-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaster.py
151 lines (128 loc) · 4.41 KB
/
master.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import face_recognition
import argparse
import imutils
import pickle
import time
import cv2
import doorControl
import upload_image_to_FB
#import keypad_demo
import door_control_by_firebase
def main():
# load the known faces and embeddings along with OpenCV's Haar
# cascade for face detection
print("[INFO] loading encodings + face detector...")
data = pickle.loads(open("encodings.pickle", "rb").read())
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
# initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream...")
global vs
#vs = VideoStream(src=0).start()
vs = VideoStream(usePiCamera=True, resolution = (720,480)).start()
time.sleep(2.0)
#intialize message variables and the door object
message = "No People Detected"
prevmessage = "No People Detected"
global door
door = doorControl.door()
door.lock()
# start the FPS counter
global fps
fps = FPS().start()
# loop over frames from the video file stream
while True:
# grab the frame from the threaded video stream and resize it
# to 500px (to speedup processing)
frame = vs.read()
frame = imutils.resize(frame, width=500)
# convert the input frame from (1) BGR to grayscale (for face
# detection) and (2) from BGR to RGB (for face recognition)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# detect faces in the grayscale frame
rects = detector.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=5, minSize=(20,20),
flags=cv2.CASCADE_SCALE_IMAGE)
# OpenCV returns bounding box coordinates in (x, y, w, h) order
# but we need them in (top, right, bottom, left) order, so we
# need to do a bit of reordering
boxes = [(y, x + w, y + h, x) for (x, y, w, h) in rects]
# compute the facial embeddings for each face bounding box
encodings = face_recognition.face_encodings(rgb, boxes)
names = []
# loop over the facial embeddings
if encodings:
for encoding in encodings:
# attempt to match each face in the input image to our known
# encodings default tolerance is 0.6, lower is more accurate
matches = face_recognition.compare_faces(data["encodings"],
encoding, tolerance=0.5)
name = "Unknown"
# check to see if we have found a match
if True in matches:
# find the indexes of all matched faces then initialize a
# dictionary to count the total number of times each face
# was matched
matchedIdxs = [i for (i, b) in enumerate(matches) if b]
counts = {}
# loop over the matched indexes and maintain a count for
# each recognized face face
for i in matchedIdxs:
name = data["names"][i]
counts[name] = counts.get(name, 0) + 1
# determine the recognized face with the largest number
# of votes (note: in the event of an unlikely tie Python
# will select first entry in the dictionary)
name = max(counts, key=counts.get)
# update the list of names
names.append(name)
if names[0] == "Unknown" and (x == names[0] for x in names):
prevmessage = message
message = "An Unknown Person is Detected"
else:
prevmessage = message
message = "Welcome " + ', '.join(names)
else:
prevmessage = message
message = "No People Detected"
#Detects a change in state
if message != prevmessage:
print(message)
if message == "No People Detected":
#lock door
door.lock()
#check keypad input once
#keypad_demo.checkpassword()
#check firebase status once
door_control_by_firebase.checkFBstatus()
elif message == "An Unknown Person is Detected":
#lock door and save a picture of the unknown person
vs.camera.capture('/home/pi/Documents/SmartDoor/image.jpg')
upload_image_to_FB.uploadImg()
#check keypad input once
#keypad_demo.checkpassword()
#check firebase status once
door_control_by_firebase.checkFBstatus()
else:
#unlock door
door.unlock()
time.sleep(10)
door.lock()
# update the FPS counter
fps.update()
try:
main()
except KeyboardInterrupt:
print('User Ended Program')
# stop the timer and display FPS information
fps.stop()
print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
door.unlock()
door.shutdown()
cv2.destroyAllWindows()
vs.stop()