangeSearch<MetricType, MatType, TreeType>::Train(
const MatType& referenceSet)
{
// Clean up the old tree, if we built one.
if (treeOwner && referenceTree)
delete referenceTree;
// Rebuild the tree, if necessary.
if (!naive)
{
referenceTree = BuildTree<Tree>(const_cast<MatType&>(referenceSet),
oldFromNewReferences);
treeOwner = true;
}
else
{
treeOwner = false;
}
// Delete the old reference set, if we owned it.
if (setOwner && this->referenceSet)
delete this->referenceSet;
if (!naive)
this->referenceSet = &referenceTree->Dataset();
else
this->referenceSet = &referenceSet;
setOwner = false;
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
void RangeSearch<MetricType, MatType, TreeType>::Train(
MatType&& referenceSet)
{
// Clean up the old tree, if we built one.
if (treeOwner && referenceTree)
delete referenceTree;
// We may need to rebuild the tree.
if (!naive)
{
referenceTree = BuildTree<Tree>(std::move(referenceSet),
oldFromNewReferences);
treeOwner = true;
}
else
{
treeOwner = false;
}
// Delete the old reference set, if we owned it.
if (setOwner && this->referenceSet)
delete this->referenceSet;
if (!naive)
{
this->referenceSet = &referenceTree->Dataset();
setOwner = false;
}
else
{
this->referenceSet = new MatType(std::move(referenceSet));
setOwner = true;
}
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
void RangeSearch<MetricType, MatType, TreeType>::Train(
Tree* referenceTree)
{
if (naive)
throw std::invalid_argument("cannot train on given reference tree when "
"naive search (without trees) is desired");
if (treeOwner && referenceTree)
delete this->referenceTree;
if (setOwner && referenceSet)
delete this->referenceSet;
this->referenceTree = referenceTree;
this->referenceSet = &referenceTree->Dataset();
treeOwner = false;
setOwner = false;
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
void RangeSearch<MetricType, MatType, TreeType>::Search(
const MatType& querySet,
const math::Range& range,
std::vector<std::vector<size_t>>& neighbors,
std::vector<std::vector<double>>& distances)
{
if (querySet.n_rows != referenceSet->n_rows)
{
std::ostringstream oss;
oss << "RangeSearch::Search(): dimensionalities of query set ("
<< querySet.n_rows << ") and reference set (" << referenceSet->n_rows
<< ") do not match!";
throw std::invalid_argument(oss.str());
}
Timer::Start("range_search/computing_neighbors");
// This will hold mappings for query points, if necessary.
std::vector<size_t> oldFromNewQueries;
// If we have built the trees ourselves, then we will have to map all the
// indices back to their original indices when this computation is finished.
// To avoid extra copies, we will store the unmapped neighbors and distances
// in a separate object.
std::vector<std::vector<size_t>>* neighborPtr = &neighbors;
std::vector<std::vector<double>>* distancePtr = &distances;
// Mapping is only necessary if the tree rearranges points.
if (tree::TreeTraits<Tree>::RearrangesDataset)
{
// Query indices only need to be mapped if we are building the query tree
// ourselves.
if (!singleMode && !naive)
{
distancePtr = new std::vector<std::vector<double>>;
neighborPtr = new std::vector<std::vector<size_t>>;
}
// Reference indices only need to be mapped if we built the reference tree
// ourselves.
else if (treeOwner)
neighborPtr = new std::vector<std::vector<size_t>>;
}
// Resize each vector.
neighborPtr->clear(); // Just in case there was anything in it.
neighborPtr->resize(querySet.n_cols);
distancePtr->clear();
distancePtr->resize(querySet.n_cols);
// Create the helper object for the traversal.
typedef RangeSearchRules<MetricType, Tree> RuleType;
// Reset counts.
baseCases = 0;
scores = 0;
if (naive)
{
RuleType rules(*referenceSet, querySet, range, *neighborPtr, *distancePtr,
metric);
// The naive brute-force solution.
for (size_t i = 0; i < querySet.n_cols; ++i)
for (size_t j = 0; j < referenceSet->n_cols; ++j)
rules.BaseCase(i, j);
baseCases += (querySet.n_cols * referenceSet->n_cols);
}
else if (singleMode)
{
// Create the traverser.
RuleType rules(*referenceSet, querySet, range, *neighborPtr, *distancePtr,
metric);
typename Tree::template SingleTreeTraverser<RuleType> traverser(rules);
// Now have it traverse for each point.
for (size_t i = 0; i < querySet.n_cols; ++i)
traverser.Traverse(i, *referenceTree);
baseCases += rules.BaseCases();
scores += rules.Scores();
}
else // Dual-tree recursion.
{
// Build the query tree.
