forked from shssoichiro/oxipng
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmod.rs
571 lines (534 loc) · 23.5 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
use std::{
fs::File,
io::{BufReader, Read, Write},
path::Path,
sync::Arc,
};
use bitvec::bitarr;
use libdeflater::{CompressionLvl, Compressor};
use log::warn;
use rgb::ComponentSlice;
use rustc_hash::FxHashMap;
use crate::{
apng::*,
colors::{BitDepth, ColorType},
deflate,
error::PngError,
filters::*,
headers::*,
interlace::{deinterlace_image, interlace_image, Interlacing},
Options,
};
pub(crate) mod scan_lines;
use self::scan_lines::ScanLines;
/// Compression level to use for the Brute filter strategy
const BRUTE_LEVEL: i32 = 1; // 1 is fastest, 2-4 are not useful, 5 is slower but more effective
/// Number of lines to compress with the Brute filter strategy
const BRUTE_LINES: usize = 4; // Values over 8 are generally not useful
#[derive(Debug, Clone)]
pub struct PngImage {
/// The headers stored in the IHDR chunk
pub ihdr: IhdrData,
/// The uncompressed, unfiltered data from the IDAT chunk
pub data: Vec<u8>,
}
/// Contains all data relevant to a PNG image
#[derive(Debug, Clone)]
pub struct PngData {
/// Uncompressed image data
pub raw: Arc<PngImage>,
/// The filtered and compressed data of the IDAT chunk
pub idat_data: Vec<u8>,
/// All non-critical chunks from the PNG are stored here
pub aux_chunks: Vec<Chunk>,
/// APNG frames
pub frames: Vec<Frame>,
}
impl PngData {
/// Create a new `PngData` struct by opening a file
#[inline]
pub fn new(filepath: &Path, opts: &Options) -> Result<Self, PngError> {
let byte_data = Self::read_file(filepath)?;
Self::from_slice(&byte_data, opts)
}
pub fn read_file(filepath: &Path) -> Result<Vec<u8>, PngError> {
let file = match File::open(filepath) {
Ok(f) => f,
Err(_) => return Err(PngError::new("Failed to open file for reading")),
};
let file_len = file.metadata().map(|m| m.len() as usize).unwrap_or(0);
let mut reader = BufReader::new(file);
// Check file for PNG header
let mut header = [0; 8];
if reader.read_exact(&mut header).is_err() {
return Err(PngError::new("Not a PNG file: too small"));
}
if !file_header_is_valid(&header) {
return Err(PngError::new("Invalid PNG header detected"));
}
// Read raw png data into memory
let mut byte_data: Vec<u8> = Vec::with_capacity(file_len);
byte_data.extend_from_slice(&header);
match reader.read_to_end(&mut byte_data) {
Ok(_) => (),
Err(_) => return Err(PngError::new("Failed to read from file")),
}
Ok(byte_data)
}
/// Create a new `PngData` struct by reading a slice
pub fn from_slice(byte_data: &[u8], opts: &Options) -> Result<Self, PngError> {
let mut byte_offset: usize = 0;
// Test that png header is valid
let header = byte_data.get(0..8).ok_or(PngError::TruncatedData)?;
if !file_header_is_valid(header) {
return Err(PngError::NotPNG);
}
byte_offset += 8;
// Read the data chunks
let mut idat_data: Vec<u8> = Vec::new();
let mut key_chunks: FxHashMap<[u8; 4], Vec<u8>> = FxHashMap::default();
let mut aux_chunks: Vec<Chunk> = Vec::new();
let mut frames: Vec<Frame> = Vec::new();
let mut sequence_number = 0;
while let Some(chunk) = parse_next_chunk(byte_data, &mut byte_offset, opts.fix_errors)? {
match &chunk.name {
b"IDAT" => {
if idat_data.is_empty() {
// Keep track of where the first IDAT sits relative to other chunks
aux_chunks.push(Chunk {
name: chunk.name,
data: Vec::new(),
});
}
idat_data.extend_from_slice(chunk.data);
}
b"IHDR" | b"PLTE" | b"tRNS" => {
key_chunks.insert(chunk.name, chunk.data.to_owned());
}
_ if opts.strip.keep(&chunk.name) => {
if chunk.is_c2pa() {
// StripChunks::None is the default value, so to keep optimizing by default,
// interpret it as stripping the C2PA metadata.
// The C2PA metadata is invalidated if the file changes, so it shouldn't be kept.
if opts.strip == StripChunks::None {
continue;
}
return Err(PngError::C2PAMetadataPreventsChanges);
}
if chunk.name == *b"fcTL" || chunk.name == *b"fdAT" {
// Validate the sequence number
if read_be_u32(&chunk.data[0..4]) != sequence_number {
return Err(PngError::APNGOutOfOrder);
}
sequence_number += 1;
if chunk.name == *b"fcTL" && !idat_data.is_empty() {
// Only create a Frame if it's after the IDAT (else store it as an aux chunk)
frames.push(Frame::from_fctl_data(chunk.data)?);
continue;
} else if chunk.name == *b"fdAT" {
// Append the data to the last frame
frames
.last_mut()
.ok_or(PngError::APNGOutOfOrder)?
.data
.extend_from_slice(&chunk.data[4..]);
continue;
}
}
// Regular ancillary chunk
aux_chunks.push(Chunk {
name: chunk.name,
data: chunk.data.to_owned(),
});
}
b"acTL" => {
warn!("Stripping animation data from APNG - image will become standard PNG")
}
_ => (),
}
}
// Parse the chunks into our PngData
if idat_data.is_empty() {
return Err(PngError::ChunkMissing("IDAT"));
}
let ihdr_chunk = match key_chunks.remove(b"IHDR") {
Some(ihdr) => ihdr,
None => return Err(PngError::ChunkMissing("IHDR")),
};
let ihdr = parse_ihdr_chunk(
&ihdr_chunk,
key_chunks.remove(b"PLTE"),
key_chunks.remove(b"tRNS"),
)?;
let raw = PngImage::new(ihdr, &idat_data)?;
// Return the PngData
Ok(Self {
idat_data,
raw: Arc::new(raw),
aux_chunks,
frames,
})
}
/// Format the `PngData` struct into a valid PNG bytestream
#[must_use]
pub fn output(&self) -> Vec<u8> {
// PNG header
let mut output = vec![0x89, 0x50, 0x4E, 0x47, 0x0D, 0x0A, 0x1A, 0x0A];
// IHDR
let mut ihdr_data = Vec::with_capacity(13);
ihdr_data.write_all(&self.raw.ihdr.width.to_be_bytes()).ok();
ihdr_data
.write_all(&self.raw.ihdr.height.to_be_bytes())
.ok();
ihdr_data.write_all(&[self.raw.ihdr.bit_depth as u8]).ok();
ihdr_data
.write_all(&[self.raw.ihdr.color_type.png_header_code()])
.ok();
ihdr_data.write_all(&[0]).ok(); // Compression -- deflate
ihdr_data.write_all(&[0]).ok(); // Filter method -- 5-way adaptive filtering
ihdr_data.write_all(&[self.raw.ihdr.interlaced as u8]).ok();
write_png_block(b"IHDR", &ihdr_data, &mut output);
// Ancillary chunks - split into those that come before IDAT and those that come after
let mut aux_split = self.aux_chunks.split(|c| &c.name == b"IDAT");
let aux_pre = aux_split.next().unwrap();
// Many chunks need to be before PLTE, so write all except those that explicitly need to be after
// Note: the PNG spec does not say that fcTL needs to be after PLTE, but some decoders expect
// that (see issue #625)
for chunk in aux_pre
.iter()
.filter(|c| !matches!(&c.name, b"bKGD" | b"hIST" | b"tRNS" | b"fcTL"))
{
write_png_block(&chunk.name, &chunk.data, &mut output);
}
// Palette and transparency
match &self.raw.ihdr.color_type {
ColorType::Indexed { palette } => {
let mut palette_data = Vec::with_capacity(palette.len() * 3);
for px in palette {
palette_data.extend_from_slice(px.rgb().as_slice());
}
write_png_block(b"PLTE", &palette_data, &mut output);
if let Some(last_trns) = palette.iter().rposition(|px| px.a != 255) {
let trns_data: Vec<_> = palette[0..=last_trns].iter().map(|px| px.a).collect();
write_png_block(b"tRNS", &trns_data, &mut output);
}
}
ColorType::Grayscale {