Timer::Stop("range_search/computing_neighbors");
Timer::Start("range_search/tree_building");
Tree* queryTree = BuildTree<Tree>(const_cast<MatType&>(querySet),
oldFromNewQueries);
Timer::Stop("range_search/tree_building");
Timer::Start("range_search/computing_neighbors");
// Create the traverser.
RuleType rules(*referenceSet, queryTree->Dataset(), range, *neighborPtr,
*distancePtr, metric);
typename Tree::template DualTreeTraverser<RuleType> traverser(rules);
traverser.Traverse(*queryTree, *referenceTree);
baseCases += rules.BaseCases();
scores += rules.Scores();
// Clean up tree memory.
delete queryTree;
}
Timer::Stop("range_search/computing_neighbors");
// Map points back to original indices, if necessary.
if (tree::TreeTraits<Tree>::RearrangesDataset)
{
if (!singleMode && !naive && treeOwner)
{
// We must map both query and reference indices.
neighbors.clear();
neighbors.resize(querySet.n_cols);
distances.clear();
distances.resize(querySet.n_cols);
for (size_t i = 0; i < distances.size(); i++)
{
// Map distances (copy a column).
const size_t queryMapping = oldFromNewQueries[i];
distances[queryMapping] = (*distancePtr)[i];
// Copy each neighbor individually, because we need to map it.
neighbors[queryMapping].resize(distances[queryMapping].size());
for (size_t j = 0; j < distances[queryMapping].size(); j++)
neighbors[queryMapping][j] =
oldFromNewReferences[(*neighborPtr)[i][j]];
}
// Finished with temporary objects.
delete neighborPtr;
delete distancePtr;
}
else if (!singleMode && !naive)
{
// We must map query indices only.
neighbors.clear();
neighbors.resize(querySet.n_cols);
distances.clear();
distances.resize(querySet.n_cols);
for (size_t i = 0; i < distances.size(); ++i)
{
// Map distances and neighbors (copy a column).
const size_t queryMapping = oldFromNewQueries[i];
distances[queryMapping] = (*distancePtr)[i];
neighbors[queryMapping] = (*neighborPtr)[i];
}
// Finished with temporary objects.
delete neighborPtr;
delete distancePtr;
}
else if (treeOwner)
{
// We must map reference indices only.
neighbors.clear();
neighbors.resize(querySet.n_cols);
for (size_t i = 0; i < neighbors.size(); i++)
{
neighbors[i].resize((*neighborPtr)[i].size());
for (size_t j = 0; j < neighbors[i].size(); j++)
neighbors[i][j] = oldFromNewReferences[(*neighborPtr)[i][j]];
}
// Finished with temporary object.
delete neighborPtr;
}
}
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
void RangeSearch<MetricType, MatType, TreeType>::Search(
Tree* queryTree,
const math::Range& range,
std::vector<std::vector<size_t>>& neighbors,
std::vector<std::vector<double>>& distances)
{
Timer::Start("range_search/computing_neighbors");
// Get a reference to the query set.
const MatType& querySet = queryTree->Dataset();
// Make sure we are in dual-tree mode.
if (singleMode || naive)
throw std::invalid_argument("cannot call RangeSearch::Search() with a "
"query tree when naive or singleMode are set to true");
// We won't need to map query indices, but will we need to map distances?
std::vector<std::vector<size_t>>* neighborPtr = &neighbors;
if (treeOwner && tree::TreeTraits<Tree>::RearrangesDataset)
neighborPtr = new std::vector<std::vector<size_t>>;
// Resize each vector.
neighborPtr->clear(); // Just in case there was anything in it.
neighborPtr->resize(querySet.n_cols);
distances.clear();
distances.resize(querySet.n_cols);
// Create the helper object for the traversal.
typedef RangeSearchRules<MetricType, Tree> RuleType;
RuleType rules(*referenceSet, queryTree->Dataset(), range, *neighborPtr,
distances, metric);
// Create the traverser.
typename Tree::template DualTreeTraverser<RuleType> traverser(rules);
traverser.Traverse(*queryTree, *referenceTree);
Timer::Stop("range_search/computing_neighbors");
baseCases = rules.BaseCases();
scores = rules.Scores();
// Do we need to map indices?
if (treeOwner && tree::TreeTraits<Tree>::RearrangesDataset)
{
// We must map reference indices only.
neighbors.clear();
neighbors.resize(querySet.n_cols);
for (size_t i = 0; i < neighbors.size(); i++)
{
neighbors[i].resize((*neighborPtr)[i].size());
for (size_t j = 0; j < neighbors[i].size(); j++)
neighbors[i][j] = oldFromNewReferences[(*neighborPtr)[i][j]];
}
// Finished with temporary object.