transparent_shade: Some(trns),
} => {
// Transparency pixel - 2 byte u16
write_png_block(b"tRNS", &trns.to_be_bytes(), &mut output);
}
ColorType::RGB {
transparent_color: Some(trns),
} => {
// Transparency pixel - 6 byte RGB16
let trns_data: Vec<_> = trns.iter().flat_map(u16::to_be_bytes).collect();
write_png_block(b"tRNS", &trns_data, &mut output);
}
_ => {}
}
// Special ancillary chunks that need to come after PLTE but before IDAT
let mut sequence_number = 0;
for chunk in aux_pre
.iter()
.filter(|c| matches!(&c.name, b"bKGD" | b"hIST" | b"tRNS" | b"fcTL"))
{
write_png_block(&chunk.name, &chunk.data, &mut output);
if &chunk.name == b"fcTL" {
sequence_number += 1;
}
}
// IDAT data
write_png_block(b"IDAT", &self.idat_data, &mut output);
// APNG frames
for frame in self.frames.iter() {
write_png_block(b"fcTL", &frame.fctl_data(sequence_number), &mut output);
write_png_block(b"fdAT", &frame.fdat_data(sequence_number + 1), &mut output);
sequence_number += 2;
}
// Ancillary chunks that come after IDAT
for aux_post in aux_split {
for chunk in aux_post {
write_png_block(&chunk.name, &chunk.data, &mut output);
}
}
// Stream end
write_png_block(b"IEND", &[], &mut output);
output
}
}
impl PngImage {
pub fn new(ihdr: IhdrData, compressed_data: &[u8]) -> Result<Self, PngError> {
let raw_data = deflate::inflate(compressed_data, ihdr.raw_data_size())?;
// Reject files with incorrect width/height or truncated data
if raw_data.len() != ihdr.raw_data_size() {
return Err(PngError::TruncatedData);
}
let mut image = Self {
ihdr,
data: raw_data,
};
image.data = image.unfilter_image()?;
Ok(image)
}
/// Convert the image to the specified interlacing type
/// Returns true if the interlacing was changed, false otherwise
/// The `interlace` parameter specifies the *new* interlacing mode
/// Assumes that the data has already been de-filtered
#[inline]
#[must_use]
pub fn change_interlacing(&self, interlace: Interlacing) -> Option<Self> {
if interlace == self.ihdr.interlaced {
return None;
}
Some(if interlace == Interlacing::Adam7 {
// Convert progressive to interlaced data
interlace_image(self)
} else {
// Convert interlaced to progressive data
deinterlace_image(self)
})
}
/// Return the number of channels in the image, based on color type
#[inline]
#[must_use]
pub const fn channels_per_pixel(&self) -> usize {
self.ihdr.color_type.channels_per_pixel() as usize
}
/// Return the number of bytes per channel in the image
#[inline]
#[must_use]
pub const fn bytes_per_channel(&self) -> usize {
match self.ihdr.bit_depth {
BitDepth::Sixteen => 2,
// Depths lower than 8 will round up to 1 byte
_ => 1,
}
}
/// Calculate the size of the PLTE and tRNS chunks
#[must_use]
pub fn key_chunks_size(&self) -> usize {
match &self.ihdr.color_type {
ColorType::Indexed { palette } => {
let plte = 12 + palette.len() * 3;
if let Some(trns) = palette.iter().rposition(|p| p.a != 255) {
plte + 12 + trns + 1
} else {
plte
}
}
ColorType::Grayscale { transparent_shade } if transparent_shade.is_some() => 12 + 2,
ColorType::RGB { transparent_color } if transparent_color.is_some() => 12 + 6,
_ => 0,
}
}
/// Return an estimate of the output size which can help with evaluation of very small data
#[must_use]
pub fn estimated_output_size(&self, idat_data: &[u8]) -> usize {
idat_data.len() + self.key_chunks_size()
}
/// Return an iterator over the scanlines of the image
#[inline]
#[must_use]
pub fn scan_lines(&self, has_filter: bool) -> ScanLines<'_> {
ScanLines::new(self, has_filter)
}
/// Reverse all filters applied on the image, returning an unfiltered IDAT bytestream
fn unfilter_image(&self) -> Result<Vec<u8>, PngError> {
let mut unfiltered = Vec::with_capacity(self.data.len());
let bpp = self.bytes_per_channel() * self.channels_per_pixel();
let mut last_line: Vec<u8> = Vec::new();
let mut last_pass = None;
let mut unfiltered_buf = Vec::new();
for line in self.scan_lines(true) {
if last_pass != line.pass {
last_line.clear();
last_pass = line.pass;
}
last_line.resize(line.data.len(), 0);
let filter = RowFilter::try_from(line.filter).map_err(|_| PngError::InvalidData)?;
filter.unfilter_line(bpp, line.data, &last_line, &mut unfiltered_buf)?;
unfiltered.extend_from_slice(&unfiltered_buf);
std::mem::swap(&mut last_line, &mut unfiltered_buf);
unfiltered_buf.clear();
}
Ok(unfiltered)
}
/// Apply the specified filter type to all rows in the image
#[must_use]
pub fn filter_image(&self, filter: RowFilter, optimize_alpha: bool) -> Vec<u8> {
let mut filtered = Vec::with_capacity(self.data.len());
let bpp = self.bytes_per_channel() * self.channels_per_pixel();
// If alpha optimization is enabled, determine how many bytes of alpha there are per pixel
let alpha_bytes = if optimize_alpha && self.ihdr.color_type.has_alpha() {
self.bytes_per_channel()
} else {
0
};
let mut prev_line = Vec::new();
let mut prev_pass: Option<u8> = None;
let mut f_buf = Vec::new();
for line in self.scan_lines(false) {
if prev_pass != line.pass || line.data.len() != prev_line.len() {
prev_line = vec![0; line.data.len()];
}
// Alpha optimisation may alter the line data, so we need a mutable copy of it
let mut line_data = line.data.to_vec();
if filter <= RowFilter::Paeth {
// Standard filters
let filter = if prev_pass == line.pass || filter <= RowFilter::Sub {
filter
} else {
RowFilter::None
};
filter.filter_line(bpp, &mut line_data, &prev_line, &mut f_buf, alpha_bytes);
filtered.extend_from_slice(&f_buf);
prev_line = line_data;
} else {
// Heuristic filter selection strategies
if line_data.iter().all(|&x| x == 0) {
// Assume None if the line is all zeros
filtered.push(RowFilter::None as u8);
filtered.extend_from_slice(&line_data);
prev_line = line_data;
continue;
}
let mut best_line = Vec::new();
let mut best_line_raw = Vec::new();
// Avoid vertical filtering on first line of each interlacing pass
let try_filters = if prev_pass == line.pass {
RowFilter::STANDARD.iter()
} else {
RowFilter::SINGLE_LINE.iter()
};
match filter {
RowFilter::MinSum => {
// MSAD algorithm mentioned in libpng reference docs
// http://www.libpng.org/pub/png/book/chapter09.html
let mut best_size = usize::MAX;
for f in try_filters {
f.filter_line(bpp, &mut line_data, &prev_line, &mut f_buf, alpha_bytes);
let size = f_buf.iter().fold(0, |acc, &x| {
let signed = x as i8;
acc + signed.unsigned_abs() as usize
});
if size < best_size {
best_size = size;
std::mem::swap(&mut best_line, &mut f_buf);
best_line_raw.clone_from(&line_data);
}
}
}
RowFilter::Entropy => {
// Shannon entropy algorithm, from LodePNG
// https://github.com/lvandeve/lodepng
let mut best_size = i32::MIN;
for f in try_filters {