delete neighborPtr;
}
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
void RangeSearch<MetricType, MatType, TreeType>::Search(
const math::Range& range,
std::vector<std::vector<size_t>>& neighbors,
std::vector<std::vector<double>>& distances)
{
Timer::Start("range_search/computing_neighbors");
// Here, we will use the query set as the reference set.
std::vector<std::vector<size_t>>* neighborPtr = &neighbors;
std::vector<std::vector<double>>* distancePtr = &distances;
if (tree::TreeTraits<Tree>::RearrangesDataset && treeOwner)
{
// We will always need to rearrange in this case.
distancePtr = new std::vector<std::vector<double>>;
neighborPtr = new std::vector<std::vector<size_t>>;
}
// Resize each vector.
neighborPtr->clear(); // Just in case there was anything in it.
neighborPtr->resize(referenceSet->n_cols);
distancePtr->clear();
distancePtr->resize(referenceSet->n_cols);
// Create the helper object for the traversal.
typedef RangeSearchRules<MetricType, Tree> RuleType;
RuleType rules(*referenceSet, *referenceSet, range, *neighborPtr,
*distancePtr, metric, true /* don't return the query in the results */);
if (naive)
{
// The naive brute-force solution.
for (size_t i = 0; i < referenceSet->n_cols; ++i)
for (size_t j = 0; j < referenceSet->n_cols; ++j)
rules.BaseCase(i, j);
baseCases = (referenceSet->n_cols * referenceSet->n_cols);
scores = 0;
}
else if (singleMode)
{
// Create the traverser.
typename Tree::template SingleTreeTraverser<RuleType> traverser(rules);
// Now have it traverse for each point.
for (size_t i = 0; i < referenceSet->n_cols; ++i)
traverser.Traverse(i, *referenceTree);
baseCases = rules.BaseCases();
scores = rules.Scores();
}
else // Dual-tree recursion.
{
// Create the traverser.
typename Tree::template DualTreeTraverser<RuleType> traverser(rules);
traverser.Traverse(*referenceTree, *referenceTree);
baseCases = rules.BaseCases();
scores = rules.Scores();
}
Timer::Stop("range_search/computing_neighbors");
// Do we need to map the reference indices?
if (treeOwner && tree::TreeTraits<Tree>::RearrangesDataset)
{
neighbors.clear();
neighbors.resize(referenceSet->n_cols);
distances.clear();
distances.resize(referenceSet->n_cols);
for (size_t i = 0; i < distances.size(); i++)
{
// Map distances (copy a column).
const size_t refMapping = oldFromNewReferences[i];
distances[refMapping] = (*distancePtr)[i];
// Copy each neighbor individually, because we need to map it.
neighbors[refMapping].resize(distances[refMapping].size());
for (size_t j = 0; j < distances[refMapping].size(); j++)
{
neighbors[refMapping][j] = oldFromNewReferences[(*neighborPtr)[i][j]];
}
}
// Finished with temporary objects.
delete neighborPtr;
delete distancePtr;
}
}
template<typename MetricType,
typename MatType,
template<typename TreeMetricType,
typename TreeStatType,
typename TreeMatType> class TreeType>
template<typename Archive>
void RangeSearch<MetricType, MatType, TreeType>::Serialize(
Archive& ar,
const unsigned int /* version */)
{
using data::CreateNVP;
// Serialize preferences for search.
ar & CreateNVP(naive, "naive");
ar & CreateNVP(singleMode, "singleMode");
// Reset base cases and scores if we are loading.
if (Archive::is_loading::value)
{
baseCases = 0;
scores = 0;
}
// If we are doing naive search, we serialize the dataset. Otherwise we
// serialize the tree.
if (naive)
{
if (Archive::is_loading::value)
{
if (setOwner && referenceSet)
delete referenceSet;
setOwner = true;
}
ar & CreateNVP(referenceSet, "referenceSet");
ar & CreateNVP(metric, "metric");
// If we are loading, set the tree to NULL and clean up memory if necessary.
if (Archive::is_loading::value)
{
if (treeOwner && referenceTree)
delete referenceTree;
referenceTree = NULL;
oldFromNewReferences.clear();
treeOwner = false;
}
}
else
{
// Delete the current reference tree, if necessary and if we are loading.
if (Archive::is_loading::value)
{
if (treeOwner && referenceTree)
delete referenceTree;
// After we load the tree, we will own it.
treeOwner = true;
}
ar & CreateNVP(referenceTree, "referenceTree");
ar & CreateNVP(oldFromNewReferences, "oldFromNewReferences");
// If we are loading, set the dataset accordingly and clean up memory if
// necessary.
if (Archive::is_loading::value)
{
if (setOwner && referenceSet)
delete referenceSet;
referenceSet = &referenceTree->Dataset();
metric = referenceTree->Metric(); // Get the metric from the tree.
setOwner = false;
}
}
}
} // namespace range
} // namespace mlpack
#endif