f.filter_line(bpp, &mut line_data, &prev_line, &mut f_buf, alpha_bytes);
let mut counts = vec![0; 0x100];
for &i in &f_buf {
counts[i as usize] += 1;
}
let size = counts.into_iter().fold(0, |acc, x| {
if x == 0 {
return acc;
}
acc + ilog2i(x)
}) as i32;
if size > best_size {
best_size = size;
std::mem::swap(&mut best_line, &mut f_buf);
best_line_raw.clone_from(&line_data);
}
}
}
RowFilter::Bigrams => {
// Count distinct bigrams, from pngwolf
// https://bjoern.hoehrmann.de/pngwolf/
let mut best_size = usize::MAX;
for f in try_filters {
f.filter_line(bpp, &mut line_data, &prev_line, &mut f_buf, alpha_bytes);
let mut set = bitarr![0; 0x10000];
for pair in f_buf.windows(2) {
let bigram = ((pair[0] as usize) << 8) | pair[1] as usize;
set.set(bigram, true);
}
let size = set.count_ones();
if size < best_size {
best_size = size;
std::mem::swap(&mut best_line, &mut f_buf);
best_line_raw.clone_from(&line_data);
}
}
}
RowFilter::BigEnt => {
// Bigram entropy, combined from Entropy and Bigrams filters
let mut best_size = i32::MIN;
// FxHasher is the fastest rust hasher currently available for this purpose
let mut counts = FxHashMap::<u16, u32>::default();
for f in try_filters {
f.filter_line(bpp, &mut line_data, &prev_line, &mut f_buf, alpha_bytes);
counts.clear();
for pair in f_buf.windows(2) {
let bigram = (u16::from(pair[0]) << 8) | u16::from(pair[1]);
counts.entry(bigram).and_modify(|e| *e += 1).or_insert(1);
}
let size = counts.values().fold(0, |acc, &x| acc + ilog2i(x)) as i32;
if size > best_size {
best_size = size;
std::mem::swap(&mut best_line, &mut f_buf);
best_line_raw.clone_from(&line_data);
}
}
}
RowFilter::Brute => {
// Brute force by compressing each filter attempt
// Similar to that of LodePNG but includes some previous lines for context
let mut best_size = usize::MAX;
let line_start = filtered.len();
filtered.resize(filtered.len() + line.data.len() + 1, 0);
let mut compressor =
Compressor::new(CompressionLvl::new(BRUTE_LEVEL).unwrap());
let limit = filtered.len().min((line.data.len() + 1) * BRUTE_LINES);
let capacity = compressor.zlib_compress_bound(limit);
let mut dest = vec![0; capacity];
for f in try_filters {
f.filter_line(bpp, &mut line_data, &prev_line, &mut f_buf, alpha_bytes);
filtered[line_start..].copy_from_slice(&f_buf);
let size = compressor
.zlib_compress(&filtered[filtered.len() - limit..], &mut dest)
.unwrap_or(usize::MAX);
if size < best_size {
best_size = size;
std::mem::swap(&mut best_line, &mut f_buf);
best_line_raw.clone_from(&line_data);
}
}
filtered.resize(line_start, 0);
}
_ => unreachable!(),
}
filtered.extend_from_slice(&best_line);
prev_line = best_line_raw;
}
prev_pass = line.pass;
}
filtered
}
}
fn write_png_block(key: &[u8], chunk: &[u8], output: &mut Vec<u8>) {
let mut chunk_data = Vec::with_capacity(chunk.len() + 4);
chunk_data.extend_from_slice(key);
chunk_data.extend_from_slice(chunk);
output.reserve(chunk_data.len() + 8);
output.extend_from_slice(&(chunk_data.len() as u32 - 4).to_be_bytes());
let crc = deflate::crc32(&chunk_data);
output.append(&mut chunk_data);
output.extend_from_slice(&crc.to_be_bytes());
}
// Integer approximation for i * log2(i) - much faster than float calculations
const fn ilog2i(i: u32) -> u32 {
let log = 32 - i.leading_zeros() - 1;
i * log + ((i - (1 << log)) << 1)
}